Research article

On the number of solutions of two-variable diagonal quartic equations over finite fields

  • Received: 16 November 2019 Accepted: 16 March 2020 Published: 20 March 2020
  • MSC : 11T23, 11T24

  • Let $p$ be a odd prime number and let $\mathbb{F}_q$ be the finite field of characteristic $p$ with $q$ elements. In this paper, by using the Gauss sum and Jacobi sum, we give an explicit formula for the number $N(x_1^4+x_2^4 = c)$ of solutions of the following two-variable diagonal quartic equations over $\mathbb{F}_q$: $x_1^4+x_2^4 = c$ with $c\in\mathbb{F}_q^*$. From this result, one can deduce that $N(x_1^4+x_2^4 = c) = q+O(q^{\frac{1}{2}}).$

    Citation: Junyong Zhao, Yang Zhao, Yujun Niu. On the number of solutions of two-variable diagonal quartic equations over finite fields[J]. AIMS Mathematics, 2020, 5(4): 2979-2991. doi: 10.3934/math.2020192

    Related Papers:

  • Let $p$ be a odd prime number and let $\mathbb{F}_q$ be the finite field of characteristic $p$ with $q$ elements. In this paper, by using the Gauss sum and Jacobi sum, we give an explicit formula for the number $N(x_1^4+x_2^4 = c)$ of solutions of the following two-variable diagonal quartic equations over $\mathbb{F}_q$: $x_1^4+x_2^4 = c$ with $c\in\mathbb{F}_q^*$. From this result, one can deduce that $N(x_1^4+x_2^4 = c) = q+O(q^{\frac{1}{2}}).$


    加载中


    [1] A. Adolphson and S. Sperber, p-Adic estimates for exponential sums and the theorem of ChevalleyWarning, Ann. Sci.'Ecole Norm. Sup., 20 (1987), 545-556. doi: 10.24033/asens.1543
    [2] A. Adolphson and S. Sperber, p-Adic estimates for exponential sums. In: F.Baldassarri, S. Bosch, B. Dwork (eds) p-adic Analysis. Lecture Notes in Mathematics, Springer, Berlin, 1990.
    [3] J. Ax, Zeros of polynomials over finite fields, Amer. J. Math., 86 (1964), 255-261. doi: 10.2307/2373163
    [4] B. Berndt, R. Evans, K. Williams, Gauss and Jacobi Sums, Wiley-Interscience, New York, 1998.
    [5] L. Carlitz, The numbers of solutions of a particular equation in a finite field, Publ. Math. Debrecen, 4 (1956), 379-383.
    [6] S. Chowla, J. Cowles and M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502-506. doi: 10.1016/0022-314X(77)90010-5
    [7] S. F. Hong, Newton polygons of L-functions associtated with exponential sums of polynomials of degree four over finite fields, Finite Fields Th. App., 7 (2001), 205-237. doi: 10.1006/ffta.2000.0287
    [8] S. F. Hong, Newton polygons of L-functions associtated with exponential sums of polynomials of degree six over finite fields, J. Number Theory, 97 (2002), 368-396. doi: 10.1016/S0022-314X(02)00006-9
    [9] S. F. Hong, L-functions of twisted diagonal exponential sums over finite fields, Proc. Amer. Soc., 135 (2007), 3099-3108. doi: 10.1090/S0002-9939-07-08873-9
    [10] S. F. Hong, J. R. Zhao and W. Zhao, The universal Kummer congruences, J. Aust. Math. Soc., 94 (2013), 106-132. doi: 10.1017/S1446788712000493
    [11] S. N. Hu, S. F. Hong and W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 156 (2015), 135-153. doi: 10.1016/j.jnt.2015.04.006
    [12] R. Lidl, H. Niederreiter, Finite Fields, second ed., Cambridge University Press, Cambridge, 1997.
    [13] G. Myerson, On the number of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95-99. doi: 10.1016/0022-314X(79)90023-4
    [14] J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247-257. doi: 10.1016/0022-314X(92)90091-3
    [15] A. Weil, On some exponential sums, Proc. Natu. Acad. Sci., 34 (1948), 204-207. doi: 10.1073/pnas.34.5.204
    [16] W. P. Zhang and J. Y. Hu, The number of solutions of the diagonal cubic congruence equation mod p, Math. Rep. (Bucur.), 20 (2018), 73-80.
    [17] J. Y. Zhao, S. F. Hong and C. X. Zhu, The number of rational points of certain quartic diagonal hypersurfaces over finite fields, AIMS Math., 5 (2020), 2710-2731. doi: 10.3934/math.2020175
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3768) PDF downloads(405) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog