Research article

On Kirchhoff type problems with singular nonlinearity in closed manifolds

  • Received: 11 February 2024 Revised: 01 June 2024 Accepted: 19 June 2024 Published: 03 July 2024
  • MSC : 35J20, 58J05

  • This paper dealt with a class of Kirchhoff type equations involving singular nonlinearity in a closed Riemannian manifold $ (M, g) $ of dimension $ n\ge3 $. Existence and uniqueness of a positive weak solution were obtained under certain assumptions with the help of the variation methods and some analysis techniques.

    Citation: Nanbo Chen, Honghong Liang, Xiaochun Liu. On Kirchhoff type problems with singular nonlinearity in closed manifolds[J]. AIMS Mathematics, 2024, 9(8): 21397-21413. doi: 10.3934/math.20241039

    Related Papers:

  • This paper dealt with a class of Kirchhoff type equations involving singular nonlinearity in a closed Riemannian manifold $ (M, g) $ of dimension $ n\ge3 $. Existence and uniqueness of a positive weak solution were obtained under certain assumptions with the help of the variation methods and some analysis techniques.



    加载中


    [1] G. Kirchhoff, Vorlesungen über Mathematische Physik, 1883.
    [2] J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284–346. http://dx.doi.org/10.1016/S0304-0208(08)70870-3 doi: 10.1016/S0304-0208(08)70870-3
    [3] A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305–330.
    [4] C. O. Alves, F. J. S. A. Corrêa, G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl., 3 (2010), 409–417. http://dx.doi.org/10.7153/dea-02-25 doi: 10.7153/dea-02-25
    [5] H. N. Fang, X. C. Liu, On the multiplicity and concentration of positive solutions to a Kirchhoff-type problem with competing potentials, J. Math. Phys., 63 (2022), 011512. http://dx.doi.org/10.1063/5.0073716 doi: 10.1063/5.0073716
    [6] A. Fiscella, A fractional Kirchhoff problem involving a singular term and a critical nonlinearity, Adv. Nonlinear Anal., 8 (2019), 645–660. http://dx.doi.org/10.1515/anona-2017-0075 doi: 10.1515/anona-2017-0075
    [7] X. M. He, W. M. Zou, Infinitely many solutions for Kirchhoff type problems, Nonlinear Anal., 70 (2009), 1407–1414. http://dx.doi.org/10.1016/j.na.2008.02.021 doi: 10.1016/j.na.2008.02.021
    [8] Y. J. Sun, Y. X. Tan, Kirchhoff type equations with strong singularities, Commun. Pur. Appl. Anal., 18 (2019), 181–193. http://dx.doi.org/10.3934/cpaa.2019010 doi: 10.3934/cpaa.2019010
    [9] D. Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four, J. Differ. Equ., 257 (2014), 1168–1193. http://dx.doi.org/10.1016/j.jde.2014.05.002 doi: 10.1016/j.jde.2014.05.002
    [10] D. Naimen, On the Brezis-Nirenberg problem with a Kirchhoff type perturbation, Adv. Nonlinear Stud., 15 (2015), 135–156. http://dx.doi.org/10.1515/ans-2015-0107 doi: 10.1515/ans-2015-0107
    [11] F. Faraci, K. Silva, On the Brezis-Nirenberg problem for a Kirchhoff type equation in high dimension, Calc. Var. Partial. Dif., 60 (2021), 1–33. http://dx.doi.org/10.1007/s00526-020-01891-6 doi: 10.1007/s00526-020-01891-6
    [12] X. Liu, Y. J. Sun, Multiple positive solutions for Kirchhoff type problems with singularity, Commun. Pur. Appl. Anal., 12 (2013), 721–733. http://dx.doi.org/10.3934/cpaa.2013.12.721 doi: 10.3934/cpaa.2013.12.721
    [13] C. Y. Lei, J. F. Liao, C. L. Tang, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents, J. Math. Anal. Appl., 421 (2015), 521–538. http://doi.org/10.1016/j.jmaa.2014.07.031 doi: 10.1016/j.jmaa.2014.07.031
    [14] Y. Duan, H. Y. Li, X. Sun, Uniqueness of positive solutions for a class of $p$-Kirchhoff type problems with singularity, Rocky Mountain J. Math., 51 (2021), 1629–1637. http://dx.doi.org/10.1216/rmj.2021.51.1629 doi: 10.1216/rmj.2021.51.1629
    [15] D. C. Wang, B. Q. Yan, A uniqueness result for some Kirchhoff-type equations with negative exponents, Appl. Math. Lett., 92 (2019), 93–98. http://dx.doi.org/10.1016/j.aml.2019.01.002 doi: 10.1016/j.aml.2019.01.002
    [16] N. B. Chen, X. C. Liu. Hardy-Sobolev equation on compact Riemannian manifolds involving $p$-Laplacian, J. Math. Anal. Appl., 487 (2020), 123992. https://doi.org/10.1016/j.jmaa.2020.123992 doi: 10.1016/j.jmaa.2020.123992
    [17] N. B. Chen, X. C. Liu. On the $p$-Laplacian Lichnerowicz equation on compact Riemannian manifolds, Sci. China Math., 64 (2021), 2249–2274. https://doi.org/10.1007/s11425-020-1679-5 doi: 10.1007/s11425-020-1679-5
    [18] A. Aberqi, O. Benslimane, A. Ouaziz, D. D. Repovs, On a new fractional Sobolev space with variable exponent on complete manifolds, Bound. Value Probl., 7 (2022). https://doi.org/10.1186/s13661-022-01590-5
    [19] A. Aberqi, A. Ouaziz, Morse's theory and local linking for a fractional ($p_1$(x.,), $p_2$ (x.,)): Laplacian problems on compact manifolds, J. Pseudo-Differ. Oper. Appl., 14 (2023), 41. https://doi.org/10.1007/s11868-023-00535-5 doi: 10.1007/s11868-023-00535-5
    [20] E. Hebey, Compactness and the Palais-Smale property for critical Kirchhoff equations in closed manifolds, Pac. J. Math., 280 (2016), 41–50. http://dx.doi.org/10.2140/pjm.2016.280.41 doi: 10.2140/pjm.2016.280.41
    [21] E. Hebey, Multiplicity of solutions for critical Kirchhoff type equations, Commun. Part. Diff. Eq., 41 (2016), 913–924. http://dx.doi.org/10.1080/03605302.2016.1183213 doi: 10.1080/03605302.2016.1183213
    [22] E. Hebey, Stationary Kirchhoff equations with powers, Adv. Calc. Var., 11 (2018), 139–160. http://dx.doi.org/10.1515/acv-2016-0025 doi: 10.1515/acv-2016-0025
    [23] E. Hebey, P. D. Thizy, Stationary Kirchhoff systems in closed 3-dimensional manifolds, Calc. Var. Partial. Dif., 54 (2015), 2085–2114. http://dx.doi.org/10.1007/s00526-015-0858-6 doi: 10.1007/s00526-015-0858-6
    [24] E. Hebey, P. D. Thizy, Stationary Kirchhoff systems in closed high dimensional manifolds, Commun. Contemp. Math., 18 (2016), 1550028. http://dx.doi.org/10.1142/S0219199715500285 doi: 10.1142/S0219199715500285
    [25] X. J. Bai, N. B. Chen, X. C. Liu. A class of critical $p$-Kirchhoff type equations on closed manifolds, Discrete Cont. Dyn. S., 44 (2024), 1087–1105. http://dx.doi.org/10.3934/dcds.2023139 doi: 10.3934/dcds.2023139
    [26] J. F. Liao, X. F. Ke, C. Y. Lei, C. L. Tang, A uniqueness result for Kirchhoff type problems with singularity, Appl. Math. Lett., 59 (2016), 24–30. http://dx.doi.org/10.1016/j.aml.2016.03.001 doi: 10.1016/j.aml.2016.03.001
    [27] M. A. del Pino, A global estimate for the gradient in a singular elliptic boundary value problem, Proc. Roy. Soc. Edinb. Sect. A, 122 (1992), 341–352. http://dx.doi.org/10.1017/S0308210500021144 doi: 10.1017/S0308210500021144
    [28] L. Boccardo, L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Dif., 37 (2010), 363–380.
    [29] Y. J. Sun, S. P. Wu, An exact estimate result for a class of singular equations with critical exponents, J. Funct. Anal., 260 (2011), 1257–1284. http://dx.doi.org/10.1016/j.jfa.2010.11.018 doi: 10.1016/j.jfa.2010.11.018
    [30] O. Lablée, Spectral theory in Riemannian geometry, EMS Textbooks in Mathematics, 2015. http://dx.doi.org/10.4171/151
    [31] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486–490. http://dx.doi.org/10.1090/S0002-9939-1983-0699419-3 doi: 10.1090/S0002-9939-1983-0699419-3
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(444) PDF downloads(32) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog