Research article

On the structure of irreducible Yetter-Drinfeld modules over $ D $

  • Received: 14 May 2024 Revised: 13 June 2024 Accepted: 18 June 2024 Published: 02 July 2024
  • MSC : 16T05, 16T99

  • A class of algebras $ D(m, d, \xi) $ introduced by [22] were not pointed and generated by the coradical of $ D(m, d, \xi) $. Let $ D $ be the quotient of $ D(m, d, \xi) $ module the principle ideal $ (g^m-1) $. First, we describe all simple left modules of $ D $. Then, according to Radford's method, we construct the Yetter-Drinfeld module over $ D $ by the tensor product of a simple module of $ D $ and $ D $ itself. Hence, we find some simple left Yetter-Drinfeld modules over $ D $, and the relevant braidings are of a triangular type.

    Citation: Yiwei Zheng. On the structure of irreducible Yetter-Drinfeld modules over $ D $[J]. AIMS Mathematics, 2024, 9(8): 21321-21336. doi: 10.3934/math.20241035

    Related Papers:

  • A class of algebras $ D(m, d, \xi) $ introduced by [22] were not pointed and generated by the coradical of $ D(m, d, \xi) $. Let $ D $ be the quotient of $ D(m, d, \xi) $ module the principle ideal $ (g^m-1) $. First, we describe all simple left modules of $ D $. Then, according to Radford's method, we construct the Yetter-Drinfeld module over $ D $ by the tensor product of a simple module of $ D $ and $ D $ itself. Hence, we find some simple left Yetter-Drinfeld modules over $ D $, and the relevant braidings are of a triangular type.


    加载中


    [1] N. Andruskiewitsch, J. Cuadra, On the structure of (co-Frobenius) Hopf algebras, J. Noncommut. Geom., 7 (2013), 83–104. http://doi.org/10.4171/JNCG/109 doi: 10.4171/JNCG/109
    [2] N. Andruskiewitsch, G. Carnovale, G. A. García, Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type I. Non-semisimple classes in $\text{PSL}_n(q)$, J. Algebra, 442 (2015), 36–65. http://doi.org/10.1016/j.jalgebra.2014.06.019 doi: 10.1016/j.jalgebra.2014.06.019
    [3] N. Andruskiewitsch, F. Fantino, M. Graña, L. Vendramin, Pointed Hopf algebras over some sporadic simple groups, C. R. Math., 348 (2010), 605–608. http://doi.org/10.1016/j.crma.2010.04.023 doi: 10.1016/j.crma.2010.04.023
    [4] N. Andruskiewitsch, H. J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order $p^3$, J. Algebra, 209 (1998), 658–691. http://doi.org/10.1006/jabr.1998.7643 doi: 10.1006/jabr.1998.7643
    [5] N. Andruskiewitsch, H. J. Schneider, On the classification of finite-dimensional pointed Hopf algebras, Ann. Math., 171 (2010), 375–417. http://doi.org/10.4007/annals.2010.171.375 doi: 10.4007/annals.2010.171.375
    [6] N. Andruskiewitsch, C. Vay, Finite dimensional Hopf algebras over the dual group algebra of the symmetric group in three letters, Commun. Algebra, 39 (2011), 4507–4517. http://doi.org/10.1080/00927872.2011.616429 doi: 10.1080/00927872.2011.616429
    [7] F. Fantino, G. A. García, M. Mastnak, On finite-dimensional copointed Hopf algebras over dihedral groups, J. Pure Appl. Algebra, 223 (2019), 3611–3634. http://doi.org/10.1016/j.jpaa.2018.11.021 doi: 10.1016/j.jpaa.2018.11.021
    [8] G. A. García, J. M. J. Giraldi, On Hopf algebras over quantum subgroups, J. Pure Appl. Algebra, 223 (2019), 738–768. http://doi.org/10.1016/j.jpaa.2018.04.018 doi: 10.1016/j.jpaa.2018.04.018
    [9] N. H. Hu, R. C. Xiong, On families of Hopf algebras without the dual Chevalley property, Rev. Unión Mat. Argent., 59 (2018), 443–469. http://doi.org/10.33044/revuma.v59n2a12 doi: 10.33044/revuma.v59n2a12
    [10] C. Kassel, Quantum Groups, New York: Springer-Verlag, 1995. http://doi.org/10.1007/978-1-4612-0783-2
    [11] K. Q. Li, G. X. Liu, Finite dual of affine prime regular Hopf algebras of GK-dimension one, AIMS Mathematics, 8 (2023), 6829–6879. http://doi.org/10.3934/math.2023347 doi: 10.3934/math.2023347
    [12] Z. M. Liu, S. L. Zhu, On the structure of irreducible Yetter-Drinfeld modules over quasi-triangular Hopf algebras, J. Algebra, 539 (2019), 339–365. https://doi.org/10.1016/j.jalgebra.2019.08.016 doi: 10.1016/j.jalgebra.2019.08.016
    [13] S. Montgomery, Hopf algebras and their actions on rings, Washington, DC: American Mathematical Society, 1993. http://doi.org/10.1090/cbms/082
    [14] Y. I. Manin, Quantum groups and non-commutative geometry, Université de Montréal, Centre de Recherches Mathématiques, Montréal, QC, Canada, 1988.
    [15] S. Majid, Doubles of quasitriangular Hopf algebras, Commun. Algebra, 19 (1991), 3061–3073. http://doi.org/10.1080/00927879108824306 doi: 10.1080/00927879108824306
    [16] D. E. Radford, The structure of Hopf algebras with a projection, J. Algebra, 92 (1985), 322–347. http://doi.org/10.1016/0021-8693(85)90124-3 doi: 10.1016/0021-8693(85)90124-3
    [17] D. E. Radford, On oriented quantum algebras derived from representations of the quantum double of a finite-dimensional Hopf algebra, J. Algebra, 270 (2003), 670–695. https://doi.org/10.1016/j.jalgebra.2003.07.006 doi: 10.1016/j.jalgebra.2003.07.006
    [18] D. E. Radford, Hopf algebras, World Scientific, 2011. https://doi.org/10.1142/8055
    [19] M. E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, New York, 1969.
    [20] S. Ufer, Triangular braidings and pointed Hopf algebras. J. Pure Appl. Algebra, 210 (2007), 307–320. https://doi.org/10.1016/j.jpaa.2006.09.007
    [21] J. Y. Wu, Note on the coradical filtration of $D(m, d, \xi)$, Commun. Algebra, 44 (2016), 4844–4850. https://doi.org/10.1080/00927872.2015.1113295 doi: 10.1080/00927872.2015.1113295
    [22] J. Y. Wu, G. X. Liu, N. Q. Ding, Classification of affine prime regular Hopf algebras of GK-dimension one, Adv. Math., 296 (2016), 1–54. https://doi.org/10.1016/j.aim.2016.03.037 doi: 10.1016/j.aim.2016.03.037
    [23] Y. W. Zheng, Y. Gao, N. H. Hu, Finite-dimensional Hopf algebras over the Hopf algebra $H_{b:1}$ of Kashina, J. Algebra, 567 (2021), 613–659. https://doi.org/10.1016/j.jalgebra.2020.09.035 doi: 10.1016/j.jalgebra.2020.09.035
    [24] Y. W. Zheng, Y. Gao, N. H. Hu, Finite-dimensional Hopf algebras over the Hopf algebra $H_{d:-1, 1}$ of Kashina, J. Pure Appl. Algebra, 225 (2021), 106527. https://doi.org/10.1016/j.jpaa.2020.106527 doi: 10.1016/j.jpaa.2020.106527
    [25] Y. W. Zheng, Y. Gao, N. H. Hu, Y. X. Shi, On some classification of finite-dimensional Hopf algebras over the Hopf algebra $(H_{b:1})^*$ of Kashina, Commum. Algebra, 51 (2023), 350–371. https://doi.org/10.1080/00927872.2022.2099551 doi: 10.1080/00927872.2022.2099551
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(545) PDF downloads(38) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog