Citation: Won-Kwang Park. On the application of subspace migration from scattering matrix with constant-valued diagonal elements in microwave imaging[J]. AIMS Mathematics, 2024, 9(8): 21356-21382. doi: 10.3934/math.20241037
[1] | H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging, vol. 62 of Mathematics and Applications Series, Springer, Berlin, 2008. https://doi.org/10.1007/978-3-540-79553-7 |
[2] | R. Chandra, A. J. Johansson, M. Gustafsson, F. Tufvesson, A microwave imaging-based technique to localize an in-body RF source for biomedical applications, IEEE T. Bio-Med. Eng., 62 (2015), 1231–1241. https://doi.org/10.1109/TBME.2014.2367117 doi: 10.1109/TBME.2014.2367117 |
[3] | M. Haynes, J. Stang, M. Moghaddam, Real-time microwave imaging of differential temperature for thermal therapy monitoring, IEEE T. Bio-Med. Eng., 61 (2014), 1787–1797. https://doi.org/10.1109/TBME.2014.2307072 doi: 10.1109/TBME.2014.2307072 |
[4] | J. Y. Kim, K. J. Lee, B. R. Kim, S. I. Jeon, S. H. Son, Numerical and experimental assessments of focused microwave thermotherapy system at 925MHz, ETRI J., 41 (2019), 850–862. https://doi.org/10.4218/etrij.2018-0088 doi: 10.4218/etrij.2018-0088 |
[5] | L. Collins, P. Gao, D. Schofield, J. Moulton, L. Majakowsky, L. Reidy, et al., A statistical approach to landmine detection using broadband electromagnetic data, IEEE T. Geosci. Remote, 40 (2002), 950–962. https://doi.org/10.1109/TGRS.2002.1006387 doi: 10.1109/TGRS.2002.1006387 |
[6] | P. Gao, L. Collins, P. M. Garber, N. Geng, L. Carin, Classification of landmine-like metal targets using wideband electromagnetic induction, IEEE T. Geosci. Remote Sens., 38 (2000), 1352–1361. https://doi.org/10.1109/ICASSP.1999.758404 doi: 10.1109/ICASSP.1999.758404 |
[7] | Y. J. Kim, L. Jofre, F. D. Flaviis, M. Q. Feng, Microwave reflection tomographic array for damage detection of civil structures, IEEE T. Antenn. Propag., 51 (2003), 3022–3032. https://doi.org/10.1109/TAP.2003.818786 doi: 10.1109/TAP.2003.818786 |
[8] | C. B. Smith, E. M. Hernandez, Non-negative constrained inverse eigenvalue problems–application to damage identification, Mech. Syst. Signal Proc., 129 (2019), 629–644. https://doi.org/10.1016/j.ymssp.2019.04.052 doi: 10.1016/j.ymssp.2019.04.052 |
[9] | V. S. Chernyak, Fundamentals of Multisite Radar Systems: Multistatic Radars and Multiradar Systems, CRC Press, Routledge, 1998. https://doi.org/10.1201/9780203755228 |
[10] | I. Stojanovic, W. C. Karl, Imaging of moving targets with multi-static SAR using an overcomplete dictionary, IEEE J.-STSP., 4 (2010), 164–176. https://doi.org/10.1109/JSTSP.2009.2038982 doi: 10.1109/JSTSP.2009.2038982 |
[11] | T. Rubæk, P. M. Meaney, P. Meincke, K. D. Paulsen, Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton's method and the CGLS inversion algorithm, IEEE T. Antenn. Propag., 55 (2007), 2320–2331. https://doi.org/10.1109/TAP.2007.901993 doi: 10.1109/TAP.2007.901993 |
[12] | D. Ireland, K. Bialkowski, A. Abbosh, Microwave imaging for brain stroke detection using Born iterative method, IET Microw. Antenna. P., 7 (2013), 909–915. https://doi.org/10.1049/iet-map.2013.0054 doi: 10.1049/iet-map.2013.0054 |
[13] | G. Oliveri, N. Anselmi, A. Massa, Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation, IEEE T. Antenn. Propag., 62 (2014), 5157–5170. https://doi.org/10.1109/TAP.2014.2344673 doi: 10.1109/TAP.2014.2344673 |
[14] | A. Franchois, C. Pichot, Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method, IEEE T. Antenn. Propag., 45 (1997), 203–215. https://doi.org/10.1109/8.560338 doi: 10.1109/8.560338 |
[15] | O. Dorn, D. Lesselier, Level set methods for inverse scattering, Inverse Probl., 22 (2006), R67–R131. https://doi.org/10.1088/0266-5611/22/4/R01 doi: 10.1088/0266-5611/22/4/R01 |
[16] | O. Kwon, J. K. Seo, J. R. Yoon, A real-time algorithm for the location search of discontinuous conductivities with one measurement, Comm. Pur. Appl. Math., 55 (2002), 1–29. https://doi.org/10.1002/cpa.3009 doi: 10.1002/cpa.3009 |
[17] | W. K. Park, D. Lesselier, Reconstruction of thin electromagnetic inclusions by a level set method, Inverse Probl., 25 (2009), Article No. 085010. https://doi.org/10.1088/0266-5611/25/8/085010 doi: 10.1088/0266-5611/25/8/085010 |
[18] | S. H. Son, W. K. Park, Application of the bifocusing method in microwave imaging without background information, J. Korean Soc. Ind. Appl. Math., 27 (2023), 109–122. https://doi.org/10.12941/jksiam.2023.27.109 doi: 10.12941/jksiam.2023.27.109 |
[19] | H. Ammari, H. Kang, E. Kim, K. Louati, M. Vogelius, A MUSIC-type algorithm for detecting internal corrosion from electrostatic boundary measurements, Numer. Math., 108 (2008), 501–528. https://doi.org/10.1007/s00211-007-0130-x doi: 10.1007/s00211-007-0130-x |
[20] | W. K. Park, Application of MUSIC algorithm in real-world microwave imaging of unknown anomalies from scattering matrix, Mech. Syst. Signal Proc., 153 (2021), Article No. 107501. https://doi.org/10.1016/j.ymssp.2020.107501 doi: 10.1016/j.ymssp.2020.107501 |
[21] | Y. T. Chow, K. Ito, K. Liu, J. Zou, Direct sampling method for diffusive optical tomography, SIAM J. Sci. Comput., 37 (2015), A1658–A1684. https://doi.org/10.1137/14097519X doi: 10.1137/14097519X |
[22] | Y. T. Chow, K. Ito, J. Zou, A direct sampling method for electrical impedance tomography, Inverse Probl., 30 (2014), Article No. 095003. https://doi.org/10.1088/0266-5611/30/9/095003 doi: 10.1088/0266-5611/30/9/095003 |
[23] | S. Amstutz, N. Dominguez, Topological sensitivity analysis in the context of ultrasonic non-destructive testing, Eng. Anal. Bound. Elem., 32 (2008), 936–947. https://doi.org/10.1016/j.enganabound.2007.09.008 doi: 10.1016/j.enganabound.2007.09.008 |
[24] | F. L. Louër, M. L. Rapún, Detection of multiple impedance obstacles by non-iterative topological gradient based methods, J. Comput. Phys., 388 (2019), 534–560. https://doi.org/10.1016/j.jcp.2019.03.023 doi: 10.1016/j.jcp.2019.03.023 |
[25] | W. K. Park, A novel study on the orthogonality sampling method in microwave imaging without background information, Appl. Math. Lett., 145 (2023), Article No. 108766. https://doi.org/10.1016/j.aml.2023.108766 doi: 10.1016/j.aml.2023.108766 |
[26] | T. Le, D. L. Nguyen, H. Schmidt, T. Truong, Imaging of 3D objects with experimental data using orthogonality sampling methods, Inverse Probl., 38 (2021), Article No. 025007. https://doi.org/10.1088/1361-6420/ac3d85 doi: 10.1088/1361-6420/ac3d85 |
[27] | S. Coşğun, E. Bilgin, M. Çayören, Microwave imaging of breast cancer with factorization method: SPIONs as contrast agent, Med. Phys., 47 (2020), 3113–3122. https://doi.org/10.1002/mp.14156 doi: 10.1002/mp.14156 |
[28] | B. Harrach, J. K. Seo, E. J. Woo, Factorization method and its physical justification in frequency-difference electrical impedance tomography, IEEE T. Biomed. Eng., 29 (2010), 1918–1926. https://doi.org/10.1109/tmi.2010.2053553 doi: 10.1109/tmi.2010.2053553 |
[29] | H. F. Alqadah, A compressive multi-frequency linear sampling method for underwater acoustic imaging, IEEE T. Image Process., 25 (2016), 2444–2455. https://doi.org/10.1109/TIP.2016.2548243 doi: 10.1109/TIP.2016.2548243 |
[30] | M. G. Aram, M. Haghparast, M. S. Abrishamian, A. Mirtaheri, Comparison of imaging quality between linear sampling method and time reversal in microwave imaging problems, Inverse Probl. Sci. Eng., 24 (2016), 1347–1363. https://doi.org/10.1080/17415977.2015.1104308 doi: 10.1080/17415977.2015.1104308 |
[31] | H. Ammari, J. Garnier, H. Kang, M. Lim, K. Sølna, Multistatic imaging of extended targets, SIAM J. Imag. Sci., 5 (2012), 564–600. https://doi.org/10.1137/10080631X doi: 10.1137/10080631X |
[32] | L. Borcea, G. Papanicolaou, F. G. Vasquez, Edge illumination and imaging of extended reflectors, SIAM J. Imag. Sci., 1 (2008), 75–114. https://doi.org/10.1137/07069290X doi: 10.1137/07069290X |
[33] | W. K. Park, On the identification of small anomaly in microwave imaging without homogeneous background information, AIMS Math., 8 (2023), 27210–27226. https://doi.org/10.3934/math.20231392 doi: 10.3934/math.20231392 |
[34] | H. Ammari, J. Garnier, H. Kang, W. K. Park, K. Sølna, Imaging schemes for perfectly conducting cracks, SIAM J. Appl. Math., 71 (2011), 68–91. https://doi.org/10.1137/100800130 doi: 10.1137/100800130 |
[35] | W. K. Park, Multi-frequency subspace migration for imaging of perfectly conducting, arc-like cracks in full- and limited-view inverse scattering problems, J. Comput. Phys., 283 (2015), 52–80. https://doi.org/10.1016/j.jcp.2014.11.036 doi: 10.1016/j.jcp.2014.11.036 |
[36] | W. K. Park, Shape identification of open sound-hard arcs without priori information in limited-view inverse scattering problem, Comput. Math. Appl., 128 (2022), 55–68. https://doi.org/10.1016/j.camwa.2022.10.010 doi: 10.1016/j.camwa.2022.10.010 |
[37] | W. K. Park, Fast location search of small anomaly by using microwave, Int. J. Appl. Electromagn. Mech., 59 (2019), 1505–1510. https://doi.org/10.3233/JAE-171107 doi: 10.3233/JAE-171107 |
[38] | W. K. Park, Real-time microwave imaging of unknown anomalies via scattering matrix, Mech. Syst. Signal Proc., 118 (2019), 658–674. https://doi.org/10.1016/j.ymssp.2018.09.012 doi: 10.1016/j.ymssp.2018.09.012 |
[39] | W. K. Park, Real-time detection of small anomaly from limited-aperture measurements in real-world microwave imaging, Mech. Syst. Signal Proc., 171 (2022), Article No. 108937. https://doi.org/10.1016/j.ymssp.2022.108937 doi: 10.1016/j.ymssp.2022.108937 |
[40] | S. H. Son, H. J. Kim, K. J. Lee, J. Y. Kim, J. M. Lee, S. I. Jeon, et al., Experimental measurement system for 3–6GHz microwave breast tomography, J. Electromagn. Eng. Sci., 15 (2015), 250–257. https://doi.org/10.5515/JKIEES.2015.15.4.250 doi: 10.5515/JKIEES.2015.15.4.250 |
[41] | S. H. Son, K. J. Lee, W. K. Park, Real-time tracking of moving objects from scattering matrix in real-world microwave imaging, AIMS Math., 9 (2024), 13570–13588. https://doi.org/10.3934/math.2024662 doi: 10.3934/math.2024662 |
[42] | S. H. Son, N. Simonov, H. J. Kim, J. M. Lee, S. I. Jeon, Preclinical prototype development of a microwave tomography system for breast cancer detection, ETRI J., 32 (2010), 901–910. https://doi.org/10.4218/etrij.10.0109.0626 doi: 10.4218/etrij.10.0109.0626 |
[43] | S. Kang, W. K. Park, S. H. Son, A qualitative analysis of the bifocusing method for a real-time anomaly detection in microwave imaging, Comput. Math. Appl., 137 (2023), 93–101. https://doi.org/10.1016/j.camwa.2023.02.017 doi: 10.1016/j.camwa.2023.02.017 |
[44] | K. J. Lee, S. H. Son, W. K. Park, A real-time microwave imaging of unknown anomaly with and without diagonal elements of scattering matrix, Results Phys., 17 (2020), Article No. 103104. https://doi.org/10.1016/j.rinp.2020.103104 doi: 10.1016/j.rinp.2020.103104 |
[45] | W. K. Park, On the application of orthogonality sampling method for object detection in microwave imaging, IEEE T. Antenn. Propag., 71 (2023), 934–946. https://doi.org/10.1109/TAP.2022.3220033 doi: 10.1109/TAP.2022.3220033 |
[46] | S. H. Son, K. J. Lee, W. K. Park, Application and analysis of direct sampling method in real-world microwave imaging, Appl. Math. Lett., 96 (2019), 47–53. https://doi.org/10.1016/j.aml.2019.04.016 doi: 10.1016/j.aml.2019.04.016 |
[47] | M. Slaney, A. C. Kak, L. E. Larsen, Limitations of imaging with first-order diffraction tomography, IEEE T. Microw. Theory, 32 (1984), 860–874. https://doi.org/10.1109/TMTT.1984.1132783 doi: 10.1109/TMTT.1984.1132783 |
[48] | D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Problems, vol. 93 of Mathematics and Applications Series, Springer, New York, 1998. https://doi.org/10.1007/978-3-030-30351-8 |
[49] | L. J. Landau, Bessel functions: monotonicity and bounds, J. London Math. Soc., 61 (2000), 197–215. https://doi.org/10.1112/S0024610799008352 doi: 10.1112/S0024610799008352 |
[50] | M. H. Ding, H. Liu, G. H. Zheng, On inverse problems for several coupled PDF systems arising in mathematical biology, J. Math. Biology, 87 (2023), Article No. 86. https://doi.org/10.1007/s00285-023-02021-4 doi: 10.1007/s00285-023-02021-4 |
[51] | H. Liu, C. W. K. Lo, Determining a parabolic system by boundary observation of its non-negative solutions with biological applications, Inverse Probl., 40 (2024), Article No. 025009. https://doi.org/10.1088/1361-6420/ad149f doi: 10.1088/1361-6420/ad149f |
[52] | Y. Yin, W. Yin, P. Meng, H. Liu, The interior inverse scattering problem for a two-layered cavity using the Bayesian method, Inverse Probl. Imag., 16 (2022), 673–690. https://doi.org/10.3934/ipi.2021069 doi: 10.3934/ipi.2021069 |