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1. Introduction

Jackiw and Pi [1,2] introduced a nonrelativistic model in which the nonlinear Schrödinger dynamics
are coupled with the Chern-Simons gauge terms as follows:

iD0ϕ + (D1D1 + D2D2)ϕ = −λ|ϕ|p−2ϕ,

∂0A1 − ∂1A0 = −Im(ϕ̄D2ϕ),
∂0A2 − ∂2A0 = Im(ϕ̄D1ϕ),
∂1A2 − ∂2A1 = −

1
2 |ϕ|

2,

(1.1)

where i denotes the imaginary unit, ∂0 =
∂
∂t , ∂1 =

∂
∂x1

, ∂2 =
∂
∂x2

for (t, x1, x2) ∈ R1+2, ϕ : R1+2 → C is
the complex scalar field, Aµ : R1+2 → R is the gauge field, Dµ = ∂µ + iAµ is the covariant derivative
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for µ = 0, 1, 2, and λ is a positive constant representing the strength of interaction potential. This
system is very useful in studying the high-temperature superconductor, Aharovnov-Bohm scattering,
and fractional quantum Hall effect. For more information on system (1.1), we refer the reader to [3–5].
System (1.1) is invariant under the following transformation

ϕ→ ϕeiχ, Aµ → Aµ − ∂µχ, (1.2)

where χ : R1+2 → R is an arbitrary C∞ function; this system was studied in [6]. The existence of
stationary states to system (1.1) with general p > 2 has been studied in [7] by using the ansatz

ϕ(t, x) = u(|x|)eiωt, A0(x, t) = A0(|x|),

A1(x, t) =
x2

|x|
H(|x|), A2(x, t) = −

x1

|x|
h(|x|).

(1.3)

Then the ansatz (1.3) satisfies the Coulomb gauge condition ∂1A1+∂2A2 = 0. Inserting (1.3) into (1.1),
the authors in [7] found that u satisfies the following nonlocal elliptic equation

−∆u + ωu +
(
ξ +

∫ +∞

|x|

h(s)
s

u2(s)ds
)

u +
h2(|x|)
|x|2

u = λ|u|p−2u in R2, (1.4)

where h(s) = 1
2

∫ s

0
τu2(τ)dτ, ξ is a constant, ω > 0.

As mentioned in [7], taking χ = ct in the gauge invariance (1.1), we derive another stationary
solution for any given stationary solution; the functions A1(x), A2(x), u(x) are preserved, and

ω→ ω + c, A0(x)→ A0(x) − c,

which means that the constant ω + ξ is a gauge invariant of the stationary solutions of the problem.
Thus, we can choose ξ = 0 in what follows, i.e.,

lim
|x|→∞

A0(x) = 0,

which was indeed assumed in [6]. Under this case, (1.1) turns into

−∆u + ωu +
(∫ +∞

|x|

h(s)
s

u2(s)ds +
h2(|x|)
|x|2

)
u = λ|u|p−2u in R2. (1.5)

In [8], by combing the constraint minimization method and quantitative deformation lemma, the
authors proved that problem (1.5) possesses at least one energy sign-changing solution. In [9], the
authors treated the problem (1.5) via a perturbation approach and the method of invariant sets of
descending flow in H1

rad(R2) for p ∈ (4, 6). They overcame the difficulty of the boundedness of
PS-sequences and proved the existence and multiplicity of sign-changing solutions. More results on
nonlinear Chern-Simons-Schrödinger equations can be found in [10–15] and references therein.

In this paper, when λ = 1, we will replace |u|p−2u and ω(x) of problem (1.5) with a more general
nonlinearity f (x, u) and sign-changing potential V(x), respectively, as follows:−∆u + V(x)u + κ

(
h2(|x|)
|x|2 +

∫ +∞
|x|

h(s)
s u2(x)ds

)
= f (x, u) in R2,

u(x) = u(|x|) ∈ H1(R2),
(1.6)

where V ∈ C(R2,R) and f ∈ (R2 × R,R). The hypothesis on V is the following.
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(V1) V ∈ C(RN ,R) and inf V(x) > −∞. Furthermore, there exists a constant a0 > 0 such that

lim
|y|→∞

meas{x ∈ RN : |x − y| ≤ a0,V(x) ≤ K} = 0, ∀K > 0.

Remark 1.1. The hypothesis of (V1) was first introduced by Bartsch and Wang [16], where inf V(x) >
0 was required. By virtue of (V1), we know that the potential V(x) is allowed to be sign-changing.
Furthermore, lots of papers give the following hypothesis.
(Ṽ): V ∈ C(RN ,R) satisfies inf V(x) ≥ V0 > 0 and lim|x|→∞ V(x) = +∞ (see [17]).

Under this condition, their working space can compactly embed into Lebesgue spaces. Then, we
can see that the condition (V1) is much weaker than (Ṽ).

From hypothesis (V1) we see that V ∈ C(RN) is bounded from below. Then, we can take a constant
W0 > 0 such that V̂(x) = V(x) + W0 ≥ 1 for x ∈ RN and set l(x, u) = f (x, u) + W0u. Thus, (1.6) is
equivalent to the following equation−∆u + V̂(x)u + κ

(
h2(|x|)
|x|2 +

∫ +∞
|x|

h(s)
s u2(x)ds

)
= l(x, u) in R2,

u(x) = u(|x|) ∈ H1(R2).
(1.7)

In order to give our main results, we make the following hypotheses on the function l(x, u) and its
primitive function L, and introduce our working space.

(l1) |l(x, t)| ≤ C1|t| +C2(e4πt2 − 1) for all (x, t) ∈ R2 × R;
(l2) lim|t|→∞

L(x,t)
t6 = +∞ and lim|t|→0

l(x,t)
t = 0 for all x ∈ R2;

(l3) tl(x, t) − 6L(x, t) ≥ 0 for all (x, t) ∈ R2 × R;
(l4) There are constants p > 6 and Cp > 0 such that l(x, t) ≥ Cptp−1 for all (x, t) ∈ R2 × [0,+∞), where

Cp > 3
p−2

2

(
p−2

p

) p−2
2 S p

p.

Let H = H1
rad(R2) be the standard Sobolev space. Given the linear subspace

E =
{

u ∈ H :
∫
R2

V̂(x)u2 < ∞

}
,

we endow with the inner product

⟨u, v⟩ =
∫
R2

(∇u · ∇v + V̂(x)uv)

and the corresponding norm ∥u∥ = ⟨u, u⟩
1
2 . Then, (E, ∥ · ∥) is a Hilbert space that will be denoted by E

for simplicity.
If (V1) holds, from a well-known compact embedding theorem established by Bartsch-Wang [16],

we have that the embedding E ↪→ Lq(RN) is compact for q ∈ [2,+∞). It follows from the spectral
theory of self-adjoint compact operators that the eigenvalue problem

−∆u + V(x)u = λu, u ∈ E, (1.8)

has a sequence of eigenvalues

−∞ < λ1 ≤ λ2 ≤ · · · < λk < · · · , λk → +∞.
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Every λk has been repeated in the sequence according to its finite multiplicity. Denote by φk the
eigenfunction of λk with |φk|2 = 1, where | · |r is the Lr-norm. The energy functional of problem (1.7) is

I(u) =
1
2

∫
R2

(|∇u|2 + V(x)u2)dx +
1
2
κ

∫
R2

u2

|x|2
h2(|x|)dx −

∫
R2

L(x, u)dx,

for simplicity, in what follows, denote by

B(u) :=
1
2

∫
R2

u2

|x|2
h2(|x|)dx, (1.9)

then B ∈ C1(E,R) and

⟨B′(u), v⟩ =
∫
R2

(
h2(|x|)
|x|2

+

∫ +∞

|x|

h(s)
s

u2(s)ds
)

u(x)v(x)dx.

For any u, v ∈ E, we have

⟨I′(u), v⟩ =
∫
R2

(∇u∇v + V(x)uv) + κ⟨B′(u), v⟩ −
∫
R2

l(x, u)v. (1.10)

Consequently, the critical points of I are weak solutions of problem (1.6).
If κ = 0, problem (1.6) does not depend on the Chern-Simons term any more; then, it becomes the

following Schrödinger equation:

−∆u + V(x)u = f (x, u) in R2. (1.11)

Problem (1.11) was extensively discussed by lots of authors since 1970, see [18–26] and references
therein. Comparing with the above equation, problem (1.6) is nonlocal, which means that it is not a
pointwise identity with the appearance of the Chern-Simons term(∫ +∞

|x|

h(s)
s

u2(s)ds +
h2(|x|)
|x|2

)
u.

Based on such a character, people call it a nonlocal problem and it is quite different from the usual
semilinear Schrödinger equation. The nonlocal term brings some mathematical difficulties and makes
this problem rough and particularly interesting. One of the main difficulties is to prove the boundedness
of PS-sequences if one tries to employ directly the mountain pass theorem to derive critical points of
I(u) in E. Furthermore, in order to find critical points of functionals with an indefinite quadratic part,
the commonly used method is the linking theorem. More precisely, let

Ω1 = {u ∈ X+ : ∥u∥ = ρ}, Ω2 = {u ∈ X−1 ⊕ R+φ : ∥u∥ ≤ R},

where φ ∈ X+ \ {0}. If I satisfies the PS-condition and for some 0 < ρ < R,

α = inf
Ω1

I > max
∂Ω2

I, (1.12)

then, from the linking Theorem [23, Theorem 5.3], it gives rise to a nontrivial critical of I. In order to
check (1.12), one usually needs to prove that I ≤ 0 on X−. However, since the integral

∫ +∞
|x|

h(s)
s u2(s)ds

AIMS Mathematics Volume 9, Issue 8, 21337–21355.



21341

in our energy functional is positive for u , 0, it seems impossible to derive I |X−≤ 0 even if we suppose
F(x, u) ≥ 0 for all (x, u) ∈ RN × R. Thus, unlike many other indefinite problems (see e.g., [29,30,37]),
the usual linking theorem is not suitable for our case. Fortunately, we notice that the functional I has
a local linking at the origin. Thus, we can combine the local linking theorem [28, 33] with infinite
dimensional Morse theory [35] to prove our main results. Moreover, to the best of our knowledge,
there have been few results on the Chern-Simons-Schrödinger system with critical exponential growth
until now, that is, it behaves like exp(α|u|2) as |u| → ∞. More precisely, there is α0 > 0 such that

lim
|s|→∞

| f (x, s)|
eαs2 = 0, ∀α > α0, and lim

|s|→∞

| f (x, s)|
eαs2 = +∞, ∀α < α0.

Then, in order to discuss this class of problems, the Trudinger-Moser inequalities play an important
role in overcoming the difficulty of the critical case.

Our main results are the following:

Theorem 1.1. If (V1), (l1)–(l4) hold, and 0 is not an eigenvalue of (1.8), then problem (1.6) has a
nontrivial solution.

Theorem 1.2. If (V1), (l1)–(l4) hold, f (x, ·) is odd for all x ∈ R2 and 0 is not an eigenvalue of (1.8),
then problem (1.6) has a sequence of solutions {un} such that I(un)→ +∞.

Next, we give an other common hypothesis on the potential V .

(V2) V ∈ C(RN ,R) is a bounded function such that the quadratic form A : E → R,

A (u) =
1
2

∫ (
|∇u|2 + V(x)u2

)
(1.13)

is non-degenerate and the negative space of A is finite-dimensional.

It is easy to see that, under the hypothesis (V2), the working space E cannot be compactly embedded
into Lebesgue space Lq(R2) for [2,+∞). In order to better discuss the problem (1.6), without loss of
generality, we set f (x, u) = |u|p−2u, κ = 1, and p > 6, then problem (1.6) turns into−∆u + V(x)u +

(
h2(|x|)
|x|2 +

∫ +∞
|x|

h(s)
s u2(x)ds

)
= |u|p−2u in R2,

u(x) = u(|x|) ∈ H1(R2).
(1.14)

Although we losse the compactness of embedding, under the condition f (x, u) = |u|p−2u, we still have
the following result.

Theorem 1.3. Suppose that 0 is not an eigenvalue of (1.8), p > 6, and (V2) holds, the problem (1.14)
possesses a nontrivial solution u ∈ E.

Remark 1.2. In the literature [36], by combining the constraint minimization method with the
quantitative deformation lemma, the authors obtained at least one least energy sign-changing solution
for Eq (1.5) under some assumptions. However, our Theorems 1.1–1.3 extend beyond these constraints.
We consider ω not merely as a constant but as a variable function that changes sign, and we
replace |u|p−1u with f (x, u), which means that there are lots of functions that satisfy our hypotheses.
Furthermore, Theorem 1.2 demonstrates the existence of infinitely many solutions. This broader scope
of our study indicates a wider applicability and a more comprehensive understanding of the equations
under consideration.
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This paper is structured as follows: Section 2 commences with a comprehensive exposition of the
foundational concepts and preliminary notions pertinent to our investigation. Subsequently, Section 3
delineates the principal theorems, which are rigorously established through the adept application of
Morse theory and variational techniques.

2. Preliminaries

First, we give some notations. (X, ∥ · ∥) denotes a (real) Banach space and (X∗, ∥ · ∥∗) denotes
its topological dual. C and Ci(i = 1, 2, ...) denote estimated constants (the concrete values may be
different from one to another one). ‘→’ means the stronger convergence in X and ‘⇀’ stands for the
weak convergence in X. |u|p denotes the norm of Lp(R2).

Now, we define the negative space of A , defined in (1.8),

E− = span{φ1, ..., φk}.

Have E+ be the orthogonal complement of E+, thus E = E+ ⊕ E− and there is a constant δ > 0 such
that

±A (u) ≥ δ∥u∥2 f or u ∈ E±. (2.1)

In the following, we give some properties, which are very important in proving our main results.

Lemma 2.1. (see [34]) Set α > 0 and k > 1. Then, for each β > k, there exists a positive constant
C = C(β) such that for all t ∈ R,

(eαt2 − 1)k ≤ C(eαβt2 − 1).

Moreover, if u ∈ H1(R2), then (eαt2 − 1)k ∈ L1(R2).

Lemma 2.2. (see [34]) Assume u ∈ H1(R2), α > 0, q > 0 and ∥u∥ ≤ M with αM2 < 4π, then there is
C = C(α,M, q) > 0 such that ∫

R2
(eαu2

− 1)|u|q ≤ C∥v∥q.

Lemma 2.3. (see [7]) If un ⇀ u in H1
rad(R2) as n→ +∞, then

(i) limn→+∞ B(un) = B(u);
(ii) limn→+∞⟨B′(un), un⟩ = ⟨B′(u), u⟩;

(iii) limn→+∞⟨B′(un), v⟩ = ⟨B′(u), v⟩.

Furthermore, for any u ∈ H1
rad(R2),

(iv) B(u) = 1
2

∫
R2 u2

∫ ∞
|x|

h(s)
s u2(s)dsdx;

(v) ⟨B′(u), u⟩ = 6B(u).

Lemma 2.4. For any u ∈ H1
rad(R2) and x ∈ R2, 0 ≤ B(u) ≤ C∥u∥6.

Proof. For any p > 2 and x ∈ R2, one has

h(|x|) =
∫
|y|≤|x|

1
4π

u2(y)dy ≤ cp|x|
2(p−2)

p |u|2p.
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Hence, if |x| ≤ 1, then for any p ∈ (2, 4) and p′ ∈ (4,+∞),∫ ∞

|x|

h(s)
s

u2(s)ds =
∫ 1

|x|

h(s)
s

u2(s)ds +
∫ ∞

1

h(s)
s

u2(s)ds

≤ C∥u∥24

∫ 1

|x|
u2(s)ds +C∥u∥2p

∫ ∞

1
s

p−4
p u2(s)ds

≤ C∥u∥24

(∫ 1

|x|
s
−2

p′−2 ds
) p′−2

p′
(∫ 1

|x|
|u(s)|p

′

sds
) 2

p′

+C∥u∥2p

(∫ ∞

1
s

p−8
p ds

) 1
2
(∫ ∞

1
|u(s)|4sds

) 1
2

≤ ∥u∥24(Cp′∥u∥2p′ +Cp∥u∥2p).

If |x| > 1, the above inequality is also true.
Consequently,

B(u) =
1
2

∫
R2

u2
∫ ∞

|x|

h(s)
s

u2(s)dsdx

≤
1
2
∥u∥24(Cp′∥u∥2p′ +Cp∥u∥2p)

∫
R2

u2dx

≤ C∥u∥6. □

Set X be a Banach space J : X → R be a C1-functional, u is an isolated critical point of J and
J(u) = c. Then

Ci(J, u) := Hi(Jc, Jc \ {0}), i ∈ N = {0, 1, 2, ...},

is called the i-th critical group of J at u, where Jc := J−1(−∞, c] and H∗ denotes the singular homology
with coefficients in Z.

If J satisfies the (PS)-condition and the critical values of J are bounded from below by Θ, then,
from Bartsch and Li [38], we give the i-th critical group of J at infinity by

Ci(J,∞) := Hi(X, JΘ), i ∈ N,

since we know that the homology on the right-hand side does not depend on the choice of Θ.

Proposition 2.1. (see [38]) If J ∈ C1(X,R) satisfies the PS-condition, and Ck(J, 0) , Ck(J,∞) for some
k ∈ N, then J has a nonzero critical point.

Proposition 2.2. (see [32]) Assume that J ∈ C1(X,R) has a local linking at 0 with respect to the
decomposition X = Y ⊕ Z, i.e., for some ϵ > 0,

J(u) ≤ 0 f or u ∈ Y ∩ Bϵ ,

J(u) > 0 f or u ∈ (Z \ {0}) ∩ Bϵ ,

where Bϵ = {u ∈ X : ∥u∥ ≤ ϵ}. If k = dimY < ∞, then Ck(J, 0) , 0.

The following Lemma shows that I has a local linking at 0.
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Lemma 2.5. If (V1), (l1), and (l2) hold, 0 is not an eigenvalue of (1.8), then I has a local linking at 0
with respect to the decomposition E = E− ⊕ E+.

Proof. From (l1)-(l2), for all ϵ > 0, q > 2, there exists Cϵ > 0 such that

|L(x, u)| ≤ ϵu2 +Cϵ(exp(4πu2) − 1)|u|q f or all x ∈ R2. (2.2)

Thus, by Lemma 2.4 and Lemma 2.2, we have that as ∥u∥ → 0,

B(u) = o(∥u∥2),
∫
R2

L(x, u) = o(∥u∥2).

Then, when ∥u∥ → 0,

I(u) = A (u) + κB(u) −
∫
R2

L(x, u) = A (u) + o(∥u∥2).

From this equality and (2.1), one can derive the conclusion of this lemma. □

3. Proof of the main results

Remember that I satisfies the (PS )c condition, if any sequence {un} ⊂ E along with I(un) → c and
I′(un)→ 0 as n→ ∞ has a convergent subsequence. If I satisfies (PS )c condition for all c ∈ R, then, I
satisfies the (PS) condition.

Lemma 3.1. Assume that (l1) and (l4) hold. Then there is λ∗0 > 0 such that for any 0 < λ < λ∗0, c < 1
3 .

Proof. Fix a positive function up ∈ E,

S p = inf
u∈E\{0}

(
∫
R2(|∇up|

2 + |up|
2))

1
2

(
∫
R2 |up|

p)
1
p

.

It is easy to obtain that

max
t≥0

I0(tup) ≤ max
t≥0

{
t2

2

∫
R2

(|∇up|
2 + |up|

2) −
Cp

p
tp

∫
R2
|up|

p

}

=
p − 2
2p

S
2p
p−2
p

C
2

p−2
p

,

where I0(u) = A (u) −
∫
R2 L(x, u). Thus, from (l4), there exists κ∗0 > 0 such that for any 0 < κ < κ∗0, one

has

max
t≥0

I(tup) ≤
p − 2

p
S

2p
p−2
p

C
2

p−2
p

<
1
3
.

□

Lemma 3.2. Assume that (V1) and (l3) hold. If {un} is a (PS )c sequence of I, i.e., I(un)→ c, I′(un)→ 0
as n→ +∞, then {un} is bounded and ∥un∥ < 1.
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21345

Proof. From (l3), for n large enough, one has

6c + ϵ∥un∥ ≥ 6I(un) − I′(un)un

= 2∥un∥
2 +

∫
R2

(unl(x, un) − 6L(x, un))

≥ 2∥un∥
2,

where ϵn → 0. Then, this deduces the boundedness of {un}. According to Lemma 3.1, we infer that
∥un∥ ≤ 1. □

Lemma 3.3. Assume that (V1) and (l1)–(l3) hold. Then, any bounded PS-sequence of I has a strongly
convergent subsequence in E.

Proof. Let {un} ⊂ E be any bounded PS-sequence of I. Passing to a subsequence if necessary, one has

I(un)→ c, I′(un)→ 0 and sup
n
∥un∥ < +∞. (3.1)

Noting that the embedding
E ↪→ Lq(R2), 2 ≤ q < +∞

is compact, up to a subsequence if necessary, there exists u0 ∈ E such that

un ⇀ u0 in E,

un → u0 in Lq(R2)(2 ≤ q < +∞),
un(x)→ u0(x) a.e. in R2.

(3.2)

Set un = u0 + wn, then wn ⇀ 0 in E and wn → 0 in Lq(RN) for all q ∈ [2,+∞). It follows from
Brézis-Lieb lemma [32] that we have

∥un∥
2
E = ∥u0∥

2
E + ∥wn∥

2
E + on(1). (3.3)

In the following we prove that

lim
n→∞

∫
R2

l(x, un)u0 →

∫
R2

l(x, u0)u0. (3.4)

Indeed, since C∞0 (R2) is dense in E, for any ϵ > 0, there is ψ ∈ C∞0 (R2) such that ∥u0 − ψ∥ < ϵ. Note
that ∣∣∣∣∣ ∫

R2
l(x, un)u0 −

∫
R2

l(x, u0)u0

∣∣∣∣∣ ≤ ∣∣∣∣∣ ∫
R2

l(x, un)(u0 − ψ)
∣∣∣∣∣ + ∣∣∣∣∣ ∫

R2
l(x, u0)(u0 − ψ)

∣∣∣∣∣
+ ∥ψ∥∞

∫
suppψ
|l(x, un) − l(x, u0)|.

(3.5)

For the first integral, using |I′(un)(u0 − ψ)| ≤ ϵn∥u0 − ψ∥ with ϵn → 0 as n → ∞ and Lemma 2.3, we
derive ∣∣∣∣∣ ∫

R2
l(x, un)(u0 − ψ)

∣∣∣∣∣ ≤ ϵn∥u0 − ψ∥ + κ|⟨B′(un), u0 − ψ⟩|

+

∣∣∣∣∣ ∫
R2
|∇un∇(u0 − ψ)

∣∣∣∣∣
≤ ϵn∥u0 − ψ∥ + ∥un∥∥u0 − ψ∥ + κ|⟨B′(un), u0 − ψ⟩|

≤ C∥u0 − ψ∥ ≤ Cϵ
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for n large enough. Similarly, by I′(u0)(u0 − ψ) = 0, we derive that∣∣∣∣∣ ∫
R2

l(x, u0)(u0 − ψ)
∣∣∣∣∣ ≤ Cϵ.

Since limn→∞

∫
R2 l(x, un)ψ =

∫
R2 l(x, u0)ψ ∀ψ ∈ C∞0 (R2), we obtain

lim
n→∞

∣∣∣∣∣ ∫
R2

l(x, un)u0 −

∫
R2

l(x, u0)u0

∣∣∣∣∣ ≤ Cϵ.

Since ϵ is arbitrary, the above inequalities deduce that (3.4) is true. From (3.3) and Lemma 2.3, one
has

I′(un)un = ∥un∥
2 + κ⟨B′(un), u0⟩ −

∫
R2

l(x, un)un

= ∥u0∥
2 + ∥wn∥

2 + κ⟨B′(u0), u0⟩ −

∫
R2

l(x, u0)u0 −

∫
R2

l(x, un)wn + on(1)

= I′(u0)u0 + ∥wn∥
2 −

∫
R2

l(x, un)wn + on(1),

which means that
∥wn∥

2 =

∫
R2

l(x, un)wn + on(1).

It follows from Lemma 2.1 and Hölder inequality that∫
R2

l(x, un)wn ≤ C
∫
R2
|unwn| +C4

∫
R2

(e4πu2
n(x) − 1)|wn|

≤ C3|un|2|wn|2 +C4

(∫
R2

(e4πu2
n(x) − 1)s

) 1
s

|wn|s′

≤ C3|un|2|wn|2 +C4

(∫
R2

(e4πτu2
n(x) − 1)

) 1
s

|wn|s′

= C3|un|2|wn|2 +C4

(∫
R2

(e4πτ∥un∥
2 u2

n(x)
∥un∥2 − 1)

) 1
s

|wn|s′ ,

where s > 1, 1
s +

1
s′ = 1. From lim supn→∞ ∥un∥

2 = ς ≤ 3c < 1, we obtain ∥un∥ < 1 for n enough large.
Now, we choose τ > 1 and s close to 1 such that 4πτ∥un∥

2 < 4π. It follows from (3.2) that∫
R2

l(x, un)wn → 0

as n → ∞. Consequently, we have limn→∞ ∥wn∥ = 0, which means that un → u0 in E. This completes
the proof. □

Lemma 3.4. If (V1) and (l1)–(l3) hold, and 0 is not an eigenvalue of (1.8), then there exists A > 0 such
that if I(u) ≤ −A, then d

dt |t=1 I(tu) < 0.

Proof. Suppose this lemma is false. Then, we would have {un} ⊂ E such that I(un) ≤ −n, but

⟨I′(un), un⟩ =
d
dt

∣∣∣∣∣
t=1

I(tun) ≥ 0.
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Consequently, we have ∥un∥ → ∞ and

∥u+n ∥
2 − ∥u−n ∥

2 ≤ (∥u+n ∥
2 − ∥u−n ∥

2) +
∫
R2

(l(x, un)un − 6L(x, un))

≤ 6I(un) − ⟨I′(un), un⟩ ≤ −6n.
(3.6)

Set vn =
un
∥un∥

and v±n be the orthogonal projection of vn on E±. Then, passing to a subsequence, vn → v−

for some v− ∈ E as dimE− < ∞. If v−n , 0, then vn → v in E for some v ∈ E \ {0}. By (l2) and (l3) one
has

l(x, t)t
t6 ≥

6L(x, t)
t6 → +∞

as t → ∞. Set vn =
un
∥un∥

. Then meas({v , 0}) > 0. Hence,

1
∥un∥

6
E

∫
R2

l(x, un)un ≥

∫
R2

6L(x, un)
u6

n
v6

n(x)→ +∞. (3.7)

By B(un) ≤ C∥un∥
6, we derive a contradiction. Note that

0 ≤
⟨I′(un), un⟩

∥un∥
6

=
1
∥un∥

6 (∥u+n ∥
2 − ∥u−n ∥

2) + ⟨B′(un), un⟩ −

∫
R2

l(x, un)un

≤ on(1) + c −
1
∥un∥

6

∫
R2

l(x, un)un → −∞,

from which it follows that v− = 0. But ∥u+n ∥
2 + ∥u−n ∥

2 = 1, one derives ∥v+n ∥ → 1. Now, for large n, one
has

∥u+n ∥ = ∥un∥∥v+n ∥ ≥ ∥un∥∥v−n ∥ = ∥u
−
n ∥,

which is a contradiction to (3.6). □

Remark 3.1. We need to emphasize that the proof of this lemma does not depend on the compactness
of the embedding E ↪→ L2(R2). Thus, this result remains valid if we replace (V1) with (V2).

Lemma 3.5. Ci(I,∞) = 0 for all i = 0, 1, 2, ....

Proof. Let B = {v ∈ E : ∥v∥ ≤ 1}, S = ∂B be the unit sphere in E, and A > 0 be the number given in
Lemma 3.4. Without loss of generality, we may suppose that

−A < inf
∥u∥≤2

I(u).

By (l2), it follows that for any v ∈ S ,

I(tv) =
t2

2
∥v∥2 +

t6

2
B(v) −

∫
R2

L(x, tv)

= t6
(
∥v∥2

2t4 +
1
2

B(v) −
∫
R2

L(x, tv)
t6

)
→ −∞
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as t → +∞. Thus, there exists tv > 0 such that I(tvv) = −A. Let u = tvv. From a simple computation,
one has

d
dt

∣∣∣∣∣
t=tv

I(tv) =
1
tv

d
ds

∣∣∣∣∣
s=1

I(su) < 0.

By the implicit function, there exists a map T such that T : v 7→ tv is a continuous function on S .
Applying the function T , as in [25,26], one can construct a strong deformation retract η : E \ B→ I−A,

η(u) =

u, if I(u) ≤ −A,

T ( u
∥u∥ )

u
∥u∥ , if I(u) > −A,

and obtain
Ci(I,∞) = Hi(E, I−A) � Hi(E, E \ B) = 0 f or all i ∈ N.

□

Proof of Theorem 1.1. From Lemma 3.3 and Lemma 2.5, we have proved that Iλ satisfies the (PS)-
condition and has a local linking at 0 with respect to the decomposition E = E+ ⊕ E−. Since E− = k,
Proposition 2.2 yields Ck(I, 0) , 0. By Lemma 3.5, we derive that

Ck(I, 0) , Ck(I,∞).

Consequently, it follows from Proposition 2.1 that I has a nonzero critical point u, which is a nontrivial
solution of problem (1.6). □

In order to prove Theorem 1.2, we give the following symmetric mountain pass theorem due to
Ambrosetti-Rabinowitz [31]

Proposition 3.1. ( [27]) Let X be an infinite dimensional Banach space. I(0) = 0, I ∈ C1(X,R) satisfies
the (PS)-condition and is even. If X = Y ⊕ Z with dimY < ∞, and I satisfies

(i) there are constants ρ, α > 0 such that I |∂Bρ∩Z≥ α,
(ii) for any finite dimensional subspace W ⊂ X, there exists an R = R(W) such that I ≤ 0 on W \BR(W),

then I has a sequence of critical values c j → +∞.

Lemma 3.6. For u ∈ Ei, let Ei = span{φi, φi+1, ...} and βi = supu∈Ei,∥u∥=1 |u|2. Then βi → 0 as i→ ∞.

Proof. For u ∈ Ei with ∥u∥ = 1, one has∫
R2

(|∇u|2 + V(x)u2) ≥ λi

∫
R2

u2,

or equivalently, since V̂(x) = V(x) +W0,

1 = ∥u∥2 =
∫
R2

(|∇u|2 + V̂(x)u2)

≥ (λi +W0)
∫
R2

u2 = (λi +W0)|u|22.

Consequently,

|βi| ≤
1

√
λi +W0

→ 0 as λi → +∞.
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Proof of Theorem 1.2. Under the hypotheses of Theorem 1.2, the functional I satisfies the PS-
condition and is even. We only need to verify the assumptions (i) and (ii) of Lemma 3.1.

Verification of (i). It follows from (l1) that there exist C5,C6 > 0 and q > 6 such that

|L(x, t)| ≤ C5|t|2 +C6(e4πt2 − 1)|t|q (3.8)

for all (x, t) ∈ R2 × R. For i ∈ N, let Ei and βi as in Lemma 3.6. Then, one has βi → 0 as i→ ∞. Take
k ∈ N such that

µ =
1
2
−C5β

2
k > 0,

and set
Y = span{φ1, ..., φk−1}, Z = span{φk, φk+1, ...}.

So E = Y ⊕ Z, by (3.8) and Lemma 2.2, we derive

I(u) =
1
2
∥u∥2 + κB(u) −

∫
R2

L(x, u)dx

≥
1
2
∥u∥2 −

∫
R2

L(x, u)

≥

(1
2
−C5β

2
k

)
∥u∥2 −C6

∫
R2

(e4πu2
− 1)|u|q

≥

(1
2
−C5β

2
k

)
∥u∥2 −C∥u∥q

= µ∥u∥2 + o(∥u∥2)

as ∥u∥ → 0, which is easy to see that (i) is satisfied.
Verification of (ii). We only need to check that I is anti-coercive on any finite dimensional subspace

Ê. If, otherwise, there are {un} ⊂ Ê and A > 0 such that ∥un∥ → ∞, but I(un) ≥ −A. Set vn =
un
∥un∥

.
Passing to a subsequence if necessary, then vn → v for some v ∈ Ê \ {0} as dimÊ < ∞. Similar to (3.7),
one has

1
∥un∥

6

∫
R2

L(x, u)dx→ +∞.

According to Lemma 2.3, we derive

I(u) =
1
2
∥u∥2 + κB(u) −

∫
R2

L(x, u)dx

≤ ∥un∥
6

 1
2∥un∥

4 + κC −

∫
R2 L(x, u)

∥un∥
6

→ −∞,
contrary to I(un) ≥ −A. Then, the proof of Theorem 1.2 is completed. □

In the following, we now assume that V satisfies (V2), then the embedding E ↪→ L2(R2) is not
compact anymore. Thus, we need to recover the PS-condition.

Lemma 3.7. Let {un} be a PS-sequence of I, i.e., supn |I(un)| < ∞, I′(un) → 0. Then {un} is bounded
in E.
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Proof. Proceeding by contradiction, we may assume that ∥un∥ → ∞. Set vn =
un
∥un∥

. Then

vn = v+n + v−n ⇀ v = v+ + v− ∈ E, v±n , v
± ∈ E±.

If v = 0, then v−n → v− = 0 as dimE− < ∞. Noting that

∥v+n ∥
2 + ∥v−n ∥

2 = 1

for n large enough, we obtain

∥v+n ∥
2 − ∥v−n ∥ ≥

1
1 + δ

(3.9)

for any δ > 0. From (l3), we infer that

1 + sup
n
|I(un)| + ∥un∥ ≥ I(un) −

1
6
⟨I′(un), un⟩

=
1
3
∥un∥

2(∥v+n ∥
2 − ∥v−n ∥

2) +
(1
6
−

1
p

) ∫
R2
|un|

p

≥
1

3(1 + δ)
∥un∥

2,

contradicting to ∥un∥ → ∞.
Next, we assume v , 0. Then, the set ⊐= {v(x) , 0} has a positive Lebesgue measure. For x ∈⊐,

one has |un(x)| → ∞ and
|un|

p

∥un∥
6 =
|un|

pv6
n(x)

u6
n(x)

→ +∞.

It follows from Fatou’s Lemma that ∫
R2

|un|
p

∥un∥
6 ≥

∫
⊐

|un|
p

∥un∥
6 → +∞. (3.10)

On the other hand, for large enough n,∫
⊐

|un|
p

u6
n

v6
n =

1
∥un∥

6

∫
⊐

|un|
p ≤

1
∥un∥

6

∫
R2
|un|

p

=
1
∥un∥

6

(
1
2
∥u∥2 + κB(u) −

∫
R2

L(x, u)dx
)

≤ 1 +C,

which is a contradiction to (3.10). Then, we derive that the sequence {un} is bounded. □

Lemma 3.8. If (V2) holds, then I satisfies the PS-condition.

Proof. Let {un} be a PS-sequence. It follows from Lemma 3.8 that {un} is bounded in E. Passing to a
subsequence if necessary, we may assume that un ⇀ u in E. Then∫

R2
(∇un · ∇u + V(x)unu)→

∫
R2

(|∇u|2 + V(x)u2) = ∥u+∥2 − ∥u−∥2.
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Consequently, we have

on(1) = ⟨I′(un), un − u⟩

=

∫
R2

[∇un · ∇(un − u) + V(x)un(un − u)] + ⟨B′(un), un − u⟩

−

∫
R2
|un|

p−2un(un − u)

= ∥u+n ∥
2 − ∥u−n ∥

2 − (∥u+∥2 − ∥u−∥2)

+ ⟨B′(un), un − u⟩ −
∫
R2
|un|

p−2un(un − u).

Since dimX− < ∞, we have u−n → u−, i.e., ∥u−n ∥ → ∥u
−∥. Collecting all infinitesimal terms, one has

∥u+n ∥
2 − ∥u+∥2 = o(1) +

∫
R2
|un|

p−2un(un − u) − ⟨B′(un), un − u⟩.

Since
∫
R2 |un|

p−2un(un − u) → 0 and ⟨B′(un), un − u⟩ → 0 as n → ∞, we obtain that ∥u+n ∥ → ∥u
+∥ as

n→ ∞, from which we infer that un → u in E. □

Proof of Theorem 1.3. From Remark 3.1, we know that Lemma 3.4 remains true if (V1) is replaced
by (V2). Hence, under the hypotheses of Theorem 1.3, there is A > 0 such that I(u) ≤ −A, then

d
dt

∣∣∣∣∣
t=1

I(tun) ≥ 0. (3.11)

Similar to the proof of Lemma 3.5, we can obtain that Ci(Iλ,∞) = 0 for all i ∈ N. On the other hand,
by an analysis similar to that in the proof of Lemma 2.5, we can prove that I also has a local linking at
0 with respect to the decomposition E = E− ⊕ E+; therefore, for k = dimE−, we derive Ck(I, 0) , 0,
which means that

Ck(I, 0) , Ck(I,∞).

It follows from Lemma 3.4 and Proposition 2.1 that I has a nonzero critical point, which completes
the proof. □

4. Conclusions

In this study, we establish the existence and multiplicity of solutions for gauged nonlinear
Schrödinger equations with sign-changing potentials on the plane. Our approach, which combines the
Trudinger-Moser inequality, variational methods, and Morse theory, has proven effective in handling
the complexities introduced by nonlocal terms and critical exponential growth. The theorems presented
in this paper not only extend the existing knowledge in this research area but also provide new insights
into the behavior of solutions under different conditions.

Looking forward, there are several promising directions for future research. Firstly, exploring
the stability and dynamics of the solutions found in this study could yield valuable insights into the
physical implications of these equations. Second, extending the analysis to higher dimensions or to
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different types of potentials could broaden the applicability of our results. Additionally, investigating
the interplay between the nonlocal terms and the nonlinearities in the equation could lead to the
development of more sophisticated analytical tools. Lastly, considering the impact of external fields or
boundary conditions on the solutions could enrich the theoretical framework and possibly lead to new
applications in physics and engineering.

Overall, this research opens up new avenues for studying nonlinear Schrödinger equations and
contributes to a deeper understanding of the underlying mathematical structures and their physical
relevance. □
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