Research article Special Issues

Infinity norm bounds for the inverse of $ SDD_1^{+} $ matrices with applications

  • Received: 08 May 2024 Revised: 21 June 2024 Accepted: 24 June 2024 Published: 02 July 2024
  • MSC : 15A48, 65G50, 90C33, 90C31

  • A new subclass of nonsingular $ H $-matrix named $ SDD_1^{+} $ matrices is studied in this paper. The relationships between $ SDD_1^{+} $ matrices and other subclasses of nonsingular $ H $-matrices are analyzed by numerical examples. Moreover, the infinity norm bounds of the inverse for $ SDD_1^{+} $ matrices are derived in two different methods. As applications, two error bounds of the linear complementarity problems ($ LCP $) for $ SDD_1^{+} $ matrices are given. Finally, the effectiveness of corresponding results is illustrated by numerical examples.

    Citation: Lanlan Liu, Yuxue Zhu, Feng Wang, Yuanjie Geng. Infinity norm bounds for the inverse of $ SDD_1^{+} $ matrices with applications[J]. AIMS Mathematics, 2024, 9(8): 21294-21320. doi: 10.3934/math.20241034

    Related Papers:

  • A new subclass of nonsingular $ H $-matrix named $ SDD_1^{+} $ matrices is studied in this paper. The relationships between $ SDD_1^{+} $ matrices and other subclasses of nonsingular $ H $-matrices are analyzed by numerical examples. Moreover, the infinity norm bounds of the inverse for $ SDD_1^{+} $ matrices are derived in two different methods. As applications, two error bounds of the linear complementarity problems ($ LCP $) for $ SDD_1^{+} $ matrices are given. Finally, the effectiveness of corresponding results is illustrated by numerical examples.


    加载中


    [1] A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, New York: SIAM, 1994.
    [2] C. Zhang, New Advances in Research on H-matrices, Beijing: Science Press, 2017.
    [3] L. Cvetković, $H$-matrix theory vs. eigenvalue localization, Numer. Algor., 42 (2006), 229–245. http://doi.org/10.1007/s11075-006-9029-3 doi: 10.1007/s11075-006-9029-3
    [4] X. Gu, S. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. http://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576
    [5] A. Berman, R. Plemmons, Nonnegative Matrix in the Mathematical Sciences, New York: Academic Press, 1979.
    [6] R. Cottle, J. Pang, R. Stone, The Linear Complementarity Problem, New York: SIAM, 2009.
    [7] X. Chen, S. Xiang, Computation of error bounds for $P$-matrix linear complementarity problems, Math. Program., 106 (2006), 513–525. http://doi.org/10.1007/s10107-005-0645-9 doi: 10.1007/s10107-005-0645-9
    [8] P. Dai, J. Li, S. Zhao, Infinity norm bounds for the inverse for $GSDD_1$ matrices using scaling matrices, Comput. Appl. Math., 42 (2023), 121–141. http://doi.org/10.1007/s40314-022-02165-x doi: 10.1007/s40314-022-02165-x
    [9] D. Cvetković, L. Cvetković, C. Li, $CKV$-type matrices with applications, Linear Algebra Appl., 608 (2020), 158–184. http://doi.org/10.1016/j.laa.2020.08.028 doi: 10.1016/j.laa.2020.08.028
    [10] L. Kolotilina, Some bounds for inverses involving matrix sparsity pattern, J. Math. Sci., 249 (2020), 242–255. http://doi.org/10.1007/s10958-020-04938-3 doi: 10.1007/s10958-020-04938-3
    [11] L. Cvetković, Kostić, S. Rauški, A new subclass of $H$-matrices, Appl. Math. Comput., 208 (2009), 206–210. http://dx.doi.org/10.1016/j.amc.2008.11.037 doi: 10.1016/j.amc.2008.11.037
    [12] L. Cvetković, V. Kostic, R. Varga, A new Geršgorin-type eigenvalue inclusion set, Electron. Trans. Numer. Anal., 18 (2004), 73–80.
    [13] H. Orera, J. Peña, Infinity norm bounds for the inverse of Nekrasov matrices using scaling matrices, Appl. Math. Comput., 358 (2019), 119–127. http://doi.org/10.1016/j.amc.2019.04.027 doi: 10.1016/j.amc.2019.04.027
    [14] P. Dai, C. Lu, Y. Li, New error bounds for the linear complementarity problem with an $SB$-matrix, Numer. Algor., 64 (2013), 741–757. http://doi.org/10.1007/s11075-012-9691-6 doi: 10.1007/s11075-012-9691-6
    [15] P. Dai, Y. Li, C. Lu, Error bounds for linear complementarity problems for $SB$-matrices, Numer. Algor., 61 (2012), 121–139. http://doi.org/10.1007/s11075-012-9580-z doi: 10.1007/s11075-012-9580-z
    [16] C. Li, Y. Li, Note on error bounds for linear complementarity problems for $B$-matrices, Appl. Math. Lett., 57 (2016), 108–113. http://doi.org/10.1016/j.aml.2016.01.013 doi: 10.1016/j.aml.2016.01.013
    [17] R. Cottle, J. Pang, R. E. Stone, The Linear Complementarity Problem, San Diego: Academic Press, 1992.
    [18] X. Song, L. Gao, $CKV$-type $B$-matrices and error bounds for linear complementarity problems, AIMS Math., 6 (2021), 10846–10860. http://doi.org/10.3934/math.2021630 doi: 10.3934/math.2021630
    [19] J. Peña, Diagonal dominance, Schur complements and some classes of $H$-matrices and $P$-matrices, Adv. Comput. Math., 35 (2011), 357–373. http://doi.org/10.1007/s10444-010-9160-5 doi: 10.1007/s10444-010-9160-5
    [20] J. Varah, A lower bound for the smallest singular value of a matrix, Linear Algebra Appl., 11 (1975), 3–5. http://doi.org/10.1016/0024-3795(75)90112-3 doi: 10.1016/0024-3795(75)90112-3
    [21] R. S. Varga, Geršgorin and His Circles, Berlin: Springer-Verlag, 2004.
    [22] V. Kostić, L. Cvetković, D. Cvetković, Pseudospectra localizations and their applications, Numer. Linear Algebra Appl., 23 (2016), 356–372. http://doi.org/10.1002/nla.2028 doi: 10.1002/nla.2028
    [23] J. Peña, A class of $P$-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl., 22 (2001), 1027–1037. http://doi.org/10.1137/s0895479800370342 doi: 10.1137/s0895479800370342
    [24] M. Neumann, J. Peña, O. Pryporova, Some classes of nonsingular matrices and applications, Linear Algebra Appl., 438 (2013), 1936–1945. http://doi.org/10.1016/j.laa.2011.10.041 doi: 10.1016/j.laa.2011.10.041
    [25] J. Peña, On an alternative to Gerschgorin circles and ovals of Cassini, Numer. Math., 95 (2003), 337–345. http://doi.org/10.1007/s00211-002-0427-8 doi: 10.1007/s00211-002-0427-8
    [26] P. Dai, J. Li, Y. Li, C. Zhang, Error bounds for linear complementarity problems of $QN$-matrices, Calcolo, 53 (2016), 647–657. http://doi.org/10.1007/s10092-015-0167-7 doi: 10.1007/s10092-015-0167-7
    [27] J. Li, G. Li, Error bounds for linear complementarity problems of $S$-$QN$ matrices, Numer. Algor., 83 (2020), 935–955. http://doi.org/10.1007/s11075-019-00710-0 doi: 10.1007/s11075-019-00710-0
    [28] C. Li, P. Dai, Y. Li, New error bounds for linear complementarity problems of Nekrasov matrices and $B$-Nekrasov matrices, Numer. Algor., 74 (2016), 997–1009. http://doi.org/10.1007/s11075-016-0181-0 doi: 10.1007/s11075-016-0181-0
    [29] M. García-Esnaola, J. Peña, A comparison of error bounds for linear complementarity problems of $H$-matrices, Linear Algebra Appl., 433 (2010), 956–964. http://doi.org/10.1016/j.laa.2010.04.024 doi: 10.1016/j.laa.2010.04.024
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(47) PDF downloads(8) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog