Research article Special Issues

Novel generalized inequalities involving a general Hardy operator with multiple variables and general kernels on time scales

  • Received: 12 March 2024 Revised: 29 May 2024 Accepted: 06 June 2024 Published: 04 July 2024
  • MSC : 26D10, 26D15, 34N05, 42B25, 42C10, 47B38

  • This paper introduced novel multidimensional Hardy-type inequalities with general kernels on time scales, extending existing results in the literature. We established generalized inequalities involving a general Hardy operator with multiple variables and kernels on arbitrary time scales. Our findings not only encompassed known results in the realm of real numbers ($ \mathbb{T=R} $), but also provided refinements and generalizations thereof. The proposed inequalities offered versatile applications in mathematical analysis and beyond, contributing to the ongoing exploration of inequalities on diverse time scales.

    Citation: M. Zakarya, Ghada AlNemer, A. I. Saied, H. M. Rezk. Novel generalized inequalities involving a general Hardy operator with multiple variables and general kernels on time scales[J]. AIMS Mathematics, 2024, 9(8): 21414-21432. doi: 10.3934/math.20241040

    Related Papers:

  • This paper introduced novel multidimensional Hardy-type inequalities with general kernels on time scales, extending existing results in the literature. We established generalized inequalities involving a general Hardy operator with multiple variables and kernels on arbitrary time scales. Our findings not only encompassed known results in the realm of real numbers ($ \mathbb{T=R} $), but also provided refinements and generalizations thereof. The proposed inequalities offered versatile applications in mathematical analysis and beyond, contributing to the ongoing exploration of inequalities on diverse time scales.


    加载中


    [1] B. Opic, A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics, 219, Harlow: Longman Scientific and Technical; New York: John Wiley and Sons, 1990.
    [2] V. D. Stepanov, Boundedness of linear integral operators on a class of monotone functions, Sib. Math. J., 32 (1992), 540–542. https://doi.org/10.1007/bf00970496 doi: 10.1007/bf00970496
    [3] H. Heinig, L. Maligranda, Weighted inequalities for monotone and concave functions, Stud. Math., 116 (1995), 133–165. http://eudml.org/doc/216224
    [4] J. A. Oguntuase, L. E. Persson, E. K. Essel, Multidimensional Hardy-type inequalities with general kernels, J. Math. Anal. Appl., 348 (2008), 411–418. https://doi.org/10.1016/j.jmaa.2008.07.053 doi: 10.1016/j.jmaa.2008.07.053
    [5] J. A. Oguntuase, P. Durojaye, Some new multidimensional Hardy-type inequalities with kernels via convexity, Publ. I. Math., 93 (2013), 153–164. https://doi.org/10.2298/PIM1307153O doi: 10.2298/PIM1307153O
    [6] S. H. Saker, R. R. Mahmoud, A. Peterson, Weighted Hardy-type inequalities on time scales with applications, Mediterr. J. Math., 13 (2016), 585–606. https://doi.org/10.1007/s00009-014-0514-y doi: 10.1007/s00009-014-0514-y
    [7] D. O'Regan, H. M. Rezk, S. H. Saker, Some dynamic inequalities involving Hilbert and Hardy-Hilbert operators with Kernels, Results Math., 73 (2018), 146. https://doi.org/10.1007/s00025-018-0908-4 doi: 10.1007/s00025-018-0908-4
    [8] S. H. Saker, H. M. Rezk, I. Abohela, D. Baleanu, Refinement multidimensional dynamic inequalities with general kernels and measures, J. Inequal. Appl., 2019 (2019), 306. https://doi.org/10.1186/s13660-019-2255-8 doi: 10.1186/s13660-019-2255-8
    [9] E. Awwad, A. I. Saied, Some new multidimensional Hardy-type inequalities with general kernels on time scales, J. Math. Inequal., 16 (2022), 393–412. https://doi.org/10.7153/jmi-2022-16-29 doi: 10.7153/jmi-2022-16-29
    [10] P. Řehák, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 942973. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495
    [11] L. Yin, F. Qi, Some integral inequalities on time scales, Results Math., 64 (2013), 371–381. https://doi.org/10.1007/s00025-013-0320-z doi: 10.1007/s00025-013-0320-z
    [12] R. P. Agarwal, D. O'Regan, S. H. Saker, Hardy type inequalities on time scales, Switzerland: Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-44299-0
    [13] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Springer Science & Business Media, 2001. https://doi.org/10.1007/978-1-4612-0201-1
    [14] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Boston: Birkhäuser, 2003. https://doi.org/10.1007/978-0-8176-8230-9
    [15] M. Bohner, S. Georgiev, Multivariable dynamic calculus on time scales, Switzerland: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(549) PDF downloads(36) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog