Research article

New extension of quasi-$ M $-hypnormal operators

  • Received: 27 April 2024 Revised: 15 June 2024 Accepted: 27 June 2024 Published: 03 July 2024
  • MSC : 47A05, 47A10, 47A11

  • This study introduces a new class of operators called polynomilally quasi-$ M $-hyponormal, which combining $ M $-hyponormal, quasi-$ M $-hyponormal, and $ k $-quasi-$ M $-hyponormal operators. We will demonstrate several properties of this class that correspond to those of $ k $-quasi-$ M $-hyponormal operators.

    Citation: Ohud Bulayhan Almutairi, Sid Ahmed Ould Ahmed Mahmoud. New extension of quasi-$ M $-hypnormal operators[J]. AIMS Mathematics, 2024, 9(8): 21383-21396. doi: 10.3934/math.20241038

    Related Papers:

  • This study introduces a new class of operators called polynomilally quasi-$ M $-hyponormal, which combining $ M $-hyponormal, quasi-$ M $-hyponormal, and $ k $-quasi-$ M $-hyponormal operators. We will demonstrate several properties of this class that correspond to those of $ k $-quasi-$ M $-hyponormal operators.


    加载中


    [1] M. Chō, B. N. Na$\breve{c}$tovska, Spectral properties of $n$-normal operators, Filomat, 32 (2018), 5063–5069. https://doi.org/10.2298/FIL1814063C doi: 10.2298/FIL1814063C
    [2] M. Chō, J. E. Lee, K. Tanahashic, A. Uchiyamad, Remarks on $n$-normal operators, Filomat, 32 (2018), 5441–5451. https://doi.org/10.2298/FIL1815441C doi: 10.2298/FIL1815441C
    [3] J. B. Conway, A course in functional analysis, 2 Eds., Berlin: Springer, 1990.
    [4] N. L. Braha, M. Lohaj, F. H. Marevci, S. Lohaj, Some properties of paranormal and hyponormal operators, Bull. Math. Anal. Appl., 1 (2009), 23–35.
    [5] J. G. Stamofi, Hyponormal operators, Pac. J. Math., 12 (1962), 1453–1458. https://doi.org/10.2140/pjm.1962.12.1453 doi: 10.2140/pjm.1962.12.1453
    [6] S. C. Arora, R. Kumar, $ M $-hyponormal operators, Yokohama Math. J., 28 (1980), 41–44.
    [7] Y. M. Han, J. H. Son, On quasi-$M$-Hyponormal operators, Filomat, 25 (2011), 37–52. https://doi.org/10.2298/FIL1101037H doi: 10.2298/FIL1101037H
    [8] I. H. Sheth, Quasi-hyponormal operators, Rev. Roum. Math. Pures, 19 (1974), 1049–1053.
    [9] S. Mecheri, On $k$-quasi-$M$-hyponormal operators, Math. Inequal. Appl., 16 (2013), 895–902. https://doi.org/10.7153/mia-16-69 doi: 10.7153/mia-16-69
    [10] D. S. Djordjević, Muneo Chō, Dijana Mosić, Polynomially normal operators, Ann. Funct. Anal., 11 (2020), 493–504. https://doi.org/10.1007/s43034-019-00033-0 doi: 10.1007/s43034-019-00033-0
    [11] F. Kittaneh, On the structure of polynomially normal operators, B. Aust. Math. Soc., 30 (1984), 11–18. https://doi.org/10.1017/S0004972700001660 doi: 10.1017/S0004972700001660
    [12] J. K. Han, H. Y. Lee, W. Young Lee, Invertible completions of $ 2 \times 2$ upper triangular operator matrices, P. Am. Math. Soc., 128 (1999), 119–123. https://doi.org/10.1090/S0002-9939-99-04965-5 doi: 10.1090/S0002-9939-99-04965-5
    [13] M. Dehghani, S. M. S. Modarres, M. S. Moslehian, Positive block matrices on Hilbert and Krein $ C^{*} $-modules, Surv. Math. Appl., 8 (2013), 23–34.
    [14] K. B. Laursen, M. M. Neumann, An introduction to local spectral theory, Oxford University Press, 2000. https://doi.org/10.1093/oso/9780198523819.001.0001
    [15] S. K. Berberian, Approximate proper values, P. Am. Math. Soc., 13 (1962), 111–114. https://doi.org/10.2307/2033783 doi: 10.2307/2033783
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(518) PDF downloads(59) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog