Citation: Lanlan Liu, Yuxue Zhu, Feng Wang, Yuanjie Geng. Infinity norm bounds for the inverse of $ SDD_1^{+} $ matrices with applications[J]. AIMS Mathematics, 2024, 9(8): 21294-21320. doi: 10.3934/math.20241034
[1] | A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, New York: SIAM, 1994. |
[2] | C. Zhang, New Advances in Research on H-matrices, Beijing: Science Press, 2017. |
[3] | L. Cvetković, $H$-matrix theory vs. eigenvalue localization, Numer. Algor., 42 (2006), 229–245. http://doi.org/10.1007/s11075-006-9029-3 doi: 10.1007/s11075-006-9029-3 |
[4] | X. Gu, S. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. http://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576 |
[5] | A. Berman, R. Plemmons, Nonnegative Matrix in the Mathematical Sciences, New York: Academic Press, 1979. |
[6] | R. Cottle, J. Pang, R. Stone, The Linear Complementarity Problem, New York: SIAM, 2009. |
[7] | X. Chen, S. Xiang, Computation of error bounds for $P$-matrix linear complementarity problems, Math. Program., 106 (2006), 513–525. http://doi.org/10.1007/s10107-005-0645-9 doi: 10.1007/s10107-005-0645-9 |
[8] | P. Dai, J. Li, S. Zhao, Infinity norm bounds for the inverse for $GSDD_1$ matrices using scaling matrices, Comput. Appl. Math., 42 (2023), 121–141. http://doi.org/10.1007/s40314-022-02165-x doi: 10.1007/s40314-022-02165-x |
[9] | D. Cvetković, L. Cvetković, C. Li, $CKV$-type matrices with applications, Linear Algebra Appl., 608 (2020), 158–184. http://doi.org/10.1016/j.laa.2020.08.028 doi: 10.1016/j.laa.2020.08.028 |
[10] | L. Kolotilina, Some bounds for inverses involving matrix sparsity pattern, J. Math. Sci., 249 (2020), 242–255. http://doi.org/10.1007/s10958-020-04938-3 doi: 10.1007/s10958-020-04938-3 |
[11] | L. Cvetković, Kostić, S. Rauški, A new subclass of $H$-matrices, Appl. Math. Comput., 208 (2009), 206–210. http://dx.doi.org/10.1016/j.amc.2008.11.037 doi: 10.1016/j.amc.2008.11.037 |
[12] | L. Cvetković, V. Kostic, R. Varga, A new Geršgorin-type eigenvalue inclusion set, Electron. Trans. Numer. Anal., 18 (2004), 73–80. |
[13] | H. Orera, J. Peña, Infinity norm bounds for the inverse of Nekrasov matrices using scaling matrices, Appl. Math. Comput., 358 (2019), 119–127. http://doi.org/10.1016/j.amc.2019.04.027 doi: 10.1016/j.amc.2019.04.027 |
[14] | P. Dai, C. Lu, Y. Li, New error bounds for the linear complementarity problem with an $SB$-matrix, Numer. Algor., 64 (2013), 741–757. http://doi.org/10.1007/s11075-012-9691-6 doi: 10.1007/s11075-012-9691-6 |
[15] | P. Dai, Y. Li, C. Lu, Error bounds for linear complementarity problems for $SB$-matrices, Numer. Algor., 61 (2012), 121–139. http://doi.org/10.1007/s11075-012-9580-z doi: 10.1007/s11075-012-9580-z |
[16] | C. Li, Y. Li, Note on error bounds for linear complementarity problems for $B$-matrices, Appl. Math. Lett., 57 (2016), 108–113. http://doi.org/10.1016/j.aml.2016.01.013 doi: 10.1016/j.aml.2016.01.013 |
[17] | R. Cottle, J. Pang, R. E. Stone, The Linear Complementarity Problem, San Diego: Academic Press, 1992. |
[18] | X. Song, L. Gao, $CKV$-type $B$-matrices and error bounds for linear complementarity problems, AIMS Math., 6 (2021), 10846–10860. http://doi.org/10.3934/math.2021630 doi: 10.3934/math.2021630 |
[19] | J. Peña, Diagonal dominance, Schur complements and some classes of $H$-matrices and $P$-matrices, Adv. Comput. Math., 35 (2011), 357–373. http://doi.org/10.1007/s10444-010-9160-5 doi: 10.1007/s10444-010-9160-5 |
[20] | J. Varah, A lower bound for the smallest singular value of a matrix, Linear Algebra Appl., 11 (1975), 3–5. http://doi.org/10.1016/0024-3795(75)90112-3 doi: 10.1016/0024-3795(75)90112-3 |
[21] | R. S. Varga, Geršgorin and His Circles, Berlin: Springer-Verlag, 2004. |
[22] | V. Kostić, L. Cvetković, D. Cvetković, Pseudospectra localizations and their applications, Numer. Linear Algebra Appl., 23 (2016), 356–372. http://doi.org/10.1002/nla.2028 doi: 10.1002/nla.2028 |
[23] | J. Peña, A class of $P$-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl., 22 (2001), 1027–1037. http://doi.org/10.1137/s0895479800370342 doi: 10.1137/s0895479800370342 |
[24] | M. Neumann, J. Peña, O. Pryporova, Some classes of nonsingular matrices and applications, Linear Algebra Appl., 438 (2013), 1936–1945. http://doi.org/10.1016/j.laa.2011.10.041 doi: 10.1016/j.laa.2011.10.041 |
[25] | J. Peña, On an alternative to Gerschgorin circles and ovals of Cassini, Numer. Math., 95 (2003), 337–345. http://doi.org/10.1007/s00211-002-0427-8 doi: 10.1007/s00211-002-0427-8 |
[26] | P. Dai, J. Li, Y. Li, C. Zhang, Error bounds for linear complementarity problems of $QN$-matrices, Calcolo, 53 (2016), 647–657. http://doi.org/10.1007/s10092-015-0167-7 doi: 10.1007/s10092-015-0167-7 |
[27] | J. Li, G. Li, Error bounds for linear complementarity problems of $S$-$QN$ matrices, Numer. Algor., 83 (2020), 935–955. http://doi.org/10.1007/s11075-019-00710-0 doi: 10.1007/s11075-019-00710-0 |
[28] | C. Li, P. Dai, Y. Li, New error bounds for linear complementarity problems of Nekrasov matrices and $B$-Nekrasov matrices, Numer. Algor., 74 (2016), 997–1009. http://doi.org/10.1007/s11075-016-0181-0 doi: 10.1007/s11075-016-0181-0 |
[29] | M. García-Esnaola, J. Peña, A comparison of error bounds for linear complementarity problems of $H$-matrices, Linear Algebra Appl., 433 (2010), 956–964. http://doi.org/10.1016/j.laa.2010.04.024 doi: 10.1016/j.laa.2010.04.024 |