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elements. In this paper, by using the Gauss sum and Jacobi sum, we give an explicit formula for the
number N(x4

1 + x4
2 = c) of solutions of the following two-variable diagonal quartic equations over Fq:

x4
1 + x4

2 = c with c ∈ F∗q. From this result, one can deduce that N(x4
1 + x4

2 = c) = q + O(q
1
2 ).
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1. Introduction

Let p be an odd prime number with q = ps, s ∈ Z+. Let Fq be the finite field of q elements. For any
polynomial f (x1, · · · , xn) over Fq with n variables, we let N( f = 0) stand for the number of Fq-rational
points on the affine hypersurface f (x1, · · · , xn) = 0 over Fn

q. That is, we have

N( f = 0) = ]{(x1, · · · , xn) ∈ Fn
q| f (x1, · · · , xn) = 0}.

Calculating the value of N( f = 0) is a main topic in finite fields. Weil [15] proposed his famous
conjecture on the number of rational points of the nonsingular projective hypersurface over Fn

q.
However, it is difficult to give an exact formula for N( f = 0). Studying the explicit formula for
N( f = 0) under certain conditions has attracted a lot of authors for many years. Some works were
done by Ax [3], Adolphson and Sperber [1, 2], Carlitz [5], Hong [7–9], Hu, Hong and Zhao [11] ,
Zhao, Hong and Zhu [17]. It is noticed that the p-adic method is used by Hong et al. in [10] to
establish the universal Kummer congruences.

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020192


2980

On the other hand, in 1977, Chowla, Cowles and Cowles [6] determined the number of solutions of
the equation

x3
1 + x3

2 + · · · + x3
n = 0

in Fp. In 1981, Myerson [13] extend the result in [6] to the field Fq and first studied the number of
solution of the equation

x4
1 + x4

2 + · · · + x4
n = 0

over Fq. In 2018, Zhang and Hu [16] determined an explicit formula of equation

x3
1 + x3

2 + x3
3 + x3

4 = c, c ∈ F∗p

with p ≡ 1 (mod 3) as follows: Let N(c) be the number of solutions of x3
1 + x3

2 + x3
3 + x3

4 = c, c ∈ F∗p
with p ≡ 1 (mod 3), and F∗p = 〈g〉. Then they proved the following formula:

N(c) =


p3 − 6p − 1

2 p(5d ∓ 27b), if c ≡ g3m+1(mod p),
p3 − 6p − 1

2 p(5d ± 27b), if c ≡ g3m+2(mod p),
p3 − 6p + 5dp, if c ≡ g3m(mod p).

In this paper, we investigate the question of counting the number of solutions of the following
equation:

x4
1 + x4

2 = c

with c ∈ F∗q. Actually, we obtain the following result.

Theorem 1.1. Let F = Fq be the finite field with q = ps where p is an odd prime and s ∈ Z+. Let c ∈ F∗q
and g be a primitive element of F∗q.

(i). If p ≡ 1 (mod 8) or p ≡ 5 (mod 8) and s is even, then

N(x4
1 + x4

2 = c) =


q + 6a(−1)s−1 − 3, if indg(c) ≡ 0 (mod 4),
q + 2(−1)s(a − 2b) − 3, if indg(c) ≡ 1 (mod 4),
q + 2a(−1)s − 3, if indg(c) ≡ 2 (mod 4),
q + 2(−1)s(a + 2b) − 3, if indg(c) ≡ 3 (mod 4).

If p ≡ 5 (mod 8) and s is odd, then

N(x4
1 + x4

2 = c) =


q − 2a(−1)s−1 + 1, if indg(c) ≡ 0 (mod 4),
q + 2(−1)s(a + 2b) + 1, if indg(c) ≡ 1 (mod 4),
q + 6a(−1)s−1 + 1, if indg(c) ≡ 2 (mod 4),
q + 2(−1)s(a − 2b) + 1, if indg(c) ≡ 3 (mod 4),

where a + bi = (a′ + b′i)s with a′ and b′ being integers such that

a′2 + b′2 = p, a′ ≡ −1 (mod 4), b′ ≡ a′g
q−1

4 (mod p).

(ii). If p ≡ 3 (mod 4) and q ≡ 1 (mod 4), then

N(x4
1 + x4

2 = c)
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=
(
q − 1 − 2ϕ(−1) + 6rη(c)(−1)s−1) + 2

√
q − 9r(−1)s−1

((
± ϕ(−c)

)
+

(
∓ ϕ(−c)

))
i,

where r is uniquely determined by

q = r2 + 4t2, r ≡ 1 (mod 4), and, i f p ≡ 1 (mod 4), then (r, p) = 1.

(iii). If p ≡ 3 (mod 4) and q ≡ 3 (mod 4), then

N(x4
1 + x4

2 = c) = q + 1.

We notice that Theorem 1.1 (i) for the special case q = p has been mentioned in the book of
Jacobsthal’s book. Furthermore, Theorem 1.1 (ii) is a special case of Wolfmann [14], but we here get
it by a different method. From Theorem 1.1, we can easily deduce the following statement.

Corollary 1.1. Let F = Fq be the finite field with q = ps, where p ≡ 1 (mod 4) is an odd prime and
s ∈ Z+. Let c ∈ F∗q. Then each of the following is true.

(i). If p ≡ 1 (mod 4), then |N(x4
1 + x4

2 = c) − q| ≤ 7
√

q for each q ≥ 9.
(ii). If p ≡ 3 (mod 4) and q ≡ 1 (mod 4), then |N(x4

1 + x4
2 = c)−q| ≤ (7+4

√
2)
√

q for each q ≥ 81.

This paper is organized as follows. First of all, in Section 2, we present several basic concepts
including the Gauss sums, and give some preliminary lemmas. Then in Section 3, we give the proof of
our main result Theorem 1.1 and Corollary 1.2. Finally, in Section 4, we supply two examples.

2. Preliminaries

In this section, we present several definitions and auxiliary lemmas that are needed in the proof of
Theorem 1.1. We begin with three definitions.

Definition 2.1. Let p be a prime number and q = ps with s being a positive integer. Let α be an element
of Fq. Then the trace and norm of α relative to Fp are defined by

TrFq/Fp(α) := α + αp + · · · + αps−1

and
NFq/Fp(α) := ααp · · ·αps−1

= α
q−1
p−1 ,

respectively. For the simplicity, we write Tr(α) and N(α) for TrFq/Fp(α) and NFq/Fp(α), respectively.

Definition 2.2. Let χ be a multiplicative character of Fq and ψ an additive character of Fq. Then we
define the Gauss sum G(χ, ψ) by

G(χ, ψ) :=
∑
x∈F∗q

χ(x)ψ(x).

Definition 2.3. Let χ1 and χ2 be multiplicative characters of Fq. Then the sum

J(χ1, χ2) :=
∑
x∈F∗q

χ1(x)χ2(1 − x)

is called a Jacobi sum in Fq.
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The character ψ0 represents the trivial additive character such that ψ0(x) = 1 for all x ∈ Fq and χ0

represents the trivial multiplicative character such that χ0(x) = 1 for all x ∈ Fq. For any x ∈ Fq, let

ψ1(x) := exp
(
2πi Tr(x)

p

)
.

Then we call ψ1 the canonical additive character of Fq. Let a ∈ Fq. Then we define

ψa(x) := exp
(
2πi Tr(ax)

p

)
for all x ∈ Fq. For each character ψ of Fq there is associated the conjugate character ψ defined by
ψ(x) = ψ(x) for all x ∈ Fq. Let η be the quadratic character of Fq.

We give several basic identities about Gauss sums as follows.

Lemma 2.1. [12] Each of the following is true:
(i). G(χ, ψab) = χ(a)G(χ, ψb) for a ∈ F∗q , b ∈ Fq.
(ii). G(χ, ψ) = χ(−1)G(χ, ψ).
(iii). |G(χ, ψ)| = q1/2 for χ , χ0 and ψ , ψ0.

Lemma 2.2. [12] Let Fq be a finite field with q = ps, where p is an odd prime and s ∈ N+. Then

G(η, ψ1) =

(−1)s−1q
1
2 , if p ≡ 1 (mod 4),

(−1)s−1isq
1
2 , if p ≡ 3 (mod 4).

If χ1 and χ2 are nontrivial, there exists an important connection between Jacobi sums and Gauss
sums that will allow us to determine the value of Jacobi sums.

Lemma 2.3. [12] If χ1 and χ2 are multiplicative characters of Fq and ψ is a nontrivial additive
character of Fq, then

J(χ1, χ2) =
G(χ1, ψ)G(χ2, ψ)

G(χ1χ2, ψ)

if χ1χ2 is nontrivial.

For a multiplicative character χ of Fq,we obviously have χ(−1) = ±1. The value χ(−1) is of interest.
The following result is regarding the sign of χ(−1).

Lemma 2.4. [12] Let χ be a multiplicative character of Fq of order n. Then χ(−1) = −1 if and only if
n is even and q−1

n is odd.

Clearly, we have the following consequence.

Corollary 2.1. Let p ≡ 1 (mod 4) be an odd prime and q = ps with s being a positive integer. Let ϕ
be a multiplicative character of Fq of order 4. Then

ϕ(−1) =

1, if p ≡ 1 (mod 8) or p ≡ 5 (mod 8) and s is even,

−1, if p ≡ 5 (mod 8) and s is odd.

AIMS Mathematics Volume 5, Issue 4, 2979–2991.



2983

Proof. This corollary follows immediately from Lemma 2.4. �

Let F̂∗q be the dual group consisting of all multiplicative characters of F∗q with the generator ϕ. Then
ord(ϕ) = q−1 and the multiplicative character λwith order d with d|(q−1) has the expression λ = ϕ

q−1
d t′ ,

where 0 ≤ t′ < d and gcd(t′, d) = 1. Furthermore, the number of multiplicative character λ with order
d is φ(d), where φ is Euler’s totient function. We also need the following result.

Lemma 2.5. Let λ be a multiplicative character of Fq with order gcd(4, q − 1). Then

N(x4 = b) =

gcd(4,q−1)−1∑
j=0

λ j(b).

Proof. We divide this into the following three cases. Let λ be any multiplicative character of Fq with
order d := gcd(4, q − 1).

Case 1. b = 0. Then x4 = 0 has only zero solution x = 0 in Fq. That is, one has N(x4 = 0) = 1.
Since λ0(0) = 1 and λ j(0) = 0 for 1 ≤ j ≤ d − 1, it follows that

d−1∑
j=0

λ j(0) = 1 = N(x4 = 0)

as desired. So part (i) is proved in this case.
Case 2. b , 0 and x4 = b has a solution in Fq. Let b = gk and x = gy. Then x4 = b is equivalent to

the congruence
4y ≡ k (mod q − 1). (2.1)

Then the congruence (2.1) has exactly d = gcd(4, q − 1) solutions y. Hence x4 = b has exactly d
solutions in Fq. Namely, N(x4 = b) = d.

Let x0 be an element of Fq with x4
0 = b. For any integer j with 0 ≤ j ≤ d − 1, since d|4 implying

that λ4 = χ0, the trivial multiplicative character, we have

λ j(b) = λ j(x4
0) = (λ4(x0)) j = 1.

Therefore one derives that
d−1∑
j=0

λ j(b) =

d−1∑
j=0

1 = d = N(x4 = b)

as desired. Hence part (i) holds in this case.
Case 3. b , 0 and x4 = b has no solution in Fq. Then N(x4 = b) = 0 and (2.1) has no solution in Fq.

Let b = gk. Then d - k and λ(b) = λk(g) , 1 since λ(g) is a d-th primitive root of unity. Then

λ(b)
d−1∑
j=0

λ j(b) =

d−1∑
j=0

λ j+1(b) =

d−1∑
j=0

λ j(b),

which implies that

(λ(b) − 1)
d−1∑
j=0

λ j(b) = 0.
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Since λ(b) , 1, we have
d−1∑
j=0

λ j(b) = 0 = N(x4 = b)

as required. Part (i) is proved in this case.
This finishes the proof of Lemma 2.5. �

The following relation between the Gauss sum G(χ′, ψ′) of Fp and the Gauss sum G(χ, ψ) of Fq is
due to Hasse and Davenport.

Lemma 2.6. [12] Let ψ′ be an additive and χ′ a multiplicative character of Fp, not both of them
trivial. Suppose that ψ′ and χ′ are lifting to characters ψ and χ, respectively, of the finite extension
field Fq of Fp with [Fq : Fp] = s. Then

G(χ, ψ) = (−1)s−1Gs(χ′, ψ′).

For a certain special multiplicative character of Fp, the following result gives an explicit formula
about the associated Jacobi sums.

Lemma 2.7. [4] Let p ≡ 1 (mod 4) be an odd prime number and let ϕ′ be a multiplicative character
of Fp with ord(ϕ′) = 4. If θ is a generator of F∗p with ϕ′(θ) = i, then

J(ϕ′, ϕ′) = a′ + b′i,

where a′ and b′ are integers such that a′2 + b′2 = p, a′ ≡ −1 (mod 4) and b′ ≡ a′θ
p−1

4 (mod p).

The characters of Fp can be lifted to the characters of Fq, but not all the characters of Fq can be
obtained by lifting a character of Fp. The following result characterizes all the characters of Fq that can
be obtained by lifting a character of Fp.

Lemma 2.8. [12] Let χ be a multiplicative character of Fq with q = ps. Then χ can be lifted from a
multiplicative character χ′ of Fp if and only if χp−1 is trivial.

3. Proofs of Theorems 1.1

In this section, we present the proof of Theorem 1.1 as follows.
Proof of Theorem 1.1. (i). Let p ≡ 1 (mod 4). For x ∈ Fq, from the trigonometric identity

∑
y∈Fq

exp
(2πi Tr(xy)

p

)
=

q, if x = 0,
0, if x , 0,

we can deduce that

N(x4
1 + x4

2 = c) =
1
q

∑
x∈Fq

∑
(x1,x2)∈F2

q

exp
(2πi Tr(x(x4

1 + x4
2 − c))

p

)
=

1
q

∑
x∈Fq

(∑
y∈Fq

exp
(2πi Tr(xy4)

p

))2

exp
(2πi Tr(−xc)

p

)
AIMS Mathematics Volume 5, Issue 4, 2979–2991.
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= q +
1
q

∑
x∈F∗q

(∑
y∈Fq

exp
(2πi Tr(xy4)

p

))2

ψ1(−xc). (3.1)

Denote

Rx :=
∑
y∈Fq

exp
(2πi Tr(xy4)

p

)
.

Then by Lemma 2.5, we get

Rx = 1 +
∑
z∈F∗q

N(y4 = z) exp
(2πi Tr(xz)

p

)
= 1 +

∑
z∈F∗q

(
1 + ϕ(z) + ϕ2(z) + ϕ3(z)

)
ψ1(xz),

where ϕ is a multiplicative character of Fq with ord(ϕ) = 4. Then ϕ(g) = ±i. WLOG, in what follows,
we set ϕ(g) = i.

Note that ϕ2 = η and ϕ3 = ϕ, we know that

Rx =
∑
z∈Fq

ψ1(xz) +
∑
z∈F∗q

ϕ(z)ψ1(xz) +
∑
z∈F∗q

η(z)ψ1(xz) +
∑
z∈F∗q

ϕ(z)ψ1(xz).

Since ∑
z∈Fq

ψ1(xz) = 0,

it follows from the definition of Gauss sum and Lemma 2.1 that

Rx =
∑
z∈F∗q

ϕ(z)ψ1(xz) +
∑
z∈F∗q

η(z)ψ1(xz) +
∑
z∈F∗q

ϕ(z)ψ1(xz)

= G(ϕ, ψx) + G(η, ψx) + G(ϕ, ψx)
= ϕ(x)G(ϕ, ψ1) + η(x)G(η, ψ1) + ϕ(x)G(ϕ, ψ1).

Noticing that the value of η is real and η(x) =
(
N(x)

p

)
, from the Lemmas 2.1 and 2.2 we deduce that

Rx = ϕ(x)G(ϕ, ψ1) +
(N(x)

p

)
(−1)s−1√q + ϕ(−x)G(ϕ, ψ1). (3.2)

From (3.1)) and ((3.2), we derive that

N(x4
1 + x4

2 = c)

= q +
1
q

∑
x∈F∗q

(
ϕ(x)G(ϕ, ψ1) +

(N(x)
p

)
(−1)s−1√q + ϕ(−x)G(ϕ, ψ1)

)2

ψ1(−xc)

:= q +
1
q

∑
x∈F∗q

Tx. (3.3)

Since ϕ3 = ϕ, ϕ2 = ϕ2 = η, ϕ2(x) =
(
N(x)

p

)
and Lemma 2.1 implying that

AIMS Mathematics Volume 5, Issue 4, 2979–2991.
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G(ϕ, ψ1)G(ϕ, ψ1) = q, it follows that

Tx =
(
η(x)

(
G2(ϕ, ψ1) + G2(ϕ, ψ1)

)
+ 2(−1)s−1√q

(
ϕ(x)G(ϕ, ψ1) + ϕ(−1)ϕ(x)G(ϕ, ψ1)

)
+

(
1 + 2ϕ(−1)

)
q
)
ψ1(−xc).

By using the following simple facts

η(x) =
η(−xc)
η(−c)

, ϕ(x) =
ϕ(−1)
ϕ(c)

ϕ(−xc), ϕ(x) =
ϕ(−1)
ϕ(c)

ϕ(−xc),

we deduce that

Tx =
(η(−xc)
η(−c)

(
G2(ϕ, ψ1) + G2(ϕ, ψ1)

)
+

(
1 + 2ϕ(−1)

)
q

+ 2(−1)s−1√q
(ϕ(−1)
ϕ(c)

ϕ(−xc)G(ϕ, ψ1) +
1
ϕ(c)

ϕ(−xc)G(ϕ, ψ1)
))
ψ1(−xc). (3.4)

Since −xc runs over F∗q as x runs through F∗q, it follows from (3.3),(3.4) and the fact of
∑

x∈F∗q
ψ1(−xc) =

−1 that

N(x4
1 + x4

2 = c)

= q +
1
q

(G2(ϕ, ψ1) + G2(ϕ, ψ1)
η(−c)

G(η, ψ1) − (1 + 2ϕ(−1))q

+ 2(−1)s−1√q
ϕ(−1)
ϕ(c)

G2(ϕ, ψ1) + (−1)s−1√q
2
ϕ(c)

G(ϕ, ψ1)G(ϕ, ψ1)
)
.

Note that
1
ϕ(c)

= ϕ(c),
1

η(−c)
= η(−c) = η(−1)η(c) = η(c).

From Lemmas 2.1 and 2.2, we have

N(x4
1 + x4

2 = c) = q +
1
q

(
(−1)s−1√qη(c)

(
G2(ϕ, ψ1) + G2(ϕ, ψ1)

)
− (1 + 2ϕ(−1))q

+ 2(−1)s−1√qϕ(−1)
(
ϕ(c)G2(ϕ, ψ1) + ϕ(c)G2(ϕ, ψ1)

))
. (3.5)

Noting that ϕ(1) = ϕ(1) = 1 = η(1), it follows from (3.5) that

N(x4
1 + x4

2 = 1) = q +
1
q
(
1 + 2ϕ(−1)

)(
(−1)s−1√q

(
G2(ϕ, ψ1) + G2(ϕ, ψ1)

)
− q

)
.

From Lemmas 2.2, 2.3 and 2.6-2.8, we can deduce that

G2(ϕ, ψ1) = (a′ + b′i)sq
1
2 ,

where a′ and b′ are integers such that

a′2 + b′2 = p, a′ ≡ −1 (mod 4), b′ ≡ a′g
q−1

4 (mod p).
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Letting a + bi = (a′ + b′i)s gives us that

G2(ϕ, ψ1) + G2(ϕ, ψ1) = 2a
√

q, G2(ϕ, ψ1) −G2(ϕ, ψ1) = 2bi
√

q. (3.6)

Thus
N(x4

1 + x4
2 = 1) = q +

(
1 + 2ϕ(−1)

)(
2a(−1)s−1 − 1

)
.

By Corollary 2.1, we get

N(x4
1 + x4

2 = 1) =


q + 6a(−1)s−1 − 3, if either p ≡ 1 (mod 8),

or p ≡ 5 (mod 8) and s is even,
q − 2a(−1)s−1 + 1, if p ≡ 5 (mod 8) and s is odd.

(3.7)

From (3.5), (3.6), ϕ(g) = i and η(g) = −1 we obtain that

N(x4
1 + x4

2 = g) = q + 2(−1)s(a − 2bϕ(−1)
)
−

(
1 + 2ϕ(−1)

)
.

By Corollary 2.1, we have

N(x4
1 + x4

2 = g) =


q + 2(−1)s(a − 2b) − 3, if either p ≡ 1 (mod 8),

or p ≡ 5 (mod 8) and s is even,
q + 2(−1)s(a + 2b) + 1, if p ≡ 5 (mod 8) and s is odd.

(3.8)

From (3.5), (3.6), ϕ(g2) = −1 and η(g2) = 1, we have

N(x4
1 + x4

2 = g2) = q + 2a(−1)s−1(1 − 2ϕ(−1)
)
−

(
1 + 2ϕ(−1)

)
.

By Corollary 2.1 it follows that

N(x4
1 + x4

2 = g2) =


q + 2a(−1)s − 3, if either p ≡ 1 (mod 8),

or p ≡ 5 (mod 8) and s is even,
q + 6a(−1)s−1 + 1, if p ≡ 5 (mod 8) and s is odd.

(3.9)

From (3.5), (3.6), ϕ(g3) = −i and η(g3) = −1, we deduce

N(x4
1 + x4

2 = g3) = q + 2(−1)s(a + 2bϕ(−1)
)
−

(
1 + 2ϕ(−1)

)
.

By Corollary 2.1 we have

N(x4
1 + x4

2 = g3) =


q + 2(−1)s(a + 2b) − 3, if either p ≡ 1 (mod 8),

or p ≡ 5 (mod 8) and s is even,
q + 2(−1)s(a − 2b) + 1, if p ≡ 5 (mod 8) and s is odd.

(3.10)

From (3.7), (3.8), (3.9) and (3.10), we can conclude the proof of part (i).
(ii). Let p ≡ 3 (mod 4) and q ≡ 1 (mod 4). Since p ≡ 3 (mod 4) implying that

q = ps ≡

1 (mod 4), if s is even,
3 (mod 4), if s is odd,

(3.11)

AIMS Mathematics Volume 5, Issue 4, 2979–2991.
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one must have that s is even. Let Nk be the number of solutions of x4
1 + x4

2 + · · · + x4
k = 0 over Fq.

Myerson [13] gave the value of

N2 = 4q − 3, N3 = q2 − 6rq + 6r,

where r is uniquely determined by

q = r2 + 4t2, r ≡ 1 (mod 4), and if p ≡ 1 (mod 4), then (r, p) = 1.

Since
N3 =

∑
(x1 ,x2 ,x3)∈F3q
x4
1+x4

2+x4
3=0

1 =
∑

(x1 ,x2)∈F2q
x4
1+x4

2=0

1 +
∑
x3∈F

∗
q

x4
1+x4

2=−x4
3

1

= N2 + (q − 1)N(x4
1 + x4

2 = −1),

one has

N(x4
1 + x4

2 = −1) =
N3 − N2

q − 1
=

q2 − (6r + 4)q + 6r + 3
q − 1

. (3.12)

From (3.11) and Corollary 2.1, we have ϕ(−1) = 1 if s is even.
By (3.5), one has

N(x4
1 + x4

2 = −1)

= q +
1
q

(
(−1)s−1√q

(
G2(ϕ, ψ1) + G2(ϕ, ψ1)

)
−

(
1 + 2ϕ(−1)

)
q
)

= q −
1
q

(√
q
(
G2(ϕ, ψ1) + G2(ϕ, ψ1)

)
+ 3q

)
(3.13)

From (3.12) and (3.13), we can deduce

G2(ϕ, ψ1) + G2(ϕ, ψ1) = 6r
√

q.

Let G2(ϕ, ψ1) = 3r
√

q + Bi. By G2(ϕ, ψ1)G2(ϕ, ψ1) = q2, one has

B = ±
√

q2 − 9r2q.

So we can write G2(ϕ, ψ1) = 3r
√

q ±
√

q2 − 9r2q i. From (3.5), one has

N(x4
1 + x4

2 = c)

=
(
q − 1 − 2ϕ(−1) + 6rη(c)(−1)s−1) + 2

√
q − 9r(−1)s−1

((
± ϕ(−c)

)
+

(
∓ ϕ(−c)

))
i.

This finishes the proof of (ii).
(iii). Let p ≡ 3 (mod 4) and q ≡ 3 (mod 4). Since gcd(4, q − 1) = gcd(2, q − 1). By Lemma 2.5,

one has N(x4 = A) = N(x2 = A). It follows that

N(x4
1 + x4

2 = c)
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=
∑

(x1 ,x2)∈F2q
c1+c2=c

N(x4
1 = c1)N(x4

2 = c2)

=
∑

(x1 ,x2)∈F2q
c1+c2=c

N(x2
1 = c1)N(x2

2 = c2)

=
∑

(x1 ,x2)∈F2q
c1+c2=c

(
1 + η(c1)

)(
1 + η(c2)

)
= q +

∑
c1∈Fq

η(c1) +
∑
c1∈Fq

η(c2) +
∑
c1∈Fq

η(c1c2)

= q +
∑
x∈Fq

η(cx − x2) = q +
∑
x∈F∗q

η(cx−1 − 1).

= q +
∑
y∈F∗q

η(y − 1) = q + 1.

This finishes the proof of part (iii), and hence that of Theorem 1.1. �
Proof of Corollary 1.2. (i). Let q ≡ 1 (mod 4). From Theorem 1.1, one has |a| ≤

√
q and |b| ≤

√
q,

therefore one deduces that |a±2b| ≤ 3
√

q. Then we derive the desired result |N(x4
1 + x4

2 = c)−q| ≤ 7
√

q
by triangle inequality.

(ii). Let p ≡ 1 (mod 4) and q ≡ 3 (mod 4). From Theorem 1.1, one has |r| ≤
√

q,
√

q − 9
√

q ≤√
q − 9r ≤

√
q + 9

√
q and |

((
± ϕ(−c)

)
+

(
∓ ϕ(−c)

))
i| ≤ 2. From this, we deduce that

|N(x4
1 + x4

2 = c) − q| ≤ |3 + 6r + 4
√

q − 4r|

≤ 3 + 6r + 4
√

q + 9r

≤ 3 + 6r + 4
√

2q

≤ (7 + 4
√

2)
√

q

as required. The proof of Corollary 1.2 is complete. �

4. Two Examples

In this final section, we provide two examples to demonstrate the validity of our main result
Theorem 1.1.

Example 4.1. For finite field F5, it is easy to see that 2 is a generator of F∗5. Note that s = 1. Then
a′ = a = −1 and b′ = b = −2.

Since ind2(1) ≡ 0 (mod 4), ind2(2) ≡ 1 (mod 4), ind2(3) ≡ 3 (mod 4), ind2(2) ≡ 2 (mod 4). From
Theorem 1.1, one can compute and get that

N(x4
1 + x4

2 = 1) = 8, N(x4
1 + x4

2 = 2) = 16,

N(x4
1 + x4

2 = 3) = N(x4
1 + x4

2 = 4) = 0.
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Example 4.2. Observe that x2 − 2 is irreducible over F5. Let α be a root of x2 − 2 over its split field.
Then F5(α) is an extension field of F5 with order 25, and we denote it by F25, where

F25 = {x + yα | x ∈ F5, y ∈ F5}.

For any xi + yi ∈ F25 with i = 1, 2, we define

(x1 + y1α) + (x2 + y2α) := ((x1 + x2) (mod 5) +
(
(y1 + y2) (mod 5)

)
α

and
(x1 + y1α)(x2 + y2α) := (x1x2 + 2y1y2) (mod 5) +

(
(x1y2 + x2y1) (mod 5)

)
α.

By matlab programme, we confirm that the element 2 + 4α is a generator of F25.
Note that s = 2, a′ = −1, b′ = −2. Then a = −3 and b = 4. Since ind2+4α(1) ≡ 0 (mod 4) and

ind2+4α(α) ≡ 3 (mod 4), it follows from Theorem 1.1 that

N(x4
1 + x4

2 = 1) = 40, N(x4
1 + x4

2 = α) = 32.
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