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1. Introduction

The nonsingular H-matrix and its subclass play an important role in a lot of fields of science such
as computational mathematics, mathematical physics, and control theory, see [1–4]. Meanwhile, the
infinity norm bounds of the inverse for nonsingular H-matrices can be used in convergence analysis of
matrix splitting and matrix multi-splitting iterative methods for solving large sparse systems of linear
equations [5], as well as bounding errors of linear complementarity problems [6, 7]. In recent years,
many scholars have developed a deep research interest in the infinity norm of the inverse for special
nonsingular H-matrices, such as GS DD1 matrices [8], CKV-type matrices [9], S -S DDS matrices [10],
S -Nekrasov matrices [11], S -S DD matrices [12], and so on, which depends only on the entries of the
matrix.

In this paper, we prove that M is a nonsingular H-matrix by constructing a scaling matrix D for
S DD+1 matrices such that MD is a strictly diagonally dominant matrix. The use of the scaling matrix is
important for some applications, for example, the infinity norm bound of the inverse [13], eigenvalue
localization [3], and error bounds of the linear complementarity problem [14]. We consider the infinity
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norm bound of the inverse for the S DD+1 matrix by multiplying the scaling matrix, then we use the
result to discuss the error bounds of the linear complementarity problem.

For a positive integer n ≥ 2, let N denote the set {1, 2, . . . , n} and Cn×n(Rn×n) denote the set of all
complex (real) matrices. Successively, we review some special subclasses of nonsingular H-matrices
and related lemmas.

Definition 1. [5] A matrix M = (mi j) ∈ Cn×n is called a strictly diagonally dominant (S DD) matrix if

|mii| > ri (M) , ∀i ∈ N, (1.1)

where ri (M) =
n∑

j=1, j,i

∣∣∣mi j

∣∣∣.
Various generalizations of S DD matrices have been introduced and studied in the literatures, see

[7, 15–18].

Definition 2. [8] A matrix M = (mi j) ∈ Cn×n is called a generalized S DD1 (GS DD1) matrix ifri (M) − pN2
i (M) > 0, i ∈ N2,

(ri (M) − pN2
i (M))(|m j j| − pN1

j (M)) > pN1
i (M)pN2

j (M) , i ∈ N2, j ∈ N1,
(1.2)

where N1 = {i ∈ N |0 < |mii| ≤ ri (M)}, N2 = {i ∈ N||mii| > ri (M)}, pN2
i (M) =

∑
j∈N2\{i}

|mi j|
r j(M)
|m j j |

, pN1
i (M) =∑

j∈N1\{i}
|mi j|, i ∈ N.

Definition 3. [9] A matrix M = (mi j) ∈ Cn×n, with n ⩾ 2, is called a CKV-type matrix if for all i ∈ N
the set S ⋆

i (M) is not empty, where
S ⋆

i (M) = {S ∈
∑

(i) : |mii| > rs
i (M), and for all j ∈ S(

|mii| − rS
i (M)

) (∣∣∣m j j

∣∣∣ − rS
j (M)

)
> rS

i (M) rS
j (M)},

with
∑

(i) = {S ⊊ N : i ∈ S } and rS
i (M) :=

∑
j∈S \{i}

∣∣∣mi j

∣∣∣.
Lemma 1. [8] Let M = (mi j) ∈ Cn×n be a GS DD1 matrix. Then

∥M−1∥∞ ≤

max
{
ε,max

i∈N2

ri(M)
|mii |

}
min

{
min
i∈N2

ϕi,min
i∈N1

ψi

} , (1.3)

where

ϕi = ri (M) −
∑

j∈N2\{i}

|mi j|
r j (M)
|m j j|

−
∑
j∈N1

|mi j|ε, i ∈ N2, (1.4)

ψi = |mii|ε −
∑

j∈N1\{i}

|mi j|ε −
∑
j∈N2

|mi j|
r j (M)
|m j j|

, i ∈ N1, (1.5)

and

ε ∈

max
i∈N1

pN2
i (M)

|mii| − pN1
i (M)

,min
j∈N2

r j (M) − pN2
j (M)

pN1
j (M)

 . (1.6)
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Lemma 2. [8] Suppose that M = (mi j) ∈ Rn×n is a GS DD1 matrix with positive diagonal entries, and
D = diag(di) with di ∈ [0, 1]. Then

max
d∈[0,1]n

∥(I − D + DM)−1∥∞ ≤ max


max

{
ε,max

i∈N2

ri(M)
|mii |

}
min

{
min
i∈N2

ϕi,min
i∈N1

ψi

} , max
{
ε,max

i∈N2

ri(M)
|mii |

}
min

{
ε,min

i∈N2

ri(M)
|mii |

}
 , (1.7)

where ϕi, ψi, and ε are shown in (1.4)–(1.6), respectively.

Definition 4. [19] Matrix M = (mi j) ∈ Cn×n is called an S DD1 matrix if

|mii| > ri
′

(M) , f or each i ∈ N1, (1.8)

where

ri
′

(M) =
∑

j∈N1\{i}

|mi j| +
∑

j∈N2\{i}

|mi j|
r j (M)
|m j j|

,

N1 = {i ∈ N|0 < |mii| ≤ ri (M)} , N2 = {i ∈ N ||mii| > ri (M)} .

The rest of this paper is organized as follows: In Section 2, we propose a new subclass of
nonsingular H-matrices referred to S DD+1 matrices, discuss some of the properties of it, and consider
the relationships among subclasses of nonsingular H-matrices by numerical examples, including
S DD1 matrices, GS DD1 matrices, and CKV-type matrices. At the same time, a scaling matrix D is
constructed to verify that the matrix M is a nonsingular H-matrix. In Section 3, two methods are
utilized to derive two different upper bounds of infinity norm for the inverse of the matrix (one with
parameter and one without parameter), and numerical examples are used to show the validity of the
results. In Section 4, two error bounds of the linear complementarity problems for S DD+1 matrices are
given by using the scaling matrix D, and numerical examples are used to illustrate the effectiveness of
the obtained results. Finally, a summary of the paper is given in Section. 5.

2. S DD+1 matrices and scaling matrices

For the sake of the following description, some symbols are first explained:

N = N1 ∪ N2, N1 = N(1)
1 ∪ N(1)

2 , ∅, ri(M) , 0,

N1 = {i ∈ N|0 < |mii| ≤ ri (M)} , N2 = {i ∈ N ||mii| > ri (M)} , (2.1)

N(1)
1 =

{
i ∈ N1|0 < |mii| ≤ ri

′

(M)
}
, N(1)

2 =
{
i ∈ N1||mii| > ri

′

(M)
}
, (2.2)

ri
′

(M) =
∑

j∈N1\{i}

|mi j| +
∑
j∈N2

|mi j|
r j (M)
|m j j|

, i ∈ N1. (2.3)

By the definitions of N(1)
1 and N(1)

2 , for N1 = N(1)
1 ∪ N(1)

2 , ri
′ (M) in Definition 4 can be rewritten as

ri
′

(M) =
∑

j∈N1\{i}

|mi j| +
∑

j∈N2\{i}

|mi j|
r j (M)
|m j j|
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=
∑

j∈N(1)
1 \{i}

|mi j| +
∑

j∈N(1)
2 \{i}

|mi j| +
∑

j∈N2\{i}

|mi j|
r j (M)
|m j j|

. (2.4)

According to (2.4), it is easy to get the following equivalent form for S DD1 matrices.
A matrix M is called an S DD1 matrix, if

|mii| >
∑

j∈N(1)
1 \{i}

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ + ∑
j∈N2

r j(M)

|m j j|

∣∣∣mi j

∣∣∣ , i ∈ N(1)
1 ,

|mii| >
∑

j∈N(1)
1

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ + ∑
j∈N2

r j(M)

|m j j|

∣∣∣mi j

∣∣∣ , i ∈ N(1)
2 .

(2.5)

By scaling conditions (2.5), we introduce a new class of matrices. As we will see, these matrices
belong to a new subclass of nonsingular H-matrices.

Definition 5. A matrix M = (mi j) ∈ Cn×n is called an S DD+1 matrix if
|mii| > Fi(M) =

∑
j∈N(1)

1 \{i}

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ r′j(M)

|m j j|
+

∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)

|m j j|
, i ∈ N(1)

1 ,

|mii| > F′i (M) =
∑

j∈N(1)
2 \{i}

∣∣∣mi j

∣∣∣ + ∑
j∈N2

∣∣∣mi j

∣∣∣ , i ∈ N(1)
2 ,

(2.6)

where N1,N2, N(1)
1 , N(1)

2 , and ri
′

(M) are defined by (2.1)–(2.3), respectively.

Proposition 1. If M = (mi j) ∈ Cn×n is an S DD+1 matrix and N(1)
1 , ∅, then

∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ + ∑
j∈N2

∣∣∣mi j

∣∣∣ , 0 for

i ∈ N(1)
1 .

Proof. Assume that there exists i ∈ N(1)
1 such that

∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ + ∑
j∈N2

∣∣∣mi j

∣∣∣ = 0. We find that

|mii| >
∑

j∈N(1)
1 \{i}

∣∣∣mi j

∣∣∣ = ∑
j∈N(1)

1 \{i}

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣
=

∑
j∈N(1)

1 \{i}

∣∣∣mi j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ = r
′

i(M),

which contradicts i ∈ N(1)
1 . The proof is completed. □

Proposition 2. If M = (mi j) ∈ Cn×n is an S DD+1 matrix with N(1)
2 = ∅, then M is also an S DD1 matrix.

Proof. From Definition 5, we have

|mii| >
∑

j∈N(1)
1 \{i}

∣∣∣mi j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ , ∀i ∈ N(1)
1 .

Because of N1 = N(1)
1 , it holds that

|mii| >
∑

j∈N1\{i}

∣∣∣mi j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ = ri
′

(M) , ∀i ∈ N1.

The proof is completed. □
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Example 1. Consider the following matrix:

M1 =


8 −5 2 3
3 9 6 2
4 −2 9 0
−3 1 2 10

 .
In fact, N1 = {1, 2} and N2 = {3, 4}. Through calculations, we obtain that

r1 (M1) = 10, r2 (M1) = 11, r3 (M1) = 6, r4 (M1) = 6,

r1
′

(M1) = |m12| + |m13|
r3 (M1)
|m33|

+ |m14|
r4 (M1)
|m44|

≈ 8.1333,

r2
′

(M1) = |m21| + |m23|
r3 (M1)
|m33|

+ |m24|
r4 (M1)
|m44|

= 8.2000.

Because of |m11| = 8 < 8.1333 = r1
′ (M1), M1 is not an S DD1 matrix.

Since
r
′

1 (M1) ≈ 8.1333 > |m11| = 8,

r
′

2 (M1) = 8.2000 < |m22| = 9,

then N(1)
1 = {1}, N(1)

2 = {2}. As

|m11| = 8 > |m12|
r
′

2 (M1)
|m22|

+ |m13|
r3 (M1)
|m33|

+ |m14|
r4 (M1)
|m44|

≈ 7.6889,

|m22| = 9 > |m23| + |m24| = 8,

M1 is an S DD+1 matrix by Definition 5.

Example 2. Consider the following matrix:

M2 =


15 4 8
−7 7 −5
1 −2 16

 .
In fact, N1 = {2} and N2 = {1, 3}. By calculations, we get

r1 (M2) = 12, r2 (M2) = 12, r3 (M2) = 3,

r2
′

(M2) = 0 + |m21|
r1 (M2)
|m11|

+ |m23|
r3 (M2)
|m33|

= 6.5375.

Because of |m22| = 7 > 6.5375 = r2
′ (M2), M2 is an S DD1 matrix.

According to
r
′

2 (M2) = 6.5375 < |m22| = 7,

we know that N(1)
2 = {2}. In addition,

|m22| = 7 < 0 + |m21| + |m23| = 12,

and M2 is not an S DD+1 matrix.
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As shown in Examples 1 and 2 and Proposition 2, it can be seen that S DD+1 matrices and S DD1

matrices have an intersecting relationship:

{S DD1} ⊈
{
S DD+1

}
and

{
S DD+1

}
⊈ {S DD1}.

The following examples will demonstrate the relationships between S DD+1 matrices and other
subclasses of nonsingular H-matrices.

Example 3. Consider the following matrix:

M3 =


40 1 −2 1 2
0 10 4.1 4 6

20 −2 33 4 8
0 4 −6 20 2

30 −4 2 0 40


.

In fact, N1 = {2, 3} and N2 = {1, 4, 5}. Through calculations, we get that

r1 (M3) = 6, r2 (M3) = 14.1, r3 (M3) = 34, r4 (M3) = 12, r5 (M3) = 36,

r
′

2 (M3) = |m23| + |m21|
r1 (M3)
|m11|

+ |m24|
r4 (M3)
|m44|

+ |m25|
r5 (M3)
|m55|

= 11.9 > |m22|,

r
′

3 (M3) = |m32| + |m31|
r1 (M3)
|m11|

+ |m34|
r4 (M3)
|m44|

+ |m35|
r5 (M3)
|m55|

= 14.6 < |m33|,

and N(1)
1 = {2}, N(1)

2 = {3}. Because of

|m22| > |m23|
r
′

3 (M3)
|m33|

+ |m21|
r1 (M3)
|m11|

+ |m24|
r4 (M3)
|m44|

+ |m25|
r5 (M3)
|m55|

≈ 9.61,

|m33| = 33 > 0 + |m31| + |m34| + |m35| = 32.

So, M3 is an S DD+1 matrix. However, since |m22| = 10 < 11.9 = r
′

2 (M3), then M3 is not an S DD1

matrix. And we have

pN1
1 (M3) = 3, pN1

2 (M3) = 4.1, pN1
3 (M3) = 2, pN1

4 (M3) = 10, pN1
5 (M3) = 6,

pN2
1 (M3) = 2.4, pN2

2 (M3) = 7.8, pN2
3 (M3) = 12.6, pN2

4 (M3) = 1.8, pN2
5 (M3) = 4.5.

Note that, taking i = 1, j = 2, we have that(
r1 (M3) − pN2

1 (M3)
) (
|m22| − pN1

2 (M3)
)
= 21.24 < pN1

1 (M3) pN2
2 (M3) = 23.4.

So, M3 is not a GS DD1 matrix. Moreover, it can be verified that M3 is not a CKV-type matrix.

Example 4. Consider the following matrix:

M4 =


−1 0.4 0 0
0.5 1 0 0
−1 2.1 1 −0.5
1 −2 0.31 1

 .
It is easy to check that M4 is a CKV-type matrix and a GS DD1 matrix, but not an S DD+1 matrix.
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Example 5. Consider the following matrix:

M5 =



30.78 6 6 6.75 5.25 6 3 6
2.25 33.78 3 6 1.5 4.5 3 2.25

6 6 33.03 6 6 6 5.25 3
0.75 2.25 6 28.53 1.5 2.25 4.5 4.5
0.75 5.25 1.5 0.75 29.28 6 6 2.25
5.25 4.5 1.5 0.75 5.25 35.28 3 5.25
5.25 3 4.5 6 3 6.75 30.03 3.75
4.5 0.75 3.75 7.5 5.25 0.75 0.75 29.28


.

We know that M5 is not only an S DD+1 matrix, but also CKV-type matrix and GS DD1 matrix.

According to Examples 3–5, we find that S DD+1 matrices have intersecting relationships with the
CKV-type matrices and GS DD1 matrices, as shown in the Figure 1 below. In this paper, we take
N1 , ∅ and ri(M) , 0, so we will not discuss the relationships among S DD matrices, S DD+1 matrices,
and GS DD1 matrices.

Figure 1. Relations between some subclasses of H-matrices.

Example 6. Consider the tri-diagonal matrix M ∈ Rn×n arising from the finite difference method for
free boundary problems [8], where

M6 =



b + αsin
(

1
n

)
c 0 · · · 0

a b + αsin
(

2
n

)
c · · · 0

. . .
. . .

. . .

0 · · · a b + αsin
(

n−1
n

)
c

0 · · · 0 a b + αsin (1)


.

Take n = 12000, a = 5.5888, b = 16.5150 , c = 10.9311, and α = 14.3417. It is easy to verify that
M6 is an S DD+1 matrix, but not an S DD matrix, a GS DD1 matrix, an S DD1 matrix, nor a CKV-type
matrix.
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As is shown in [19] and [8], S DD1 matrix and GS DD1 matrix are both nonsingular H-matrices, and
there exists an explicit construction of the diagonal matrix D, whose diagonal entries are all positive,
such that MD is an S DD matrix. In the following, we construct a positive diagonal matrix D involved
with a parameter that scales an S DD+1 matrix to transform it into an S DD matrix.

Theorem 1. Let M = (mi j) ∈ Cn×n be an S DD+1 matrix. Then, there exists a diagonal matrix D =
diag(d1, d2, · · · , dn) with

di =


1 , i ∈ N(1)

1 ,

ε +
r′i (M)
|mii |

, i ∈ N(1)
2 ,

ε + ri(M)
|mii |

, i ∈ N2,

(2.7)

where
0 < ε < min

i∈N(1)
1

pi, (2.8)

and for all i ∈ N(1)
1 , we have

pi =

|mii| −
∑

j∈N(1)
1 \{i}

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ r′j(M)

|m j j|
−

∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)

|m j j|∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ + ∑
j∈N2

∣∣∣mi j

∣∣∣ , (2.9)

such that MD is an S DD matrix.

Proof. By (2.6), we have

|mii| −
∑

j∈N(1)
1 \{i}

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ −∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ > 0. (2.10)

From Proposition 1, for all i ∈ N(1)
1 , it is easy to know that

pi =

|mii| −
∑

j∈N(1)
1 \{i}

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ r′j(M)

|m j j|
−

∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)

|m j j|∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ + ∑
j∈N2

∣∣∣mi j

∣∣∣ > 0. (2.11)

Immediately, there exists a positive number ε such that

0 < ε < min
i∈N(1)

1

pi. (2.12)

Now, we construct a diagonal matrix D = diag(d1, d2, · · · , dn) with

di =


1 , i ∈ N(1)

1 ,

ε +
r′i (M)
|mii |

, i ∈ N(1)
2 ,

ε + ri(M)
|mii |

, i ∈ N2,

(2.13)

where ε is given by (2.12). It is easy to find that all the elements in the diagonal matrix D are positive.
Next, we will prove that MD is strictly diagonally dominant.
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Case 1. For each i ∈ N(1)
1 , it is not difficult to find that | (MD)ii | = |mii|. By (2.11) and (2.13), we have

ri(MD) =
∑

j∈N(1)
1 \{i}

d j

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2

d j

∣∣∣mi j

∣∣∣ +∑
j∈N2

d j

∣∣∣mi j

∣∣∣
=

∑
j∈N(1)

1 \{i}

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2

(
ε +

r′j(M)

|m j j|

)
|mi j| +

∑
j∈N2

(
ε +

r j(M)
|m j j|

)
|mi j|

=
∑

j∈N(1)
1 \{i}

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ + ε
 ∑

j∈N(1)
2

∣∣∣mi j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣


< |mii| = |(MD)ii| .

Case 2. For each i ∈ N(1)
2 , we obtain

|(MD)ii| = |mii|

(
ε +

r′i (M)
|mii|

)
= ε|mii| + r′i (M). (2.14)

From (2.3) , (2.13), and (2.14), we derive that

ri(MD) =
∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ + ε
 ∑

j∈N(1)
2 \{i}

∣∣∣mi j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣


≤ r′i (M) + ε

 ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣


< r′i (M) + ε |mii| = |(MD)ii| .

The first inequality holds because of |mii| > r′i (M) for any i ∈ N(1)
2 , and

r′i (M) =
∑

j∈N1\{i}

∣∣∣mi j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣
=

∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣
≥

∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ .
Case 3. For each i ∈ N2 , we have

ri(M) =
∑

j∈N1\{i}

∣∣∣mi j

∣∣∣ + ∑
j∈N2\{i}

∣∣∣mi j

∣∣∣
=

∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ + ∑
j∈N2\{i}

∣∣∣mi j

∣∣∣
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≥
∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ + ∑
j∈N2\{i}

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ . (2.15)

Meanwhile, for each i ∈ N2 , it is easy to get

|mii| > ri(M) ≥
∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ + ∑
j∈N2\{i}

∣∣∣mi j

∣∣∣ , (2.16)

and

|(MD)ii| = |mii|

(
ε +

ri(M)
|mii|

)
= ε |mii| + ri(M). (2.17)

From (2.13), (2.15), and (2.16), it can be deduced that

ri(MD) =
∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2

ε + r′j(M)∣∣∣m j j

∣∣∣
 ∣∣∣mi j

∣∣∣ + ∑
j∈N2\{i}

ε + r j(M)∣∣∣m j j

∣∣∣
 ∣∣∣mi j

∣∣∣
=

∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ + ∑
j∈N2\{i}

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ + ε
 ∑

j∈N(1)
2

∣∣∣mi j

∣∣∣ + ∑
j∈N2\{i}

∣∣∣mi j

∣∣∣


<ri(M) + ε |mii| = |(MD)ii| .

So, |(MD)ii| > ri(MD) for i ∈ N. Thus, MD is an S DD matrix. The proof is completed. □

It is well known that the H-matrix M is nonsingular if there exists a diagonal matrix D such that
MD is an S DD matrix (see [1, 19]). Therefore, from Theorem 1, S DD+1 matrices are nonsingular
H-matrices.

Corollary 1. Let M = (mi j) ∈ Cn×n be an S DD+1 matrix. Then, M is also an H-matrix. If, in addition,
M has positive diagonal entries, then det(M) > 0.

Proof. We see from Theorem 1 that there is a positive diagonal matrix D such that MD is an S DD
matrix (cf. (M35) of Theorem 2.3 of Chapter 6 of [1]). Thus, M is a nonsingular H-matrix. Since the
diagonal entries of M and D are positive, MD has positive diagonal entries. From the fact that MD is
an S DD matrix, it is well known that 0 < det(MD) = det(M)det(D), which means det(M) > 0. □

3. Infinity norm bounds of the inverse of S DD+1 matrices

In this section, we start to consider two infinity norm bounds of the inverse of S DD+1 matrices.
Before that, some notations are defined:

Mi =|mii| −
∑

j∈N(1)
1 \{i}

|mi j| −
∑
j∈N(1)

2

|mi j|
r′j(M)

|m j j|

−
∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ − ε
 ∑

j∈N(1)
2

∣∣∣mi j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣
 , i ∈ N(1)

1 , (3.1)
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Ni =r′i (M) −
∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ −∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣
+ ε

|mii| −
∑

j∈N(1)
2 \{i}

∣∣∣mi j

∣∣∣ −∑
j∈N2

∣∣∣mi j

∣∣∣
 , i ∈ N(1)

2 , (3.2)

Zi =ri(M) −
∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ − ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣
+ ε

|mii| −
∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ − ∑
j∈N2\{i}

∣∣∣mi j

∣∣∣
 , i ∈ N2. (3.3)

Next, let us review an important result proposed by Varah (1975).

Theorem 2. [20] If M = (mi j) ∈ Cn×n is an S DD matrix, then∥∥∥M−1
∥∥∥
∞
≤

1
min
i∈N
{|mii| − ri(M)}

. (3.4)

Theorem 2 can be used to bound the infinity norm of the inverse of an S DD matrix. This theorem
together with the scaling matrix D = diag(d1, d2, · · · , dn) allows us to gain the following Theorem 3.

Theorem 3. Let M = (mi j) ∈ Cn×n be an S DD+1 matrix. Then,

∥∥∥M−1
∥∥∥
∞
≤

max

1,max
i∈N(1)

2

(
ε +

r′i (M)
|mii |

)
,max

i∈N2

(
ε + ri(M)

|mii |

)
min

min
i∈N(1)

1

Mi, min
i∈N(1)

2

Ni,min
i∈N2

Zi


, (3.5)

where ε , Mi, Ni, and Zi are defined in (2.8), (2.9), and (3.1)–(3.3), respectively.

Proof. By Theorem 1, there exists a positive diagonal matrix D such that MD is an S DD matrix, where
D is defined as (2.13). Hence, we have the following result:∥∥∥M−1

∥∥∥
∞
=

∥∥∥∥D
(
D−1M−1

)∥∥∥∥
∞
=

∥∥∥D(MD)−1
∥∥∥
∞
≤ ∥D∥∞

∥∥∥(MD)−1
∥∥∥
∞

(3.6)

and

∥D∥∞ = max
1≤i≤n

di = max

1,max
i∈N(1)

2

(
ε +

r′i (M)
|mii|

)
,max

i∈N2

(
ε +

ri(M)
|mii|

) ,
where ε is given by (2.8). Note that MD is an S DD matrix, by Theorem 2, we have∥∥∥(MD)−1

∥∥∥
∞
≤

1
min
i∈N
{|(MD)ii| − ri (MD)}

.
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However, there are three scenarios to solve |(MD)ii| − ri (MD) . For i ∈ N(1)
1 , we get

|(MD)ii| − ri(MD)

= |mii| −
∑

j∈N(1)
1 \{i}

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2

ε + r′j(M)∣∣∣m j j

∣∣∣
 ∣∣∣mi j

∣∣∣ −∑
j∈N2

ε + r j(M)∣∣∣m j j

∣∣∣
 ∣∣∣mi j

∣∣∣
= |mii| −

∑
j∈N(1)

1 \{i}

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ −∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ − ε
 ∑

j∈N(1)
2

∣∣∣mi j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣


=Mi.

For i ∈ N(1)
2 , we have

|(MD)ii| − ri(MD)

=

(
ε +

r′i (M)
|mii|

)
|mii| −

∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2 \{i}

ε + r′j(M)∣∣∣m j j

∣∣∣
 ∣∣∣mi j

∣∣∣ −∑
j∈N2

ε + r j(M)∣∣∣m j j

∣∣∣
 ∣∣∣mi j

∣∣∣
=r′i (M) −

∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ −∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ + ε
|mii| −

∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ −∑
j∈N2

∣∣∣mi j

∣∣∣


=Ni.

For i ∈ N2, we obtain

|(MD)ii| − ri(MD)

=

(
ε +

ri(M)
|mii|

)
|mii| −

∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2

ε + r′j(M)∣∣∣m j j

∣∣∣
 ∣∣∣mi j

∣∣∣ − ∑
j∈N2\{i}

ε + r j(M)∣∣∣m j j

∣∣∣
 ∣∣∣mi j

∣∣∣
=ri(M) −

∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ − ∑
j∈N2\{i}

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ + ε
|mii| −

∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ − ∑
j∈N2\{i}

∣∣∣mi j

∣∣∣


=Zi.

Hence, according to (3.6) we have

∥∥∥M−1
∥∥∥
∞
≤

max

1,max
i∈N(1)

2

(
ε +

r′i (M)
|mii |

)
,max

i∈N2

(
ε + ri(M)

|mii |

)
min

min
i∈N(1)

1

Mi, min
i∈N(1)

2

Ni,min
i∈N2

Zi


.

The proof is completed. □

It is noted that the upper bound in Theorem 3 is related to the interval values of the parameter. Next,
another upper bound of

∥∥∥M−1
∥∥∥
∞

is given, which depends only on the elements in the matrix.
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Theorem 4. Let M = (mi j) ∈ Cn×n be an S DD+1 matrix. Then,

∥∥∥M−1
∥∥∥
∞
≤max

 1
min
i∈N(1)

1

{|mii| − Fi(M)}
,

1

min
i∈N(1)

2

{
|mii| − F′i (M)

} , 1

min
i∈N2

{
|mii| −

∑
j,i

∣∣∣mi j

∣∣∣}
 , (3.7)

where Fi(M) and F′i (M) are shown in (2.6).

Proof. By the well-known fact (see [21, 22]) that∥∥∥M−1
∥∥∥−1

∞
= inf

x,0

∥Mx∥∞
∥x∥∞

= min
∥x∥∞=1

∥Mx∥∞ = ∥Mx∥∞ = max
i∈N
|(Mx)i| , (3.8)

for some x = [x1, x2, · · · , xn]T , we have ∥∥∥M−1
∥∥∥−1

∞
≥ |(Mx)i| . (3.9)

Assume that there is a unique k ∈ N such that ∥x∥∞ = 1 = |xk|, then

mkkxk =(Mx)k −
∑
j,k

mk jx j

=(Mx)k −
∑

j∈N(1)
1 \{k}

mk jx j −
∑

j∈N(1)
2 \{k}

mk jx j −
∑

j∈N2\{k}

mk jx j.

When k ∈ N(1)
1 , let

∣∣∣x j

∣∣∣ = r′j(M)

|m j j|
( j ∈ N(1)

2 ), and
∣∣∣x j

∣∣∣ = r j(M)

|m j j|
( j ∈ N2). Then we have

|mkk| = |mkkxk| =

∣∣∣∣∣∣∣∣∣(Mx)k −
∑

j∈N(1)
1 \{k}

mk jx j −
∑
j∈N(1)

2

mk jx j −
∑
j∈N2

mk jx j

∣∣∣∣∣∣∣∣∣
≤ |(Mx)k| +

∣∣∣∣∣∣∣∣∣
∑

j∈N(1)
1 \{k}

mk jx j

∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣∣
∑
j∈N(1)

2

mk jx j

∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∑j∈N2

mk jx j

∣∣∣∣∣∣∣
≤ |(Mx)k| +

∑
j∈N(1)

1 \{k}

∣∣∣mk j

∣∣∣ ∣∣∣x j

∣∣∣ + ∑
j∈N(1)

2

∣∣∣mk j

∣∣∣ ∣∣∣x j

∣∣∣ +∑
j∈N2

∣∣∣mk j

∣∣∣ ∣∣∣x j

∣∣∣
≤ |(Mx)k| +

∑
j∈N(1)

1 \{k}

∣∣∣mk j

∣∣∣ + ∑
j∈N(1)

2

∣∣∣mk j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ +∑
j∈N2

∣∣∣mk j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣
≤

∥∥∥M−1
∥∥∥−1

∞
+

∑
j∈N(1)

1 \{k}

∣∣∣mk j

∣∣∣ + ∑
j∈N(1)

2

∣∣∣mk j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ +∑
j∈N2

∣∣∣mk j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣
=

∥∥∥M−1
∥∥∥−1

∞
+ Fk(M).

Which implies that ∥∥∥M−1
∥∥∥
∞
≤

1
|mkk| − Fk(M)

≤
1

min
i∈N(1)

1

{|mii| − Fi(M)}
.
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For k ∈ N(1)
2 , let

∑
j∈N(1)

1

∣∣∣mk j

∣∣∣ = 0. It follows that

|mkk| ≤ |(Mx)k| +
∑
j∈N(1)

1

∣∣∣mk j

∣∣∣ ∣∣∣x j

∣∣∣ + ∑
j∈N(1)

2 \{k}

∣∣∣mk j

∣∣∣ ∣∣∣x j

∣∣∣ +∑
j∈N2

∣∣∣mk j

∣∣∣ ∣∣∣x j

∣∣∣
≤

∥∥∥M−1
∥∥∥−1

∞
+ 0 +

∑
j∈N(1)

2 \{k}

∣∣∣mk j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ +∑
j∈N2

∣∣∣mk j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣
=

∥∥∥M−1
∥∥∥−1

∞
+ F′k(M).

Hence, we obtain that

∥∥∥M−1
∥∥∥
∞
≤

1
|mkk| − F′k(M)

≤
1

min
i∈N(1)

2

{
|mii| − F′i (M)

} .
For k ∈ N2, we get

0 < min
i∈N2

|mii| −
∑
j,i

∣∣∣mi j

∣∣∣ ≤ |mkk| −
∑
j,k

∣∣∣mk j

∣∣∣ ,
and

0 < min
i∈N2

|mii| −
∑
j,i

∣∣∣mi j

∣∣∣ |xk| ≤ |mkk| |xk| −
∑
j,k

∣∣∣mk j

∣∣∣ ∣∣∣x j

∣∣∣
≤ |mkk| |xk| −

∣∣∣∣∣∣∣∑j,k

mk jx j

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣ ∑
k∈N2, j∈N

mk jx j

∣∣∣∣∣∣∣ ≤ max
i∈N2

∣∣∣∣∣∣∣∑j∈N mi jx j

∣∣∣∣∣∣∣
≤

∥∥∥M−1
∥∥∥−1

∞
,

which implies that ∥∥∥M−1
∥∥∥
∞
≤

1
|mkk| − Fk(M)

≤
1

min
i∈N2

{
|mii| −

∑
j,i

∣∣∣mi j

∣∣∣} .
To sum up, we obtain that

∥∥∥M−1
∥∥∥
∞
≤max

 1
min
i∈N(1)

1

{|mii| − Fi(M)}
,

1

min
i∈N(1)

2

{
|mii| − F′i (M)

} , 1

min
i∈N2

{
|mii| −

∑
j,i

∣∣∣mi j

∣∣∣}
 .

The proof is completed. □

Next, some numerical examples are given to illustrate the superiority of our results.

AIMS Mathematics Volume 9, Issue 8, 21294–21320.



21308

Example 7. Consider the following matrix:

M7 =



2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 2 −1


.

It is easy to verify that M7 is an S DD+1 matrix. However, we know that M7 is not an S DD matrix, a
GS DD1 matrix, an S DD1 matrix and a CKV-type matrix. By the bound in Theorem 3, we have

min pi = 0.25, ε ∈ (0, 0.25) .

When ε = 0.1225 , we get ∥∥∥M−1
7

∥∥∥
∞
≤ 8.1633.

The range of parameter values in Theorem 3 is not empty set, and its optimal solution can be
illustrated through examples. In Example 7, the range of values for the error bound and its optimal
solution can be seen from Figure 2. The bound for Example 7 is (8.1633,100) , and the optimal
solution for Example 7 is 8.1633.

Figure 2. The bound of Theorem 3.

However, according to Theorem 4, we obtain∥∥∥M−1
7

∥∥∥
∞
≤ max {4, 1, 1} = 4.

Through this example, it can be found that the bound of Theorem 4 is better than Theorem 3 in some
cases.
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Example 8. Consider the following matrix:

M8 =



b1 c 0 0 0 0 0 0 0 0
a b2 c 0 0 0 0 0 0 0
0 a b3 c 0 0 0 0 0 0
0 0 a b4 c 0 0 0 0 0
0 0 0 a b5 c 0 0 0 0
0 0 0 0 a b6 c 0 0 0
0 0 0 0 0 a b7 c 0 0
0 0 0 0 0 0 a b8 c 0
0 0 0 0 0 0 0 a b9 c
0 0 0 0 0 0 0 0 a b10



.

Here, a = −2, c = 2.99, b1 = 6.3304, b2 = 6.0833, b3 = 5.8412, b4 = 5.6065, b5 = 5.3814,
b6 = 5.1684, b7 = 4.9695, b8 = 4.7866, b9 = 4.6217, and b10 = 4.4763. It is easy to verify that M8

is an S DD+1 matrix. However, we can get that M8 is not an S DD matrix, a GS DD1 matrix, an S DD1

matrix, and a CKV-type matrix. By the bound in Theorem 3, we have

min pi = 0.1298, ε ∈ (0, 0.1298) .

When ε = 0.01, we have ∥∥∥M−1
8

∥∥∥
∞
≤

max{1, 1.0002, 0.9755}
min{0.5981, 0.0163, 0.1765}

= 61.3620.

If ε = 0.1, we have ∥∥∥M−1
8

∥∥∥
∞
≤

max{1, 1.0902, 1.0655}
min{0.1490, 0.1632, 0.1925}

= 7.3168.

Taking ε = 0.11, then it is easy to calculate∥∥∥M−1
8

∥∥∥
∞
≤

max{1, 1.1002, 1.0755}
min{0.0991, 0.1795, 0.1943}

= 11.1019.

By the bound in Theorem 4, we have∥∥∥M−1
8

∥∥∥
∞
≤ max {1.5433, 0.6129, 5.6054} = 5.6054.

Example 9. Consider the following matrix:

M9 =


11.3 −1.2 −1.1 4.7
−1.2 14.2 9.1 −4
3.2 −1.1 14.3 0.3
4.6 7.6 3.2 11.3

 .
It is easy to verify that the matrix M9 is a GS DD1 matrix and an S DD+1 matrix. When M9 is a GS DD1

matrix, it can be calculated according to Lemma 1 that

ε ∈ (1.0484, 1.1265) .
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According to Figure 3, if we take ε = 1.0964, we can obtain an optimal bound, namely∥∥∥M−1
9

∥∥∥
∞
≤ 6.1806.

When M9 is an S DD+1 matrix, it can be calculated according to Theorem 3. We obtain

ε ∈ (0, 0.2153) .

Figure 3. The bound of infinity norm.

According to Figure 3, if we take ε = 0.1707, we can obtain an optimal bound, namely∥∥∥M−1
9

∥∥∥
∞
≤ 1.5021.

However, according to Theorem 4, we get∥∥∥M−1
9

∥∥∥
∞
≤ max {0.3016, 0.2564, 0.2326} = 0.3016.

Example 10. Consider the following matrix:

M10 =


7 3 1 1
1 7 3 4
2 2 9 3
3 1 3 7

 .
It is easy to verify that the matrix M10 is a CKV-type matrix and an S DD+1 matrix. When M10 is a
CKV-type matrix, it can be calculated according to Theorem 21 in [9]∥∥∥M10

−1
∥∥∥
∞
≤ 11.

When M10 is an S DD+1 matrix, take ε = 0.0914 according to Theorem 3. We obtain an optimal bound,
namely ∥∥∥M10

−1
∥∥∥
∞
≤

max{1, 0.8737, 0.8692}
min{0.0919, 0.0914, 3.5901}

= 10.9409.

When M10 is an S DD+1 matrix, it can be calculated according to Theorem 4. We can obtain∥∥∥M10
−1

∥∥∥
∞
≤ max{1, 2149, 1, 1} = 1.2149.
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From Examples 9 and 10, it is easy to know that the bound in Theorem 3 and Theorem 4 in our
paper is better than available results in some cases.

4. Error bound of the LCP associated with S DD+1 matrices

The P-matrix refers to a matrix in which all principal minors are positive [19], and it is widely
used in optimization problems in economics, engineering, and other fields. In fact, the linear
complementarity problem in the field of optimization has a unique solution if and only if the
correlation matrix is a P-matrix, so the P-matrix has attracted extensive attention, see [23–25]. As we
all know, the linear complementarity problem of matrix M, denoted by LCP(M, q), is to find a vector
x ∈ Rn such that

Mx + q ≥ 0, (Mx + q)T x = 0, x ≥ 0, (4.1)

or to prove that no such vector x exists, where M ∈ Rn×n and q ∈ Rn. One of the essential problems in
LCP(M, q) is to estimate

max
d∈[0,1]n

∥(I − D + DM)−1∥∞,

where D = diag(di), d = (d1, d2, · · · , dn), 0 ≤ di ≤ 1, i = 1, 2, · · · , n. It is well known that when M is a
P-matrix, there is a unique solution to linear complementarity problems.

In [2], Chen et al. gave the following error bound for LCP(M, q),

∥x − x∗∥∞ ≤ max
d∈[0,1]n

∥(I − D + DM)−1∥∞∥r(x)∥∞, ∀x ∈ Rn, (4.2)

where x∗ is the solution of LCP(M, q), r(x) = min{x,Mx + q}, and the min operator r(x) denotes the
componentwise minimum of two vectors. However, for P-matrices that do not have a specific
structure and have a large order, it is very difficult to calculate the error bound of
max

d∈[0,1]n
∥(I − D + DM)−1∥∞. Nevertheless, the above problem is greatly alleviated when the proposed

matrix has a specific structure [7, 16, 26–28].
It is well known that a nonsingular H-matrix with positive diagonal entries is a P-matrix. In [29],

when the matrix M is a nonsingular H-matrix with positive diagonal entries, and there is a diagonal
matrix D so that MD is an S DD matrix, the authors propose a method to solve the error bounds of the
linear complementarity problem of the matrix M. Now let us review it together.

Theorem 5. [29] Assume that M = (mi j) ∈ Rn×n is an H-matrix with positive diagonal entries. Let
D = diag(di), di > 0, for all i ∈ N = {1, . . . , n}, be a diagonal matrix such that MD is strictly diagonally
dominant by rows. For any i ∈ N = {1, . . . , n}, let βi := miidi −

∑
j,i
|mi j|d j. Then,

max
d∈[0,1]n

∥∥∥(I − D + DM)−1
∥∥∥
∞
≤ max

{
maxi {di}

mini {βi}
,

maxi {di}

mini {di}

}
. (4.3)

Next, the error bound of the linear complementarity problem of S DD+1 matrices is given by using
the positive diagonal matrix D in Theorem 1.

Theorem 6. Suppose that M = (mi j) ∈ Rn×n (n ≥ 2) is an S DD+1 matrix with positive diagonal entries,
and for any i ∈ N(1)

1 ,
∑

j∈N(1)
2

∣∣∣mi j

∣∣∣ + ∑
j∈N2

∣∣∣mi j

∣∣∣ , 0. Then,
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max
d∈[0,1]n

∥∥∥(I − D + DM)−1
∥∥∥
∞

≤max


max

1,max
i∈N(1)

2

(
ε +

r′i (M)
|mii |

)
,max

i∈N2

(
ε + ri(M)

|mii |

)
min

min
i∈N(1)

1

Mi, min
i∈N(1)

2

Ni,min
i∈N2

Zi


,

max

1,max
i∈N(1)

2

(
ε +

r′i (M)
|mii |

)
,max

i∈N2

(
ε + ri(M)

|mii |

)
min

1, min
i∈N(1)

2

(
ε +

r′i (M)
|mii |

)
,min

i∈N2

(
ε + ri(M)

|mii |

)


,

(4.4)

where ε , Mi, Ni, and Zi are defined in (2.8), (2.9), and (3.1)–(3.3), respectively.

Proof. Since M is an S DD+1 matrix with positive diagonal elements, the existence of a positive diagonal
matrix D such that MD is a strictly diagonal dominance matrix can be seen. For i ∈ N, we can get

βi = |(MD)ii| −
∑

j∈N\{i}

∣∣∣(MD)i j

∣∣∣
= |(MD)ii| −

 ∑
j∈N(1)

1 \{i}

∣∣∣(MD)i j

∣∣∣ + ∑
j∈N(1)

2 \{i}

∣∣∣(MD)i j

∣∣∣ + ∑
j∈N2\{i}

∣∣∣(MD)i j

∣∣∣


= |(MD)ii| −
∑

j∈N(1)
1 \{i}

∣∣∣(MD)i j

∣∣∣ − ∑
j∈N(1)

2 \{i}

∣∣∣(MD)i j

∣∣∣ − ∑
j∈N2\{i}

∣∣∣(MD)i j

∣∣∣ .
By Theorem 5, for i ∈ N(1)

1 , we get

βi =miidi −
∑
j,i

∣∣∣mi j

∣∣∣ d j = |mii| −

 ∑
j∈N(1)

1 \{i}

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2

ε + r′j(M)∣∣∣m j j

∣∣∣
 ∣∣∣mi j

∣∣∣ +∑
j∈N2

ε + r j(M)∣∣∣m j j

∣∣∣
 ∣∣∣mi j

∣∣∣


= |mii| −
∑

j∈N(1)
1 \{i}

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ −∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ − ε
 ∑

j∈N(1)
2

∣∣∣mi j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣
 .

For i ∈ N(1)
2 , we have

βi =miidi −
∑
j,i

∣∣∣mi j

∣∣∣ d j

=

(
ε +

r′i (M)
|mii|

)
|mii| −

 ∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2 \{i}

ε + r′j(M)∣∣∣m j j

∣∣∣
 ∣∣∣mi j

∣∣∣ +∑
j∈N2

ε + r j(M)∣∣∣m j j

∣∣∣
 ∣∣∣mi j

∣∣∣


=ε |mii| + r′i (M) −
∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ − ε ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ −∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ − ε∑
j∈N2

∣∣∣mi j

∣∣∣
=r′i (M) −

∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ −∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ + ε
|mii| −

∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ −∑
j∈N2

∣∣∣mi j

∣∣∣
 .
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For i ∈ N2, we have

βi =miidi −
∑
j,i

∣∣∣mi j

∣∣∣ d j

=

(
ε +

ri(M)
|mii|

)
|mii| −

 ∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2

ε + r′j(M)∣∣∣m j j

∣∣∣
 ∣∣∣mi j

∣∣∣ + ∑
j∈N2\{i}

ε + r j(M)∣∣∣m j j

∣∣∣
 ∣∣∣mi j

∣∣∣


=ε |mii| + ri(M) −
∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ − ε ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ − ∑
j∈N2\{i}

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ − ε ∑
j∈N2\{i}

∣∣∣mi j

∣∣∣
=ri(M) −

∑
j∈N(1)

1

∣∣∣mi j

∣∣∣ − ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ − ∑
j∈N2\{i}

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣ + ε
|mii| −

∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ − ∑
j∈N2\{i}

∣∣∣mi j

∣∣∣
 .

To sum up, it can be seen that

βi =


Mi, i ∈ N(1)

1 ,

Ni, i ∈ N(1)
2 ,

Zi, i ∈ N2.

According to Theorems 1 and 5, it can be obtained that

max
d∈[0,1]n

∥∥∥(I − D + DM)−1
∥∥∥
∞

≤max


max

1,max
i∈N(1)

2

(
ε +

r′i (M)
|mii |

)
,max

i∈N2

(
ε + ri(M)

|mii |

)
min

min
i∈N(1)

1

Mi, min
i∈N(1)

2

Ni,min
i∈N2

Zi


,

max

1,max
i∈N(1)

2

(
ε +

r′i (M)
|mii |

)
,max

i∈N2

(
ε + ri(M)

|mii |

)
min

1, min
i∈N(1)

2

(
ε +

r′i (M)
|mii |

)
,min

i∈N2

(
ε + ri(M)

|mii |

)


.

The proof is completed. □

It is noted that the error bound of Theorem 6 is related to the interval of the parameter ε.

Lemma 3. [16] Letting γ > 0 and η > 0, for any x ∈ [0, 1],

1
1 − x + xγ

≤
1

min{γ, 1}
,

ηx
1 − x + xγ

≤
η

γ
. (4.5)

Theorem 7. Let M = (mi j) ∈ Rn×n be an S DD+1 matrix. Then, M = (mi j) = I − D + DM is also an
S DD+1 matrix, where D = diag (di) with 0 ≤ di ≤ 1, ∀i ∈ N.

Proof. Since M = I − D + DM = (mi j), then

mi j =

{
1 − di + dimii, i = j,

dimi j, i , j.
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By Lemma 3, for any i ∈ N(1)
1 , we have

Fi(M) =
∑

j∈N(1)
1 \{i}

∣∣∣dimi j

∣∣∣ + ∑
j∈N(1)

2

∣∣∣dimi j

∣∣∣ d jr′j(M)

1 − d j + m j jd j
+

∑
j∈N2

∣∣∣dimi j

∣∣∣ d jr j(M)
1 − d j + m j jd j

=di

 ∑
j∈N(1)

1 \{i}

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ d jr′j(M)

1 − d j + m j jd j
+

∑
j∈N2

∣∣∣mi j

∣∣∣ d jr j(M)
1 − d j + m j jd j


≤di

 ∑
j∈N(1)

1 \{i}

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2

∣∣∣mi j

∣∣∣ r′j(M)∣∣∣m j j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)∣∣∣m j j

∣∣∣


=diFi(M).

In addition, diFi(M) < 1 − di + di |mii| = |mii|, that is, for each i ∈ N(1)
1 (M) ⊆ N(1)

1 (M), |mii| > Fi(M).
For any i ∈ N(1)

2 , we have

Fi(M) =
∑

j∈N(1)
2 \{i}

∣∣∣dimi j

∣∣∣ +∑
j∈N2

∣∣∣dimi j

∣∣∣ = di

 ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ +∑
j∈N2

∣∣∣mi j

∣∣∣
 = diF′i (M).

So, diF′i (M) < 1 − di + di |mii| = |mii|, that is, for each i ∈ N(1)
2 (M) ⊆ N(1)

2 (M), |mii| > F′i (M). Therefore,
M =

(
mi j

)
= I − D + DM is an S DD+1 matrix. □

Next, another upper bound about max
d∈[0,1]n

∥∥∥(I − D + DM)−1
∥∥∥
∞

is given, which depends on the result

in Theorem 4.

Theorem 8. Assume that M = (mi j) ∈ Rn×n (n ≥ 2) is an S DD+1 matrix with positive diagonal entries,
and M = I − D + DM, D = diag (di) with 0 ≤ di ≤ 1. Then,

max
d∈[0,1]n

∥∥∥∥M
−1

∥∥∥∥
∞
≤ max


1

min
i∈N(1)

1

{|mii| − Fi(M), 1}
,

1

min
i∈N(1)

2

{
|mii| − F′i (M), 1

} , 1

min
i∈N2

{
|mii| −

∑
j,i

∣∣∣mi j

∣∣∣ , 1}
 , (4.6)

where N2, N(1)
1 , N(1)

2 , Fi(M), and F′i (M) are given by (2.1), (2.2), and (2.6), respectively.

Proof. Because M is an S DD+1 matrix, according to Theorem 7, M = I − D + DM is also an S DD+1
matrix, where

M =
(
mi j

)
=

{
1 − di + dimii, i = j,

dimi j, i , j.

By (3.7), we can obtain that

∥∥∥∥M
−1

∥∥∥∥
∞
≤max


1

min
i∈N(1)

1 (M)

{
|mii| − Fi(M)

} , 1

min
i∈N(1)

2 (M)

{
|mii| − F′i (M)

} , 1

min
i∈N2(M)

{
|mii| −

∑
j,i

∣∣∣mi j

∣∣∣}
 .
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According to Theorem 7, for i ∈ N(1)
1 , let

∇(M) =
∑

j∈N(1)
1 \{i}

∣∣∣dimi j

∣∣∣ + ∑
j∈N(1)

2 \{i}

∣∣∣dimi j

∣∣∣ d jr′j(M)

1 − d j + d jm j j
+

∑
j∈N2

∣∣∣dimi j

∣∣∣ d jr j(M)
1 − d j + d jm j j

,

we have

1

|mii| − Fi(M)
=

1

1 − di + dimii − ∇(M)

≤
1

1 − di + dimii − di

 ∑
j∈N(1)

1 \{i}

∣∣∣mi j

∣∣∣ + ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ r′j(M)

|m j j |
+

∑
j∈N2

∣∣∣mi j

∣∣∣ r j(M)
|m j j |


=

1
1 − di + di (|mii| − Fi(M))

≤
1

min {|mii| − Fi(M), 1}
.

For i ∈ N(1)
2 , we get

1

|mii| − F′i (M)
=

1

1 − di + dimii −

 ∑
j∈N(1)

2 \{i}

∣∣∣dimi j

∣∣∣ + ∑
j∈N2

∣∣∣dimi j

∣∣∣
=

1

1 − di + dimii − di

 ∑
j∈N(1)

2 \{i}

∣∣∣mi j

∣∣∣ + ∑
j∈N2

∣∣∣mi j

∣∣∣
=

1

1 − di + di

(
|mii| − F′i (M)

)
≤

1

min
{
|mii| − F′i (M), 1

} .
For i ∈ N2, we can obtain that

1
|mii| −

∑
j,i

∣∣∣mi j

∣∣∣ = 1
1 − di + dimii −

∑
j,i

∣∣∣dimi j

∣∣∣
=

1

1 − di + di

(
|mii| −

∑
j,i

∣∣∣mi j

∣∣∣)
≤

1

min
{
|mii| −

∑
j,i

∣∣∣mi j

∣∣∣ , 1} .
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To sum up, it holds that

max
d∈[0,1]n

∥∥∥∥M
−1

∥∥∥∥
∞
≤ max

 1
min
i∈N(1)

1

{|mii| − Fi(M), 1}
,

1

min
i∈N(1)

2

{
|mii| − F′i (M), 1

} , 1

min
i∈N2

{
|mii| −

∑
j,i

∣∣∣mi j

∣∣∣ , 1}
 .

The proof is completed. □

The following examples show that the bound (4.6) in Theorem 8 is better than the bound (4.4) in
some conditions.

Example 11. Let us consider the matrix in Example 6. According to Theorem 6, by calculation, we
obtain

ε ∈ (0, 0.0386) .

Taking ε = 0.01, then
max

d∈[0,1]12000

∥∥∥(I − D + DM6)−1
∥∥∥
∞
≤ 589.4024.

In addition, from Theorem 8, we get

max
d∈[0,1]12000

∥∥∥(I − D + DM6)−1
∥∥∥
∞
≤ 929.6202.

Example 12. Let us consider the matrix in Example 9. Since M9 is a GS DD1 matrix, then, by
Lemma 2, we get

ε ∈ (1.0484, 1.1265) .

From Figure 4, when ε = 1.0964 , the optimal bound can be obtained as follows:

max
d∈[0,1]4

∥∥∥(I − D + DM9)−1
∥∥∥
∞
⩽ 6.1806.

Moreover, M9 is an S DD+1 matrix, and by Theorem 6 , we get

ε ∈ (0, 0.2153) .

From Figure 4, when ε = 0.1794, the optimal bound can be obtained as follows:

max
d∈[0,1]4

∥∥∥(I − D + DM9)−1
∥∥∥
∞
≤ 1.9957.

However, according to Theorem 8, we obtain that

max
d∈[0,1]4

∥∥∥(I − D + DM9)−1
∥∥∥
∞
≤ 1.
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21317

Figure 4. The bound of LCP.

Example 13. Consider the following matrix:

M11 =


7 −3 −1 −1
−1 7 −3 −4
−2 −2 9 −3
−3 −1 −3 7

 .
Obviously, B+ = M11 and C = 0. By calculations, we know that the matrix B+ is a CKV-type matrix
with positive diagonal entries, and thus M11 is a CKV-type B-matrix. It is easy to verify that the matrix
M11 is an S DD+1 matrix. By bound (4.4) in Theorem 6, we get

max
d∈[0,1]4

∥∥∥(I − D + DM11)−1
∥∥∥
∞
≤ 10.9890(ε = 0.091), ε ∈ (0, 0.1029).

By the bound (4.6) in Theorem 8, we get

max
d∈[0,1]4

∥∥∥(I − D + DM11)−1
∥∥∥
∞
≤ 1.2149,

while by Theorem 3.1 in [18], it holds that

max
d∈[0,1]4

∥∥∥(I − D + DM11)−1
∥∥∥
∞
≤ 147.

From Examples 12 and 13, it is obvious to know that the bounds in Theorems 6 and 8 in our paper
is better than available results in some cases.

5. Conclusions

In this paper, a new subclass of nonsingular H-matrices, S DD+1 matrices, have been introduced.
Some properties of S DD+1 matrices are discussed, and the relationships among S DD+1 matrices and
S DD1 matrices, GS DD1 matrices, and CKV-type matrices are analyzed through numerical examples.

AIMS Mathematics Volume 9, Issue 8, 21294–21320.
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A scaling matrix D is used to transform the matrix M into a strictly diagonal dominant matrix, which
proves the non-singularity of S DD+1 matrices. Two upper bounds of the infinity norm of the inverse
matrix are deduced by two methods. On this basis, two error bounds of the linear complementarity
problem are given. Numerical examples show the validity of the obtained results.
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