
Citation: Won-Kwang Park. On the application of subspace migration from scattering matrix with constant-valued diagonal elements in microwave imaging[J]. AIMS Mathematics, 2024, 9(8): 21356-21382. doi: 10.3934/math.20241037
[1] | Yayun Fu, Mengyue Shi . A conservative exponential integrators method for fractional conservative differential equations. AIMS Mathematics, 2023, 8(8): 19067-19082. doi: 10.3934/math.2023973 |
[2] | Yong-Chao Zhang . Least energy solutions to a class of nonlocal Schrödinger equations. AIMS Mathematics, 2024, 9(8): 20763-20772. doi: 10.3934/math.20241009 |
[3] | Tingting Ma, Yuehua He . An efficient linearly-implicit energy-preserving scheme with fast solver for the fractional nonlinear wave equation. AIMS Mathematics, 2023, 8(11): 26574-26589. doi: 10.3934/math.20231358 |
[4] | Karmina K. Ali, Resat Yilmazer . Discrete fractional solutions to the effective mass Schrödinger equation by mean of nabla operator. AIMS Mathematics, 2020, 5(2): 894-903. doi: 10.3934/math.2020061 |
[5] | Erdal Bas, Ramazan Ozarslan . Theory of discrete fractional Sturm–Liouville equations and visual results. AIMS Mathematics, 2019, 4(3): 593-612. doi: 10.3934/math.2019.3.593 |
[6] | Dengfeng Lu, Shuwei Dai . On a class of three coupled fractional Schrödinger systems with general nonlinearities. AIMS Mathematics, 2023, 8(7): 17142-17153. doi: 10.3934/math.2023875 |
[7] | Mubashir Qayyum, Efaza Ahmad, Hijaz Ahmad, Bandar Almohsen . New solutions of time-space fractional coupled Schrödinger systems. AIMS Mathematics, 2023, 8(11): 27033-27051. doi: 10.3934/math.20231383 |
[8] | Xiaojun Zhou, Yue Dai . A spectral collocation method for the coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2022, 7(4): 5670-5689. doi: 10.3934/math.2022314 |
[9] | Zunyuan Hu, Can Li, Shimin Guo . Fast finite difference/Legendre spectral collocation approximations for a tempered time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34647-34673. doi: 10.3934/math.20241650 |
[10] | Xiao-Yu Li, Yu-Lan Wang, Zhi-Yuan Li . Numerical simulation for the fractional-in-space Ginzburg-Landau equation using Fourier spectral method. AIMS Mathematics, 2023, 8(1): 2407-2418. doi: 10.3934/math.2023124 |
Fractional calculus is a popular subject because of having a lot of application areas of theoretical and applied sciences, like engineering, physics, biology, etc. Discrete fractional calculus is more recent area than fractional calculus and it was first defined by Diaz–Osler [1], Miller–Ross [2] and Gray–Zhang [3]. More recently, the theory of discrete fractional calculus have begun to develop rapidly with Goodrich–Peterson [4], Baleanu et al. [5,6], Ahrendt et al. [7], Atici–Eloe [8,9], Anastassiou [10], Abdeljawad et al. [11,12,13,14,15,16], Hein et al. [17] and Cheng et al. [18], Mozyrska [19] and so forth [20,21,22,23,24,25].
Fractional Sturm–Liouville differential operators have been studied by Bas et al. [26,27], Klimek et al.[28], Dehghan et al. [29]. Besides that, Sturm–Liouville differential and difference operators were studied by [30,31,32,33]. In this study, we define DFHA operators and prove the self–adjointness of DFHA operator, some spectral properties of the operator.
More recently, Almeida et al. [34] have studied discrete and continuous fractional Sturm–Liouville operators, Bas–Ozarslan [35] have shown the self–adjointness of discrete fractional Sturm–Liouville operators and proved some spectral properties of the problem.
Sturm–Liouville equation having hydrogen atom potential is defined as follows
d2Rdr2+ardRdr−ℓ(ℓ+1)r2R+(E+ar)R=0(0<r<∞). |
In quantum mechanics, the study of the energy levels of the hydrogen atom leads to this equation. Where R is the distance from the mass center to the origin, ℓ is a positive integer, a is real number E is energy constant and r is the distance between the nucleus and the electron.
The hydrogen atom is a two–particle system and it composes of an electron and a proton. Interior motion of two particles around the center of mass corresponds to the movement of a single particle by a reduced mass. The distance between the proton and the electron is identified r and r is given by the orientation of the vector pointing from the proton to the electron. Hydrogen atom equation is defined as Schrödinger equation in spherical coordinates and in consequence of some transformations, this equation is defined as
y′′+(λ−l(l+1)x2+2x−q(x))y=0. |
Spectral theory of hydrogen atom equation is studied by [39,40,41]. Besides that, we can observe that hydrogen atom differential equation has series solution as follows ([39], p.268)
y(x)=a0xl+1{1−k−l−11!(2l+2).2xk+(k−l−1)(k−l−2)2!(2l+2)(2l+3)(2xk)2+…+(−1)n(k−l−1)(k−l−2)…3.2.1(k−1)!(2l+2)(2l+3)…(2l+n)(2xk)n},k=1,2,… | (1.1) |
Recently, Bohner and Cuchta [36,37] studied some special integer order discrete functions, like Laguerre, Hermite, Bessel and especially Cuchta mentioned the difficulty in obtaining series solution of discrete special functions in his dissertation ([38], p.100). In this regard, finding series solution of DFHA equations is an open problem and has some difficulties in the current situation. For this reason, we study to obtain solutions of DFHA eq.s in a different way with representation of solutions.
In this study, we investigate DFHA equation in Riemann–Liouville and Grü nwald–Letnikov sense. The aim of this study is to contribute to the spectral theory of DFHA operator and behaviors of eigenfunctions and also to obtain the solution of DFHA equation.
We investigate DFHA equation in three different ways;
i) (nabla left and right) Riemann–Liouville (R–L)sense,
L1x(t)=∇μa(b∇μx(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, |
ii) (delta left and right) Grünwald–Letnikov (G–L) sense,
L2x(t)=Δμ−(Δμ+x(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, |
iii) (nabla left) Riemann–Liouville (R–L)sense,
L3x(t)=∇μa(∇μax(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1. |
Definition 2.1. [42] Falling and rising factorial functions are defined as follows respectively
tα_=Γ(t+1)Γ(t−α+1), | (2.1) |
t¯α=Γ(t+α)Γ(t), | (2.2) |
where Γ is the gamma function, α∈R.
Remark 2.1. Delta and nabla operators hold the following properties
Δtα_=αtα−1_,∇t¯α=αt¯α−1. | (2.3) |
Definition 2.2. [2,8,11] Nabla fractional sum operators are given as below,
(i) The left fractional sum of order μ>0 is defined by
∇−μax(t)=1Γ(μ)t∑s=a+1(t−ρ(s))¯μ−1x(s), t∈Na+1, | (2.4) |
(ii) The right fractional sum of order μ>0 is defined by
b∇−μx(t)=1Γ(μ)b−1∑s=t(s−ρ(t))¯μ−1x(s), t∈ b−1N, | (2.5) |
where ρ(t)=t−1 is called backward jump operators, Na={a,a+1,...}, bN={b,b−1,...}.
Definition 2.3. [12,14] Nabla fractional difference operators are as follows,
(i) The left fractional difference of order μ>0 is defined by
∇μax(t)=∇n∇−(n−μ)ax(t)=∇nΓ(n−μ)t∑s=a+1(t−ρ(s))¯n−μ−1x(s), t∈Na+1, | (2.6) |
(ii) The right fractional difference of order μ>0 is defined by
b∇μx(t)=(−1)n∇n∇−(n−μ)ax(t)=(−1)nΔnΓ(n−μ)b−1∑s=t(s−ρ(t))¯n−μ−1x(s), t∈ b−1N. | (2.7) |
Fractional differences in (2.6−2.7) are called the Riemann–Liouville (R–L) definition of the μ-th order nabla fractional difference.
Definition 2.4. [1,18] Fractional difference operators are given as follows
(i) The delta left fractional difference of order μ, 0<μ≤1, is defined by
Δμ−x(t)=1hμt∑s=0(−1)sμ(μ−1)...(μ−s+1)s!x(t−s), t=1,...,N. | (2.8) |
(ii) The delta right fractional difference of order μ, 0<μ≤1, is defined by
Δμ+x(t)=1hμN−t∑s=0(−1)sμ(μ−1)...(μ−s+1)s!x(t+s), t=0,..,N−1, | (2.9) |
fractional differences in (2.8−2.9) are called the Grünwald–Letnikov (G–L) definition of the μ-th order delta fractional difference.
Definition 2.5 [14] Integration by parts formula for R–L nabla fractional difference operator is defined by, u is defined on bN and v is defined on Na,
b−1∑s=a+1u(s)∇μav(s)=b−1∑s=a+1v(s)b∇μu(s). | (2.10) |
Definition 2.6. [34] Integration by parts formula for G–L delta fractional difference operator is defined by, u, v is defined on {0,1,...,n}, then
n∑s=0u(s)Δμ−v(s)=n∑s=0v(s)Δμ+u(s). | (2.11) |
Definition 2.7. [17] f:Na→R, s∈ℜ, Laplace transform is defined as follows,
La{f}(s)=∞∑k=1(1−s)k−1f(a+k), |
where ℜ=C∖{1} and ℜ is called the set of regressive (complex) functions.
Definition 2.8. [17] Let f,g:Na→R, all t∈Na+1, convolution of f and g is defined as follows
(f∗g)(t)=t∑s=a+1f(t−ρ(s)+a)g(s), |
where ρ(s) is the backward jump function defined in [42] as
ρ(s)=s−1. |
Theorem 2.1. [17] f,g:Na→R, convolution theorem is expressed as follows,
La{f∗g}(s)=La{f}La{g}(s). |
Lemma 2.1. [17] f:Na→R, the following property is valid,
La+1{f}(s)=11−sLa{f}(s)−11−sf(a+1). |
Theorem 2.2. [17] f:Na→R, 0<μ<1, Laplace transform of nabla fractional difference
La+1{∇μaf}(s)=sμLa+1{f}(s)−1−sμ1−sf(a+1),t∈Na+1. |
Definition 2.9. [17] For |p|<1, α>0, β∈R and t∈Na, Mittag–Leffler function is defined by
Ep,α,β(t,a)=∞∑k=0pk(t−a)¯αk+βΓ(αk+β+1). |
Theorem 2.3. [17] For |p|<1, α>0, β∈R, |1−s|<1 and |s|α>p, Laplace transform of Mittag–Leffler function is as follows,
La+1{Ep,α,β(.,a)}(s)=sα−β−1sα−p. |
Let us consider equations in three different forms;
i) L1 DFHA operator L1 is defined in (nabla left and right) R–L sense,
L1x(t)=∇μa(p(t)b∇μx(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, | (3.1) |
where l is a positive integer or zero, q(t)+2t−l(l+1)t2 are named potential function., λ is the spectral parameter, t∈[a+1,b−1], x(t)∈l2[a+1,b−1], a>0.
ii) L2 DFHA operator L2 is defined in (delta left and right) G–L sense,
L2x(t)=Δμ−(p(t)Δμ+x(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, | (3.2) |
where p,q,l,λ is as defined above, t∈[1,n], x(t)∈l2[0,n].
iii) L3 DFHA operator L3 is defined in (nabla left) R–L sense,
L3x(t)=∇μa(∇μax(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, | (3.3) |
p,q,l,λ is as defined above, t∈[a+1,b−1], a>0.
Theorem 3.1. DFHA operator L1 is self–adjoint.
Proof.
u(t)L1v(t)=u(t)∇μa(p(t)b∇μv(t))+u(t)(l(l+1)t2−2t+q(t))v(t), | (3.4) |
v(t)L1u(t)=v(t)∇μa(p(t)b∇μu(t))+v(t)(l(l+1)t2−2t+q(t))u(t). | (3.5) |
Subtracting (16−17) from each other
u(t)L1v(t)−v(t)L1u(t)=u(t)∇μa(p(t)b∇μv(t))−v(t)∇μa(p(t)b∇μu(t)) |
and applying definite sum operator to both side of the last equality, we have
b−1∑s=a+1(u(s)L1v(s)−v(s)L1u(s))=b−1∑s=a+1u(s)∇μa(p(s)b∇μv(s))−b−1∑s=a+1v(s)∇μa(p(s)b∇μu(s)). | (3.6) |
Applying the integration by parts formula (2.10) to right hand side of (18), we have
b−1∑s=a+1(u(s)L1v(s)−v(s)L1u(s))=b−1∑s=a+1p(s)b∇μv(s)b∇μu(s)−b−1∑s=a+1p(s)b∇μu(s)b∇μv(s)=0, |
⟨L1u,v⟩=⟨u,L1v⟩. |
The proof completes.
Theorem 3.2. Eigenfunctions, corresponding to distinct eigenvalues, of the equation (3.2) are orthogonal.
Proof. Assume that λα and λβ are two different eigenvalues corresponds to eigenfunctions u(n) and v(n) respectively for the equation (3.1),
∇μa(p(t)b∇μu(t))+(l(l+1)t2−2t+q(t))u(t)−λαu(t)=0,∇μa(p(t)b∇μv(t))+(l(l+1)t2−2t+q(t))v(t)−λβv(t)=0, |
Multiplying last two equations to v(n) and u(n) respectively, subtracting from each other and applying sum operator, since the self–adjointness of the operator L1, we get
(λα−λβ)b−1∑s=a+1r(s)u(s)v(s)=0, |
since λα≠λβ,
b−1∑s=a+1r(s)u(s)v(s)=0,⟨u(t),v(t)⟩=0, |
and the proof completes.
Theorem 3.3. All eigenvalues of the equation (3.1) are real.
Proof. Assume λ=α+iβ, since the self–adjointness of the operator L1, we have
⟨L1u,u⟩=⟨u,L1u⟩,⟨λu,u⟩=⟨u,λu⟩, |
(λ−¯λ)⟨u,u⟩=0 |
Since ⟨u,u⟩r≠0,
λ=¯λ |
and hence β=0. So, the proof is completed.
Self–adjointness of L2 DFHA operator G–L sense, reality of eigenvalues and orthogonality of eigenfunctions of the equation 3.2 can be proven in a similar way to the Theorem 3.1–3.2–3.3 by means of Definition 2.5.
Theorem 3.4.
L3x(t)=∇μa(∇μax(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t),0<μ<1, | (3.7) |
x(a+1)=c1,∇μax(a+1)=c2, | (3.8) |
where p(t)>0, r(t)>0, q(t) is defined and real valued, λ is the spectral parameter. The sum representation of solution of the problem (3.7)−(3.8) is given as follows,
x(t)=c1((1+l(l+1)(a+1)2−2a+1+q(a+1))Eλ,2μ,μ−1(t,a)−λEλ,2μ,2μ−1(t,a))+c2(Eλ,2μ,2μ−1(t,a)−Eλ,2μ,μ−1(t,a))−t∑s=a+1Eλ,2μ,2μ−1(t−ρ(s)+a)(l(l+1)s2−2s+q(s))x(s). | (3.9) |
Proof. Taking Laplace transform of the equation (3.7) by Theorem 2.2 and take (l(l+1)t2−2t+q(t))x(t)=g(t),
La+1{∇μa(∇μax)}(s)+La+1{g}(s)=λLa+1{x}(s),=sμLa+1{∇μax}(s)−1−sμ1−sc2=λLa+1{x}(s)−La+1{g}(s),=sμ(sμLa+1{x}(s)−1−sμ1−sc1)−1−sμ1−sc2=λLa+1{x}(s)−La+1{g}(s), |
=La+1{x}(s)=1−sμ1−s1s2μ−λ(sμc1+c2)−1s2μ−λLa+1{g}(s). |
Using Lemma 2.1, we have
La{x}(s)=c1(sμ−λs2μ−λ)−1−ss2μ−λ(11−sLa{g}(s)−11−sg(a+1))+c2(1−sμs2μ−λ). | (3.10) |
Now, taking inverse Laplace transform of the equation (3.10) and applying convolution theorem, then we have the representation of solution of the problem (3.7)−(3.8), |λ|<1, |1−s|<1 and |s|α>λ from Theorem 2.3., i.e.
L−1a{sμs2μ−λ}=Eλ,2μ,μ−1(t,a),L−1a{1s2μ−λ}=Eλ,2μ,2μ−1(t,a), |
L−1a{1s2μ−λLa{q(s)x(s)}}=t∑s=a+1Eλ,2μ,2μ−1(t−ρ(s)+a)q(s)x(s). |
Consequently, we have sum representation of solution for DFHA problem 3.7–3.8
x(t)=c1((1+l(l+1)(a+1)2−2a+1+q(a+1))Eλ,2μ,μ−1(t,a)−λEλ,2μ,2μ−1(t,a))+c2(Eλ,2μ,2μ−1(t,a)−Eλ,2μ,μ−1(t,a))−t∑s=a+1Eλ,2μ,2μ−1(t−ρ(s)+a)(l(l+1)s2−2s+q(s))x(s). |
Presume that c1=1,c2=0,a=0 in the representation of solution (3.9) and hence we may observe the behaviors of solutions in following figures (Figures 1–7) and tables (Tables 1–3);
x(t) | μ=0.3 | μ=0.35 | μ=0.4 | μ=0.45 | μ=0.5 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.612 | 0.714 | 1.123 | 0.918 | 1.020 |
x(3) | 0.700 | 0.900 | 1.515 | 1.370 | 1.641 |
x(5) | 0.881 | 1.336 | 2.402 | 2.747 | 3.773 |
x(7) | 1.009 | 1.740 | 3.352 | 4.566 | 7.031 |
x(9) | 1.099 | 2.100 | 4.332 | 6.749 | 11.461 |
x(12) | 1.190 | 2.570 | 5.745 | 10.623 | 20.450 |
x(15) | 1.249 | 2.975 | 6.739 | 15.149 | 32.472 |
x(16) | 1.264 | 3.098 | 7.235 | 16.793 | 37.198 |
x(18) | 1.289 | 3.330 | 8.233 | 20.279 | 47.789 |
x(20) | 1.309 | 3.544 | 9.229 | 24.021 | 59.967 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 7.37∗10−17 | 4.41∗10−17 | 5.77∗10−17 |
x(3) | −0.131 | −0.057 | −0.088 |
x(5) | −0.123 | −0.018 | −0.049 |
x(7) | −0.080 | −0.006 | −0.021 |
x(9) | −0.050 | −0.003 | −0.011 |
x(12) | −0.028 | −0.001 | −0.005 |
x(15) | −0.017 | −0.0008 | −0.003 |
x(16) | −0.015 | −0.0006 | −0.0006 |
x(18) | −0.012 | −0.0005 | −0.002 |
x(20) | −0.010 | −0.0003 | −0.001 |
x(t) | λ=0.1 | λ=0.11 | λ=0.12 |
x(1) | 1 | 1 | 1 |
x(2) | 1 | 1.025 | 1.052 |
x(3) | 1.668 | 1.751 | 1.841 |
x(5) | 3.876 | 4.216 | 4.595 |
x(7) | 7.243 | 8.107 | 9.095 |
x(9) | 11.941 | 13.707 | 12.130 |
x(12) | 22.045 | 26.197 | 25.237 |
x(15) | 36.831 | 45.198 | 46.330 |
x(16) | 43.042 | 53.369 | 55.687 |
x(18) | 57.766 | 73.092 | 78.795 |
x(20) | 76.055 | 98.154 | 127.306 |
We have analyzed DFHA equation in Riemann–Liouville and Grü nwald–Letnikov sense. Self–adjointness of the DFHA operator is presented and also, we have proved some significant spectral properties for instance, orthogonality of distinct eigenfunctions, reality of eigenvalues. Moreover, we give sum representation of the solutions for DFHA problem and find the solutions of the problem. We have carried out simulation analysis with graphics and tables. The aim of this paper is to contribute to the theory of hydrogen atom fractional difference operator.
We observe the behaviors of solutions by changing the order of the derivative μ in Figure 1 and Figure 5, by changing the potential function q(t) in Figure 2, we compare solutions under different λ eigenvalues in Figure 3, and Figure 7, also we observe the solutions by changing μ with a specific eigenvalue in Figure 4 and by changing l values in Figure 6.
We have shown the solutions by changing the order of the derivative μ in Table 1, by changing the potential function q(t) and λ eigenvalues in Table 2, Table 3.
The authors would like to thank the editor and anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.
The authors declare no conflict of interest.
[1] | H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging, vol. 62 of Mathematics and Applications Series, Springer, Berlin, 2008. https://doi.org/10.1007/978-3-540-79553-7 |
[2] |
R. Chandra, A. J. Johansson, M. Gustafsson, F. Tufvesson, A microwave imaging-based technique to localize an in-body RF source for biomedical applications, IEEE T. Bio-Med. Eng., 62 (2015), 1231–1241. https://doi.org/10.1109/TBME.2014.2367117 doi: 10.1109/TBME.2014.2367117
![]() |
[3] |
M. Haynes, J. Stang, M. Moghaddam, Real-time microwave imaging of differential temperature for thermal therapy monitoring, IEEE T. Bio-Med. Eng., 61 (2014), 1787–1797. https://doi.org/10.1109/TBME.2014.2307072 doi: 10.1109/TBME.2014.2307072
![]() |
[4] |
J. Y. Kim, K. J. Lee, B. R. Kim, S. I. Jeon, S. H. Son, Numerical and experimental assessments of focused microwave thermotherapy system at 925MHz, ETRI J., 41 (2019), 850–862. https://doi.org/10.4218/etrij.2018-0088 doi: 10.4218/etrij.2018-0088
![]() |
[5] |
L. Collins, P. Gao, D. Schofield, J. Moulton, L. Majakowsky, L. Reidy, et al., A statistical approach to landmine detection using broadband electromagnetic data, IEEE T. Geosci. Remote, 40 (2002), 950–962. https://doi.org/10.1109/TGRS.2002.1006387 doi: 10.1109/TGRS.2002.1006387
![]() |
[6] |
P. Gao, L. Collins, P. M. Garber, N. Geng, L. Carin, Classification of landmine-like metal targets using wideband electromagnetic induction, IEEE T. Geosci. Remote Sens., 38 (2000), 1352–1361. https://doi.org/10.1109/ICASSP.1999.758404 doi: 10.1109/ICASSP.1999.758404
![]() |
[7] |
Y. J. Kim, L. Jofre, F. D. Flaviis, M. Q. Feng, Microwave reflection tomographic array for damage detection of civil structures, IEEE T. Antenn. Propag., 51 (2003), 3022–3032. https://doi.org/10.1109/TAP.2003.818786 doi: 10.1109/TAP.2003.818786
![]() |
[8] |
C. B. Smith, E. M. Hernandez, Non-negative constrained inverse eigenvalue problems–application to damage identification, Mech. Syst. Signal Proc., 129 (2019), 629–644. https://doi.org/10.1016/j.ymssp.2019.04.052 doi: 10.1016/j.ymssp.2019.04.052
![]() |
[9] | V. S. Chernyak, Fundamentals of Multisite Radar Systems: Multistatic Radars and Multiradar Systems, CRC Press, Routledge, 1998. https://doi.org/10.1201/9780203755228 |
[10] |
I. Stojanovic, W. C. Karl, Imaging of moving targets with multi-static SAR using an overcomplete dictionary, IEEE J.-STSP., 4 (2010), 164–176. https://doi.org/10.1109/JSTSP.2009.2038982 doi: 10.1109/JSTSP.2009.2038982
![]() |
[11] |
T. Rubæk, P. M. Meaney, P. Meincke, K. D. Paulsen, Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton's method and the CGLS inversion algorithm, IEEE T. Antenn. Propag., 55 (2007), 2320–2331. https://doi.org/10.1109/TAP.2007.901993 doi: 10.1109/TAP.2007.901993
![]() |
[12] |
D. Ireland, K. Bialkowski, A. Abbosh, Microwave imaging for brain stroke detection using Born iterative method, IET Microw. Antenna. P., 7 (2013), 909–915. https://doi.org/10.1049/iet-map.2013.0054 doi: 10.1049/iet-map.2013.0054
![]() |
[13] |
G. Oliveri, N. Anselmi, A. Massa, Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation, IEEE T. Antenn. Propag., 62 (2014), 5157–5170. https://doi.org/10.1109/TAP.2014.2344673 doi: 10.1109/TAP.2014.2344673
![]() |
[14] |
A. Franchois, C. Pichot, Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method, IEEE T. Antenn. Propag., 45 (1997), 203–215. https://doi.org/10.1109/8.560338 doi: 10.1109/8.560338
![]() |
[15] |
O. Dorn, D. Lesselier, Level set methods for inverse scattering, Inverse Probl., 22 (2006), R67–R131. https://doi.org/10.1088/0266-5611/22/4/R01 doi: 10.1088/0266-5611/22/4/R01
![]() |
[16] |
O. Kwon, J. K. Seo, J. R. Yoon, A real-time algorithm for the location search of discontinuous conductivities with one measurement, Comm. Pur. Appl. Math., 55 (2002), 1–29. https://doi.org/10.1002/cpa.3009 doi: 10.1002/cpa.3009
![]() |
[17] |
W. K. Park, D. Lesselier, Reconstruction of thin electromagnetic inclusions by a level set method, Inverse Probl., 25 (2009), Article No. 085010. https://doi.org/10.1088/0266-5611/25/8/085010 doi: 10.1088/0266-5611/25/8/085010
![]() |
[18] |
S. H. Son, W. K. Park, Application of the bifocusing method in microwave imaging without background information, J. Korean Soc. Ind. Appl. Math., 27 (2023), 109–122. https://doi.org/10.12941/jksiam.2023.27.109 doi: 10.12941/jksiam.2023.27.109
![]() |
[19] |
H. Ammari, H. Kang, E. Kim, K. Louati, M. Vogelius, A MUSIC-type algorithm for detecting internal corrosion from electrostatic boundary measurements, Numer. Math., 108 (2008), 501–528. https://doi.org/10.1007/s00211-007-0130-x doi: 10.1007/s00211-007-0130-x
![]() |
[20] |
W. K. Park, Application of MUSIC algorithm in real-world microwave imaging of unknown anomalies from scattering matrix, Mech. Syst. Signal Proc., 153 (2021), Article No. 107501. https://doi.org/10.1016/j.ymssp.2020.107501 doi: 10.1016/j.ymssp.2020.107501
![]() |
[21] |
Y. T. Chow, K. Ito, K. Liu, J. Zou, Direct sampling method for diffusive optical tomography, SIAM J. Sci. Comput., 37 (2015), A1658–A1684. https://doi.org/10.1137/14097519X doi: 10.1137/14097519X
![]() |
[22] |
Y. T. Chow, K. Ito, J. Zou, A direct sampling method for electrical impedance tomography, Inverse Probl., 30 (2014), Article No. 095003. https://doi.org/10.1088/0266-5611/30/9/095003 doi: 10.1088/0266-5611/30/9/095003
![]() |
[23] |
S. Amstutz, N. Dominguez, Topological sensitivity analysis in the context of ultrasonic non-destructive testing, Eng. Anal. Bound. Elem., 32 (2008), 936–947. https://doi.org/10.1016/j.enganabound.2007.09.008 doi: 10.1016/j.enganabound.2007.09.008
![]() |
[24] |
F. L. Louër, M. L. Rapún, Detection of multiple impedance obstacles by non-iterative topological gradient based methods, J. Comput. Phys., 388 (2019), 534–560. https://doi.org/10.1016/j.jcp.2019.03.023 doi: 10.1016/j.jcp.2019.03.023
![]() |
[25] |
W. K. Park, A novel study on the orthogonality sampling method in microwave imaging without background information, Appl. Math. Lett., 145 (2023), Article No. 108766. https://doi.org/10.1016/j.aml.2023.108766 doi: 10.1016/j.aml.2023.108766
![]() |
[26] |
T. Le, D. L. Nguyen, H. Schmidt, T. Truong, Imaging of 3D objects with experimental data using orthogonality sampling methods, Inverse Probl., 38 (2021), Article No. 025007. https://doi.org/10.1088/1361-6420/ac3d85 doi: 10.1088/1361-6420/ac3d85
![]() |
[27] |
S. Coşğun, E. Bilgin, M. Çayören, Microwave imaging of breast cancer with factorization method: SPIONs as contrast agent, Med. Phys., 47 (2020), 3113–3122. https://doi.org/10.1002/mp.14156 doi: 10.1002/mp.14156
![]() |
[28] |
B. Harrach, J. K. Seo, E. J. Woo, Factorization method and its physical justification in frequency-difference electrical impedance tomography, IEEE T. Biomed. Eng., 29 (2010), 1918–1926. https://doi.org/10.1109/tmi.2010.2053553 doi: 10.1109/tmi.2010.2053553
![]() |
[29] |
H. F. Alqadah, A compressive multi-frequency linear sampling method for underwater acoustic imaging, IEEE T. Image Process., 25 (2016), 2444–2455. https://doi.org/10.1109/TIP.2016.2548243 doi: 10.1109/TIP.2016.2548243
![]() |
[30] |
M. G. Aram, M. Haghparast, M. S. Abrishamian, A. Mirtaheri, Comparison of imaging quality between linear sampling method and time reversal in microwave imaging problems, Inverse Probl. Sci. Eng., 24 (2016), 1347–1363. https://doi.org/10.1080/17415977.2015.1104308 doi: 10.1080/17415977.2015.1104308
![]() |
[31] |
H. Ammari, J. Garnier, H. Kang, M. Lim, K. Sølna, Multistatic imaging of extended targets, SIAM J. Imag. Sci., 5 (2012), 564–600. https://doi.org/10.1137/10080631X doi: 10.1137/10080631X
![]() |
[32] |
L. Borcea, G. Papanicolaou, F. G. Vasquez, Edge illumination and imaging of extended reflectors, SIAM J. Imag. Sci., 1 (2008), 75–114. https://doi.org/10.1137/07069290X doi: 10.1137/07069290X
![]() |
[33] |
W. K. Park, On the identification of small anomaly in microwave imaging without homogeneous background information, AIMS Math., 8 (2023), 27210–27226. https://doi.org/10.3934/math.20231392 doi: 10.3934/math.20231392
![]() |
[34] |
H. Ammari, J. Garnier, H. Kang, W. K. Park, K. Sølna, Imaging schemes for perfectly conducting cracks, SIAM J. Appl. Math., 71 (2011), 68–91. https://doi.org/10.1137/100800130 doi: 10.1137/100800130
![]() |
[35] |
W. K. Park, Multi-frequency subspace migration for imaging of perfectly conducting, arc-like cracks in full- and limited-view inverse scattering problems, J. Comput. Phys., 283 (2015), 52–80. https://doi.org/10.1016/j.jcp.2014.11.036 doi: 10.1016/j.jcp.2014.11.036
![]() |
[36] |
W. K. Park, Shape identification of open sound-hard arcs without priori information in limited-view inverse scattering problem, Comput. Math. Appl., 128 (2022), 55–68. https://doi.org/10.1016/j.camwa.2022.10.010 doi: 10.1016/j.camwa.2022.10.010
![]() |
[37] |
W. K. Park, Fast location search of small anomaly by using microwave, Int. J. Appl. Electromagn. Mech., 59 (2019), 1505–1510. https://doi.org/10.3233/JAE-171107 doi: 10.3233/JAE-171107
![]() |
[38] |
W. K. Park, Real-time microwave imaging of unknown anomalies via scattering matrix, Mech. Syst. Signal Proc., 118 (2019), 658–674. https://doi.org/10.1016/j.ymssp.2018.09.012 doi: 10.1016/j.ymssp.2018.09.012
![]() |
[39] |
W. K. Park, Real-time detection of small anomaly from limited-aperture measurements in real-world microwave imaging, Mech. Syst. Signal Proc., 171 (2022), Article No. 108937. https://doi.org/10.1016/j.ymssp.2022.108937 doi: 10.1016/j.ymssp.2022.108937
![]() |
[40] |
S. H. Son, H. J. Kim, K. J. Lee, J. Y. Kim, J. M. Lee, S. I. Jeon, et al., Experimental measurement system for 3–6GHz microwave breast tomography, J. Electromagn. Eng. Sci., 15 (2015), 250–257. https://doi.org/10.5515/JKIEES.2015.15.4.250 doi: 10.5515/JKIEES.2015.15.4.250
![]() |
[41] |
S. H. Son, K. J. Lee, W. K. Park, Real-time tracking of moving objects from scattering matrix in real-world microwave imaging, AIMS Math., 9 (2024), 13570–13588. https://doi.org/10.3934/math.2024662 doi: 10.3934/math.2024662
![]() |
[42] |
S. H. Son, N. Simonov, H. J. Kim, J. M. Lee, S. I. Jeon, Preclinical prototype development of a microwave tomography system for breast cancer detection, ETRI J., 32 (2010), 901–910. https://doi.org/10.4218/etrij.10.0109.0626 doi: 10.4218/etrij.10.0109.0626
![]() |
[43] |
S. Kang, W. K. Park, S. H. Son, A qualitative analysis of the bifocusing method for a real-time anomaly detection in microwave imaging, Comput. Math. Appl., 137 (2023), 93–101. https://doi.org/10.1016/j.camwa.2023.02.017 doi: 10.1016/j.camwa.2023.02.017
![]() |
[44] |
K. J. Lee, S. H. Son, W. K. Park, A real-time microwave imaging of unknown anomaly with and without diagonal elements of scattering matrix, Results Phys., 17 (2020), Article No. 103104. https://doi.org/10.1016/j.rinp.2020.103104 doi: 10.1016/j.rinp.2020.103104
![]() |
[45] |
W. K. Park, On the application of orthogonality sampling method for object detection in microwave imaging, IEEE T. Antenn. Propag., 71 (2023), 934–946. https://doi.org/10.1109/TAP.2022.3220033 doi: 10.1109/TAP.2022.3220033
![]() |
[46] |
S. H. Son, K. J. Lee, W. K. Park, Application and analysis of direct sampling method in real-world microwave imaging, Appl. Math. Lett., 96 (2019), 47–53. https://doi.org/10.1016/j.aml.2019.04.016 doi: 10.1016/j.aml.2019.04.016
![]() |
[47] |
M. Slaney, A. C. Kak, L. E. Larsen, Limitations of imaging with first-order diffraction tomography, IEEE T. Microw. Theory, 32 (1984), 860–874. https://doi.org/10.1109/TMTT.1984.1132783 doi: 10.1109/TMTT.1984.1132783
![]() |
[48] | D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Problems, vol. 93 of Mathematics and Applications Series, Springer, New York, 1998. https://doi.org/10.1007/978-3-030-30351-8 |
[49] |
L. J. Landau, Bessel functions: monotonicity and bounds, J. London Math. Soc., 61 (2000), 197–215. https://doi.org/10.1112/S0024610799008352 doi: 10.1112/S0024610799008352
![]() |
[50] |
M. H. Ding, H. Liu, G. H. Zheng, On inverse problems for several coupled PDF systems arising in mathematical biology, J. Math. Biology, 87 (2023), Article No. 86. https://doi.org/10.1007/s00285-023-02021-4 doi: 10.1007/s00285-023-02021-4
![]() |
[51] |
H. Liu, C. W. K. Lo, Determining a parabolic system by boundary observation of its non-negative solutions with biological applications, Inverse Probl., 40 (2024), Article No. 025009. https://doi.org/10.1088/1361-6420/ad149f doi: 10.1088/1361-6420/ad149f
![]() |
[52] |
Y. Yin, W. Yin, P. Meng, H. Liu, The interior inverse scattering problem for a two-layered cavity using the Bayesian method, Inverse Probl. Imag., 16 (2022), 673–690. https://doi.org/10.3934/ipi.2021069 doi: 10.3934/ipi.2021069
![]() |
1. | Erdal Bas, Funda Metin Turk, Ramazan Ozarslan, Ahu Ercan, Spectral data of conformable Sturm–Liouville direct problems, 2021, 11, 1664-2368, 10.1007/s13324-020-00428-6 | |
2. | Tom Cuchta, Dallas Freeman, Discrete Polylogarithm Functions, 2023, 84, 1338-9750, 19, 10.2478/tmmp-2023-0012 | |
3. | B. Shiri, Y. Guang, D. Baleanu, Inverse problems for discrete Hermite nabla difference equation, 2025, 33, 2769-0911, 10.1080/27690911.2024.2431000 | |
4. | Muhammad Sulthan Zacky, Heru Sukamto, Lila Yuwana, Agus Purwanto, Eny Latifah, The performance of space-fractional quantum carnot engine, 2025, 100, 0031-8949, 025306, 10.1088/1402-4896/ada9de |
x(t) | μ=0.3 | μ=0.35 | μ=0.4 | μ=0.45 | μ=0.5 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.612 | 0.714 | 1.123 | 0.918 | 1.020 |
x(3) | 0.700 | 0.900 | 1.515 | 1.370 | 1.641 |
x(5) | 0.881 | 1.336 | 2.402 | 2.747 | 3.773 |
x(7) | 1.009 | 1.740 | 3.352 | 4.566 | 7.031 |
x(9) | 1.099 | 2.100 | 4.332 | 6.749 | 11.461 |
x(12) | 1.190 | 2.570 | 5.745 | 10.623 | 20.450 |
x(15) | 1.249 | 2.975 | 6.739 | 15.149 | 32.472 |
x(16) | 1.264 | 3.098 | 7.235 | 16.793 | 37.198 |
x(18) | 1.289 | 3.330 | 8.233 | 20.279 | 47.789 |
x(20) | 1.309 | 3.544 | 9.229 | 24.021 | 59.967 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 7.37∗10−17 | 4.41∗10−17 | 5.77∗10−17 |
x(3) | −0.131 | −0.057 | −0.088 |
x(5) | −0.123 | −0.018 | −0.049 |
x(7) | −0.080 | −0.006 | −0.021 |
x(9) | −0.050 | −0.003 | −0.011 |
x(12) | −0.028 | −0.001 | −0.005 |
x(15) | −0.017 | −0.0008 | −0.003 |
x(16) | −0.015 | −0.0006 | −0.0006 |
x(18) | −0.012 | −0.0005 | −0.002 |
x(20) | −0.010 | −0.0003 | −0.001 |
x(t) | λ=0.1 | λ=0.11 | λ=0.12 |
x(1) | 1 | 1 | 1 |
x(2) | 1 | 1.025 | 1.052 |
x(3) | 1.668 | 1.751 | 1.841 |
x(5) | 3.876 | 4.216 | 4.595 |
x(7) | 7.243 | 8.107 | 9.095 |
x(9) | 11.941 | 13.707 | 12.130 |
x(12) | 22.045 | 26.197 | 25.237 |
x(15) | 36.831 | 45.198 | 46.330 |
x(16) | 43.042 | 53.369 | 55.687 |
x(18) | 57.766 | 73.092 | 78.795 |
x(20) | 76.055 | 98.154 | 127.306 |
x(t) | μ=0.3 | μ=0.35 | μ=0.4 | μ=0.45 | μ=0.5 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.612 | 0.714 | 1.123 | 0.918 | 1.020 |
x(3) | 0.700 | 0.900 | 1.515 | 1.370 | 1.641 |
x(5) | 0.881 | 1.336 | 2.402 | 2.747 | 3.773 |
x(7) | 1.009 | 1.740 | 3.352 | 4.566 | 7.031 |
x(9) | 1.099 | 2.100 | 4.332 | 6.749 | 11.461 |
x(12) | 1.190 | 2.570 | 5.745 | 10.623 | 20.450 |
x(15) | 1.249 | 2.975 | 6.739 | 15.149 | 32.472 |
x(16) | 1.264 | 3.098 | 7.235 | 16.793 | 37.198 |
x(18) | 1.289 | 3.330 | 8.233 | 20.279 | 47.789 |
x(20) | 1.309 | 3.544 | 9.229 | 24.021 | 59.967 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 7.37∗10−17 | 4.41∗10−17 | 5.77∗10−17 |
x(3) | −0.131 | −0.057 | −0.088 |
x(5) | −0.123 | −0.018 | −0.049 |
x(7) | −0.080 | −0.006 | −0.021 |
x(9) | −0.050 | −0.003 | −0.011 |
x(12) | −0.028 | −0.001 | −0.005 |
x(15) | −0.017 | −0.0008 | −0.003 |
x(16) | −0.015 | −0.0006 | −0.0006 |
x(18) | −0.012 | −0.0005 | −0.002 |
x(20) | −0.010 | −0.0003 | −0.001 |
x(t) | λ=0.1 | λ=0.11 | λ=0.12 |
x(1) | 1 | 1 | 1 |
x(2) | 1 | 1.025 | 1.052 |
x(3) | 1.668 | 1.751 | 1.841 |
x(5) | 3.876 | 4.216 | 4.595 |
x(7) | 7.243 | 8.107 | 9.095 |
x(9) | 11.941 | 13.707 | 12.130 |
x(12) | 22.045 | 26.197 | 25.237 |
x(15) | 36.831 | 45.198 | 46.330 |
x(16) | 43.042 | 53.369 | 55.687 |
x(18) | 57.766 | 73.092 | 78.795 |
x(20) | 76.055 | 98.154 | 127.306 |