Citation: Junyong Zhao, Yang Zhao, Yujun Niu. On the number of solutions of two-variable diagonal quartic equations over finite fields[J]. AIMS Mathematics, 2020, 5(4): 2979-2991. doi: 10.3934/math.2020192
[1] | A. Adolphson and S. Sperber, p-Adic estimates for exponential sums and the theorem of ChevalleyWarning, Ann. Sci.'Ecole Norm. Sup., 20 (1987), 545-556. doi: 10.24033/asens.1543 |
[2] | A. Adolphson and S. Sperber, p-Adic estimates for exponential sums. In: F.Baldassarri, S. Bosch, B. Dwork (eds) p-adic Analysis. Lecture Notes in Mathematics, Springer, Berlin, 1990. |
[3] | J. Ax, Zeros of polynomials over finite fields, Amer. J. Math., 86 (1964), 255-261. doi: 10.2307/2373163 |
[4] | B. Berndt, R. Evans, K. Williams, Gauss and Jacobi Sums, Wiley-Interscience, New York, 1998. |
[5] | L. Carlitz, The numbers of solutions of a particular equation in a finite field, Publ. Math. Debrecen, 4 (1956), 379-383. |
[6] | S. Chowla, J. Cowles and M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502-506. doi: 10.1016/0022-314X(77)90010-5 |
[7] | S. F. Hong, Newton polygons of L-functions associtated with exponential sums of polynomials of degree four over finite fields, Finite Fields Th. App., 7 (2001), 205-237. doi: 10.1006/ffta.2000.0287 |
[8] | S. F. Hong, Newton polygons of L-functions associtated with exponential sums of polynomials of degree six over finite fields, J. Number Theory, 97 (2002), 368-396. doi: 10.1016/S0022-314X(02)00006-9 |
[9] | S. F. Hong, L-functions of twisted diagonal exponential sums over finite fields, Proc. Amer. Soc., 135 (2007), 3099-3108. doi: 10.1090/S0002-9939-07-08873-9 |
[10] | S. F. Hong, J. R. Zhao and W. Zhao, The universal Kummer congruences, J. Aust. Math. Soc., 94 (2013), 106-132. doi: 10.1017/S1446788712000493 |
[11] | S. N. Hu, S. F. Hong and W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 156 (2015), 135-153. doi: 10.1016/j.jnt.2015.04.006 |
[12] | R. Lidl, H. Niederreiter, Finite Fields, second ed., Cambridge University Press, Cambridge, 1997. |
[13] | G. Myerson, On the number of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95-99. doi: 10.1016/0022-314X(79)90023-4 |
[14] | J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247-257. doi: 10.1016/0022-314X(92)90091-3 |
[15] | A. Weil, On some exponential sums, Proc. Natu. Acad. Sci., 34 (1948), 204-207. doi: 10.1073/pnas.34.5.204 |
[16] | W. P. Zhang and J. Y. Hu, The number of solutions of the diagonal cubic congruence equation mod p, Math. Rep. (Bucur.), 20 (2018), 73-80. |
[17] | J. Y. Zhao, S. F. Hong and C. X. Zhu, The number of rational points of certain quartic diagonal hypersurfaces over finite fields, AIMS Math., 5 (2020), 2710-2731. doi: 10.3934/math.2020175 |