Research article Special Issues

Solutions for gauged nonlinear Schrödinger equations on $ {\mathbb R}^2 $ involving sign-changing potentials

  • Received: 22 May 2024 Revised: 19 June 2024 Accepted: 25 June 2024 Published: 02 July 2024
  • MSC : 35J85, 47J30, 49J52

  • This study focused on establishing the existence and multiplicity of solutions for gauged nonlinear Schrödinger equations set on the plane with sign-changing potentials. Our findings contribute to the extension of recent advancements in this area of research. Initially, we examined scenarios where the potential function $ V $ is lower-bounded and the function space has a compact embedding into Lebesgue spaces. Subsequently, we addressed more complex cases characterized by a sign-changing potential $ V $ and a function space that fails to compactly embed into Lebesgue spaces. The proofs of our results are based on the Trudinger-Moser inequality, the application of variational methods, and the utilization of Morse theory.

    Citation: Ziqing Yuan, Jing Zhao. Solutions for gauged nonlinear Schrödinger equations on $ {\mathbb R}^2 $ involving sign-changing potentials[J]. AIMS Mathematics, 2024, 9(8): 21337-21355. doi: 10.3934/math.20241036

    Related Papers:

  • This study focused on establishing the existence and multiplicity of solutions for gauged nonlinear Schrödinger equations set on the plane with sign-changing potentials. Our findings contribute to the extension of recent advancements in this area of research. Initially, we examined scenarios where the potential function $ V $ is lower-bounded and the function space has a compact embedding into Lebesgue spaces. Subsequently, we addressed more complex cases characterized by a sign-changing potential $ V $ and a function space that fails to compactly embed into Lebesgue spaces. The proofs of our results are based on the Trudinger-Moser inequality, the application of variational methods, and the utilization of Morse theory.


    加载中


    [1] R. Jackiw, S. Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 64 (1990), 2969–2972. https://doi.org/10.1103/PhysRevLett.64.2969 doi: 10.1103/PhysRevLett.64.2969
    [2] R. Jackiw, S. Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500–3513. https://doi.org/10.1103/PhysRevD.42.3500 doi: 10.1103/PhysRevD.42.3500
    [3] C. Hagen, A new gauge theory without an elementary photon, Ann. Phys., 157 (1984), 342–359. https://doi.org/10.1016/0003-4916(84)90064-2 doi: 10.1016/0003-4916(84)90064-2
    [4] C. R. Hagen, Rotational anomalies without anyons, Phys. Rev. D, 31 (1985), 2135–2136. https://doi.org/10.1103/PhysRevD.31.2135 doi: 10.1103/PhysRevD.31.2135
    [5] C. O. Alves, Z. Yuan, L. Huang, Existence and multiplicity of solutions for discontinuous elliptic problems in $R^N$, Proc. Royal Soc. Edinburgh Sec. A, 151 (2021), 548–572. https://doi.org/10.1017/prm.2020.30 doi: 10.1017/prm.2020.30
    [6] R. Jackiw, Self-dual Chern-Simons solitons, In: K. Schmdgen, Mathematical Physics X: Proceedings of the Xth Congress on Mathematical Physics, Held at Leipzig, Germany, Springer, Berlin, Heidelberg, 1991. https://doi.org/10.1007/978-3-642-77303-7_15
    [7] J. Byeon, H. Huh, J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575–1608. https://doi.org/10.1016/j.jfa.2012.05.024 doi: 10.1016/j.jfa.2012.05.024
    [8] G. Li, X. Luo, W. Shuai, Sign-changing solutions to a gauged nonlinear Schrödinger equation, J. Math. Anal. Appl., 455 (2017), 1559–1578. https://doi.org/10.1016/j.jmaa.2017.06.048 doi: 10.1016/j.jmaa.2017.06.048
    [9] Z. Liu, Z. Ouyang, J. Zhang, Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation in $R^2$, Nonlinearity, 32 (2019), 3082–3111. https://doi.org/10.1088/1361-6544/ab1bc4 doi: 10.1088/1361-6544/ab1bc4
    [10] J. Zhang, X. Tang, F. Zhao, On multiplicity and concentration of solutions for a gauged nonlinear Schrödinger equation, Appl. Anal., 99 (2020), 2001–2012. https://doi.org/10.1080/00036811.2018.1553033 doi: 10.1080/00036811.2018.1553033
    [11] L. Shen, Zero-mass gauged Schrödinger equations with supercritical exponential growth, J. Differential Equations, 393 (2024), 204–237. https://doi.org/10.1016/j.jde.2024.02.020 doi: 10.1016/j.jde.2024.02.020
    [12] C. Zhang, Z. Liang, F. Li, Nodal solutions for gauged Schrödinger equation with nonautonomous asymptotically quintic nonlinearity, J. Geom. Anal., 34 (2024), 12. https://doi.org/10.1007/s12220-023-01454-z doi: 10.1007/s12220-023-01454-z
    [13] N. Zhang, X. Tang, S. Chen, Mountain-pass type solutions for the Chern-Simons-Schrödinger equation with zero mass potential and critical exponential growth, J. Geom. Anal., 33 (2023), 12. https://doi.org/10.1007/s12220-022-01046-3 doi: 10.1007/s12220-022-01046-3
    [14] T. Gou, Z. Zhang, Normalized solutions to the Chern-Simons-Schrödinger system, J. Funct. Anal., 280 (2021), 108894. https://doi.org/10.1016/j.jfa.2020.108894 doi: 10.1016/j.jfa.2020.108894
    [15] W. Xie, C. Chen, Sign-changing solutions for the nonlinear Chern-Simons-Schrödinger equations, Appl. Anal., 99 (2020), 880–898. https://doi.org/10.1080/00036811.2018.1514020 doi: 10.1080/00036811.2018.1514020
    [16] T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on ${\mathbb R}^N$, Comm. Partial Differential Equations, 20 (1995), 1725–1741. https://doi.org/10.1080/03605309508821149 doi: 10.1080/03605309508821149
    [17] S. Chen, J. Liu, X. Wu, Existence and multiplicity of nontrivial solutions for a class of modified nonlinear fourth-order elliptic equations on ${\mathbb R}^N$, Appl. Math. Comput., 248 (2014), 593–601. https://doi.org/10.1016/j.amc.2014.10.021 doi: 10.1016/j.amc.2014.10.021
    [18] B. Hua, R. Li, L. Wang, A class of semilinear elliptic equations on groups of polynomial growth, J. Differential Equations, 363 (2023), 327–349. https://doi.org/10.1016/j.jde.2023.03.025 doi: 10.1016/j.jde.2023.03.025
    [19] G. Cerami, D. Passaseo, S. Solimini, Infinitely many positive solutions to some scalar field equations with nonsymmetric coefficients, Commun. Pure Appl. Math., 66 (2013), 372–413. https://doi.org/10.1002/cpa.21410 doi: 10.1002/cpa.21410
    [20] R. C. López, G. H. Sun, O. Camacho-Nieto, C. Yez-Mrquez, S. H. Dong, Analytical traveling-wave solutions to a generalized Gross–Pitaevskii equation with some new time and space varying nonlinearity coefficients and external fields, Phys. Lett. A, 381 (2017), 2978–2985. https://doi.org/10.1016/j.physleta.2017.07.012 doi: 10.1016/j.physleta.2017.07.012
    [21] S. Biagi, E. Vecchi, S. Dipierro, E. Valdinoci, Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. Royal Soc. Edinburgh Sec. A, 151 (2021), 1611–1641.
    [22] B. Cheng, X. Tang, High energy solutions of modified quasilinear fourth-order elliptic equations with sign-changing potential, Comput. Math. Appl., 73 (2017), 27–36. https://doi.org/10.1016/j.camwa.2016.10.015 doi: 10.1016/j.camwa.2016.10.015
    [23] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Vol. 65, CBMS Regional Conference Series in Mathematics, 1986. https://doi.org/10.1090/cbms/065
    [24] S. Liu, J. Zhou, Standing waves for quasilinear Schrödinger-Poisson systems with indefinite potentials, J. Differential Equations, 265 (2018), 3970–3987. https://doi.org/10.1016/j.jde.2018.05.024 doi: 10.1016/j.jde.2018.05.024
    [25] S. Liu, Existence of solutions to a superlinear p-Laplacian equation, Electron. J. Differential Equations, 2001 (2001), 1–6.
    [26] Z. Q. Wang, On a superlinear elliptic equation, AIHPC, 8 (1991), 43–57. https://doi.org/10.1016/S0294-1449(16)30276-1 doi: 10.1016/S0294-1449(16)30276-1
    [27] P. H. Rabinowitz, Minimax methods and their application to partial differential equations, In: S. S. Chern, Seminar on nonlinear partial differential equations, Mathematical Sciences Research Institute Publications, Vol. 2, New York: Springer, 1984,307–320. https://doi.org/10.1007/978-1-4612-1110-5_16
    [28] S. J. Li, M. Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl., 189 (1995), 6–32. https://doi.org/10.1006/jmaa.1995.1002 doi: 10.1006/jmaa.1995.1002
    [29] Z. Liu, V. D. Radulescu, Z. Yuan, Concentration of solutions for fractional Kirchhoff equations with discontinuous reaction, Z. Angew. Math. Phys., 73 (2022), 211. https://doi.org/10.1007/s00033-022-01849-y doi: 10.1007/s00033-022-01849-y
    [30] Y. Ding, Variational methods for strongly indefinite problems, Scientia Sinica Mathematica, 47 (2017), 779-810. https://doi.org/10.1360/N012016-00164 doi: 10.1360/N012016-00164
    [31] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [32] J. Q. Liu, The Morse index of a saddle point, J. Syst. Sci. Math. Sci., 2 (1989), 32–39.
    [33] R. Karasev, A. Skopenkov, Some converses to intrinsic linking theorems, Discrete Comput. Geom., 70 (2023), 921–930. https://doi.org/10.1007/s00454-023-00505-0 doi: 10.1007/s00454-023-00505-0
    [34] J. M. Bezerra do Ó, E. Medeiros, U. Severo, A nonhomogeneos elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286–304. https://doi.org/10.1016/j.jmaa.2008.03.074 doi: 10.1016/j.jmaa.2008.03.074
    [35] Z. Yuan, J. Yu, Existence of solutions for Dirichlet elliptic problems with discontinuous nonlinearity, Nonlinear Anal., 197 (2020), 111848. https://doi.org/10.1016/j.na.2020.111848 doi: 10.1016/j.na.2020.111848
    [36] G. Li, X. Luo, W. Shuai, Sign-changing solutions to a gauged nonlinear Schrödinger equation, J. Math. Anal. Appl., 455 (2017), 1550–1578. https://doi.org/10.1016/j.jmaa.2017.06.048 doi: 10.1016/j.jmaa.2017.06.048
    [37] S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1–9. https://doi.org/10.1007/s00526-011-0447-2 doi: 10.1007/s00526-011-0447-2
    [38] T. Bartsch, S. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal., 28 (1997), 419–441. https://doi.org/10.1016/0362-546X(95)00167-T doi: 10.1016/0362-546X(95)00167-T
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(63) PDF downloads(16) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog