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1. Introduction

The nonsingular H-matrix and its subclass play an important role in a lot of fields of science such
as computational mathematics, mathematical physics, and control theory, see [1-4]. Meanwhile, the
infinity norm bounds of the inverse for nonsingular H-matrices can be used in convergence analysis of
matrix splitting and matrix multi-splitting iterative methods for solving large sparse systems of linear
equations [5], as well as bounding errors of linear complementarity problems [6, 7]. In recent years,
many scholars have developed a deep research interest in the infinity norm of the inverse for special
nonsingular H-matrices, such as GS DD; matrices [8], CKV-type matrices [9], S-S DDS matrices [10],
S -Nekrasov matrices [11], S-S DD matrices [12], and so on, which depends only on the entries of the
matrix.

In this paper, we prove that M is a nonsingular H-matrix by constructing a scaling matrix D for
S DD7 matrices such that MD is a strictly diagonally dominant matrix. The use of the scaling matrix is
important for some applications, for example, the infinity norm bound of the inverse [13], eigenvalue
localization [3], and error bounds of the linear complementarity problem [14]. We consider the infinity
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norm bound of the inverse for the S DD} matrix by multiplying the scaling matrix, then we use the
result to discuss the error bounds of the linear complementarity problem.

For a positive integer n > 2, let N denote the set {1,2,...,n} and C"”"(R™") denote the set of all
complex (real) matrices. Successively, we review some special subclasses of nonsingular H-matrices
and related lemmas.

Definition 1. [5] A matrix M = (m;;) € C™" is called a strictly diagonally dominant (S DD) matrix if

lm;i| > r; (M), Vi€ N, (1.1)

where r; (M) = Zn: .|ml~j|.

Jj=1,j#i
Various generalizations of S DD matrices have been introduced and studied in the literatures, see
[7,15-18].

Definition 2. [8] A matrix M = (m;;) € C™" is called a generalized S DD, (GS DD, ) matrix if

ri (M) = p* (M) > 0, i €N, (1.2
(ri (M) = pi* (M))(imy;| — p' (M) > p' (M)pl* (M), i € Ny, j € Ny, '
where Ny = {i € NIO < |my| < r; (M)}, Ny = {i € Nllmyl > r; (MD), p)> (M) = % |myj| 2, p' (M) =
JEN2\{i} #
2 Iml,ieN.
JENI\{i}

Definition 3. [9] A matrix M = (m;;) € C™", with n > 2, is called a CKV-type matrix if for all i € N
the set S (M) is not empty, where B
ST M) =1{S € X() : Imy| > r’ (M), and for all je€S

(Imal = ¥ D) (Imys| = 7§ WD) > rF (M) 7 (M),

Lemma 1. [8] Let M = (m;;) € C™" be a GS DD matrix. Then

max {s, max 2M )}

i |miil
Ml < — (1.3)
min {min g min s
where M)
r; X
di=r(M)= D Il = = ) e, i€ N (1.4)
JEN (i} 1 JEN
(M)
vi=lmile = D Imyle= ) il =2 i€ My, (1.5)
JENI\{i} JEN2 1
and N
P (M) (M) = pi (M)
£ € ¢max , min . (1.6)
€N |my| = plt (M) =N p (M)
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Lemma 2. [8] Suppose that M = (m;;) € R™" is a GS DD\ matrix with positive diagonal entries, and
D = diag(d;) with d; € [0, 1]. Then

max {s max r’(M)} max {8 max ”(M)}
l€N2 ‘mnl l€N2 |mu|

max ||(I = D+ DM)™ ||, < max , , (1.7)
de[0,1]" : ri(M)
min {mm ¢;, min w,} min {8 min 7= }
iEN, iEN] ieEN, ii
where ¢;, W, and & are shown in (1.4)—(1.6), respectively.
Definition 4. [19] Matrix M = (m;;) € C"™" is called an S DD, matrix if
mgl > (M), foreachie N, (1.8)

where

, (M
Fon= Y s Y m i,

JENI\{i} JeN\{i} | /./|
Ny ={i € N|0 < |m;| < r; (M)}, N, = {i € N|lm;| > r; (M)} .

The rest of this paper is organized as follows: In Section 2, we propose a new subclass of
nonsingular H-matrices referred to S DD} matrices, discuss some of the properties of it, and consider
the relationships among subclasses of nonsingular H-matrices by numerical examples, including
S DD, matrices, GS DD, matrices, and CKV-type matrices. At the same time, a scaling matrix D is
constructed to verify that the matrix M is a nonsingular H-matrix. In Section 3, two methods are
utilized to derive two different upper bounds of infinity norm for the inverse of the matrix (one with
parameter and one without parameter), and numerical examples are used to show the validity of the
results. In Section 4, two error bounds of the linear complementarity problems for S DD matrices are
given by using the scaling matrix D, and numerical examples are used to illustrate the effectiveness of
the obtained results. Finally, a summary of the paper is given in Section. 5.

2. SDD| matrices and scaling matrices

For the sake of the following description, some symbols are first explained:

N =N UN,, Ny = NP UNY #0, ri(M) #0,

Ny ={i € N0 < |my| < r;y (M)}, Ny ={i € Nlimy| > r; (M)}, (2.1)
NP =i € Ni[0 < mil <7/ D}, N5” = {i € Nillmal > 7 (M), (2.2)
/ ri(M)
R = Y i+ ) g lf SRALE (2.3)
JENI\{i} JEN2 Mjj

By the definitions of Nil) and N;l), for N| = Nil) U Nél), r; (M) in Definition 4 can be rewritten as

oo = Y e Y L

JENI\ (i} JEN\{i} l mjj
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= Z Im; ;| + Z Im;;j| + Z Im,-.,l%. (2.4)

JeN{\(i) JENS\Li) JEN i) I

According to (2.4), it is easy to get the following equivalent form for S DD; matrices.
A matrix M is called an S DD; matrix, if

ri(M) . 1
lm;| > |m,]| + Z |mU| + |, il € Nf ).
]eN(l)\{ } jeny” i
e N (2.5)
|| > Z m;j| + Z m,j + Z Imul €N, .
JEN

By scaling conditions (2.5), we introduce a new class of matrices. As we will see, these matrices
belong to a new subclass of nonsingular H-matrices.

Definition 5. A matrix M = (m;;) € C"™" is called an S DD} matrix if

(M) ;
il > FM)y = 5, |myl+ 5 |y ’lm itz | i € V.
JEN \fi} jens? o (2.6)
1 )
lm;;| > F/(M) = ZGNé ),
jeN(])\{}

where N, N,, N(l) N(l) and r; (M) are defined by (2.1)—(2.3), respectively.
Proposition 1. If M = (m;;) € C™" is an S DD} matrix and N\" # 0, then Y, |m,J| + Z |mu| # 0 for

JEN, D
ieND.
Proof. Assume that there exists i € N(l) such that Z |m, ]| + Z |m, J| = 0. We find that
jEN b
FJ(M)
my| > Z |mij| = Z |mij| + Z |mu| + Z | lJ|
JeEN\(i} JjeN\(i) JEN\(i) JeN>
,( ) 9
= Z |ml]| + Z |m1]| i M),
JjeN{\) JeN

which contradicts i € N;l). The proof is completed. O

Proposition 2. If M = (m;;) € C"™" is an S DD} matrix with Ng) = 0, then M is also an S DD matrix.

Proof. From Definition 5, we have

|m,~i| > Z |m,J| + Z | l]| r]( ) Vie Nil)'

jENﬁl)\{ } j€N2 | JJ|

Because of N = Ngl), it holds that

M
mal > Y g+ || == N oy, vien,.

JENI\{i} JEN2 | JJ|

The proof is completed. O
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Example 1. Consider the following matrix:

§ -5 2 3
39 6 2
Mi=1 4 59 0
31 2 10

In fact, Ny = {1,2} and N, = {3,4}. Through calculations, we obtain that

ri(My) =10, r,(My) =11, rs(M,) =6, ry(M;) =6,

, M M
r (M) = ol + gl 2P D g 1333
|m33| |m44|
, M M
ry (My) = |my| + |m23|r3( 1) + |m24|r4( ) = 8.2000.
|m33| |m44|
Because of |my;| = 8 < 8.1333 = r, (M;), M, is not an S DD, matrix.
Since
i (M) ~ 8.1333 > |m,| = 8,
ry (M) = 8.2000 < |mpy| =9,
then NV = {1}, N\ = {2}. As
r (M M M
il = 8 5 g 2 D D) Gego
Imas| lms3| zom

Imaa| =9 > |maos| + |maa| = 8,
M, is an S DD} matrix by Definition 5.
Example 2. Consider the following matrix:
15 4 8
M,=| -7 7 -=51].
1 -2 16
In fact, Ny = {2} and N, = {1, 3}. By calculations, we get

ri(My) =12, r(M,) =12, r; (M) =3,

M M
n) WMD) s
|y |m33]

Because of |ma,| = 7 > 6.5375 = r, (M,), M, is an S DD, matrix.
According to

) (My) = 0 + |my|

7y (Ms) = 6.5375 < |my| = 7,
we know that Nél) = {2}. In addition,

[ma| =7 < 0+ |my| + [mas| = 12,

and M, is not an S DD matrix.

AIMS Mathematics Volume 9, Issue 8, 21294-21320.
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As shown in Examples 1 and 2 and Proposition 2, it can be seen that S DD} matrices and S DD,
matrices have an intersecting relationship:

{SDDy} ¢ {SDD'} and {SDD?} ¢ {SDD,}.

The following examples will demonstrate the relationships between S DD matrices and other
subclasses of nonsingular H-matrices.

Example 3. Consider the following matrix:
40 1 -2 1 2
0 10 41 4 6
M;=|20 -2 33 4 8
0 4 -6 20 2
30 4 2 0 40

In fact, Ny = {2,3} and N, = {1,4,5}. Through calculations, we get that
ri(Msz) =6, rn(M3) =14.1, r3(M3) =34, ry(M3) =12, rs(M3) = 36,

, r1 (M3) ry (M3) rs (M3)
ry (M3) = |mos| + Mo | m——2 + |yl ~——2 + |mps| ~——2 = 11.9 > |myy|,
[my| |44 |mss|
, r1 (M3) rs (M3) rs (M3)
ry (M3) = [msp| + [ma) |~ + |mag] ———2 + |mas|———2 = 14.6 < |msa,
[my | |44 |mss|
and Nil) = {2}, N;l) = {3}. Because of
ry (M5) r1 (M5) rs (M53) rs (M)
ol > o3| = + Img | =2 + Mg —=—2 + |mys| ~——2 % 9.61,
lm3;| lmp| zom |mss|

[ms3| = 33 > 0+ |m3| + |m34| + |m3s| = 32.

So, Mj is an S DD} matrix. However, since [mx»| = 10 < 11.9 = r'2 (M3), then M3 is not an S DD,
matrix. And we have

Py (M3) =3, py' (M3) = 4.1, pi* (M3) = 2, py (M3) = 10, p§' (M5) =6,
Pl (Ms) = 2.4, pi* (M3) = 7.8, pi* (M3) = 12.6, pi* (M3) = 1.8, pi* (M3) = 4.5.
Note that, taking i = 1, j = 2, we have that
(r1 (M3) = p)* (M) (Imaa] — 5" (M3)) = 21.24 < p}' (M3) p)* (M3) = 23.4.
So, M3 is not a GS DD, matrix. Moreover, it can be verified that M3 is not a CKV-type matrix.
Example 4. Consider the following matrix:

-1 04 O 0

05 1 0 0

-1 21 1 =05
1 -2 031 1

M4:

It is easy to check that M, is a CKV-type matrix and a GS DD, matrix, but not an S DD] matrix.

AIMS Mathematics Volume 9, Issue 8, 21294-21320.
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Example S. Consider the following matrix:

3078 6 6 6.75 5.25 6 3 6
225 3378 3 6 1.5 4.5 3 2.25
6 6 3303 6 6 6 5.25 3
0.75 2.25 6 2853 15 225 45 4.5
075 525 15 075 2928 6 6 2.25
525 45 1.5 075 525 3528 3 5.25
5.25 3 4.5 6 3 6.75 30.03 3.75
45 075 375 75 525 0975 075 29.28

We know that Ms is not only an S DD} matrix, but also CK'V-type matrix and GS DD; matrix.

According to Examples 3-5, we find that S DD} matrices have intersecting relationships with the
CKYV-type matrices and GS DD, matrices, as shown in the Figure 1 below. In this paper, we take
N; # 0 and r;(M) # 0, so we will not discuss the relationships among S DD matrices, S DD matrices,
and GS DD, matrices.

Figure 1. Relations between some subclasses of H-matrices.

Example 6. Consider the tri-diagonal matrix M € R™" arising from the finite difference method for
free boundary problems [8], where

b+asin(%) c 0 0
a b+asin(%) c 0
Mg =
0 a b+asin(%) c
0 0 a b+ asin (1)

Take n = 12000, a = 5.5888, b = 16.5150, ¢ = 10.9311, and @ = 14.3417. It is easy to verify that
Mg is an S DDT matrix, but not an S DD matrix, a GS DD matrix, an S DD matrix, nor a CKV-type
matrix.

AIMS Mathematics Volume 9, Issue 8, 21294-21320.
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As is shown in [19] and [8], S DD; matrix and GS DD, matrix are both nonsingular H-matrices, and
there exists an explicit construction of the diagonal matrix D, whose diagonal entries are all positive,
such that M D is an S DD matrix. In the following, we construct a positive diagonal matrix D involved

with a parameter that scales an S DD} matrix to transform it into an S DD matrix.

Theorem 1. Let M = (m;;) € C™" be an S DD] matrix. Then, there exists a diagonal matrix D =

diag(dy,d,,- -+ ,d,) with

1, ieN,
_ r{(M) . 1)
d; = Tl IEN,’,
mal i€ N,
where
O<e< mm Dis
zeN
and for all i € N§1), we have
(M) (M)
|| — |m,]| 2 | |m 1 -2 |mij r|,m_|
jEN \{} (1) Jji JjEN> Jji
pi = )
) |m,1| + Z |m’J|
jend
such that M D is an S DD matrix.
Proof. By (2.6), we have
r; (M) rJ(M)
|mii| - Z |ml]| Z |ml]| Z | l]|
JeN\(i) jeN JEN,

From Proposition 1, for all i € Nfl), it is easy to know that

(M) :
|mii| |m11| |m r Z | M
]eN i) . (1) |me| |m.i«f|
pi = > 0.
S fmi| + Z i
JEN”

Immediately, there exists a positive number & such that

0 < & < min p;.
ieN"

Now, we construct a diagonal matrix D = diag(d,,d,, - ,d,) with

1, ieND,
(M .
di={ e+, ieN,
g+ 1) i €N,

Imyi|

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

where ¢ is given by (2.12). It is easy to find that all the elements in the diagonal matrix D are positive.

Next, we will prove that M D is strictly diagonally dominant.

AIMS Mathematics Volume 9, Issue 8, 21294-21320.
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Case 1. For each i € N, it is not difficult to find that | (MD); | = m;]. By (2.11) and (2.13), we have

r(MD) = Z d; |my] + Z d; |mi;| + Zdj 2

JjeN (i) jeN JEN:
r'(M)
= Z |mij|+ Z ( | )|m1]|+2( ]( |))|ml]|
jeN\(i) jensD JjEN Mii
r (M) ri (M)
= D I+ 3 mil T + ) |m ul ms kel ) fmal + ) |mf
jeNO\Gi) jeny) JEN, jen{h JEN,
<|my| = [(MD); .
Case 2. Foreach i e Nél), we obtain
ri(M)
(MD)il = Im| (s L o ) = elmg) + r{(M). (2.14)
From (2.3), (2.13), and (2.14), we derive that
r (M) (M)
ri(MD) = Z |mij| + Z |mlj| Z| lj| b | Z |mij| + Z |mij|
jeN(D JENS\i) JeN: JeN\(i) JeN
<ri(M)+e Z |ml]| + Z |m,J|
]GN(I)\ JEN>

< ri(M) + glmy| = (MD),| .

The first inequality holds because of |m;;| > r/(M) for any i € N(l) nd

M
rll(M): Z |mt}|+Z| 1]| rj( )
JEN1\{i} JEN,
- Z mij| + Z |mij|+Z|mij| M)
jeN" jeN\(i} JjEN> |mjj|
M
2 Shmle 3 bl e 5l
jeny! JeNS\(i) JeN | u|

Case 3. For each i € N, , we have

}"i(M): Z |mij|+ Z |m,'j|
JEN1\{i} JEN2\{i}
= 2 bmal+ 2 Imal+ > |mf
jen® jenD JENI\i}

AIMS Mathematics Volume 9, Issue 8, 21294-21320.



21303

M .
o+ S | 22D | ) (2.15)
N AN ,I j
jenV jeny" Jf| JEN\li) |mjj|
Meanwhile, for each i € N, , it is easy to get
mal > (M) = > ||+ > |mi] (2.16)
jeNgl) JENL\{i}
and v
|((MD);| = |my] (8 + %) = &|my| + ri(M). (2.17)

From (2.13), (2.15), and (2.16), it can be deduced that

rl(MD)—Z |m,J|+ Z[8+ -~ |m,]|+ Z e+ - |mu|

v A LY da\ fmi

r (M) ri(M)
= Z |m,]|+ Z Im‘J| | | Z | z]| |J | + £ Z |mu|+ Z |mij|
jeN" jensd mjj JEN2\Li) i jen (D JEN\(i)
<ri{M) + g|my| = |((MD);] .
So, |(MD);;| > ri(MD) fori € N. Thus, MD is an S DD matrix. The proof is completed. O

It is well known that the H-matrix M is nonsingular if there exists a diagonal matrix D such that
MD is an S DD matrix (see [1, 19]). Therefore, from Theorem 1, S DD matrices are nonsingular
H-matrices.

Corollary 1. Let M = (m;;) € C™" be an S DD{ matrix. Then, M is also an H-matrix. If, in addition,
M has positive diagonal entries, then det(M) > 0.

Proof. We see from Theorem 1 that there is a positive diagonal matrix D such that MD is an S DD
matrix (cf. (M35) of Theorem 2.3 of Chapter 6 of [1]). Thus, M is a nonsingular H-matrix. Since the
diagonal entries of M and D are positive, M D has positive diagonal entries. From the fact that M D is
an S DD matrix, it is well known that 0 < det(M D) = det(M)det(D), which means det(M) > 0. O

3. Infinity norm bounds of the inverse of S DD matrices

In this section, we start to consider two infinity norm bounds of the inverse of S DD} matrices.
Before that, some notations are defined:

’(M)
M =il = > mil = > Iy
JjeN\(i) jeNs)
r(M)
J . 1
= |m ,]| el > |myl+ D pmifl|, e N, 3.1)
JEN2 ]EN(I) JEN2

AIMS Mathematics Volume 9, Issue 8, 21294-21320.
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(M) M
Ni :rl,(M) - Z |mzj| - Z |mzj| Z | t]| rj( )
jeN® JeN\i) | JJ| jEN, | JJ|
+ & |m,-,-| - Z |m,]| - Z |m,-j , 1€ N;l), (32)
JeNs\(iy JeN2
P (M
Z; =ri{(M) - Z |mlJ| Z |mlj| Z |mij| M
jen jeN | J]| JeND\i |mjj|
+ & |m,‘l‘| - Z |m,~j| - Z |I’I’l,‘j| , 1€N,. (33)
jens" JeN\i}

Next, let us review an important result proposed by Varah (1975).
Theorem 2. [20] If M = (m;;) € C™" is an S DD matrix, then

1
-1
IV = =y G

Theorem 2 can be used to bound the infinity norm of the inverse of an S DD matrix. This theorem
together with the scaling matrix D = diag(d,,d,, - - ,d,) allows us to gain the following Theorem 3.

Theorem 3. Let M = (m;;) € C"™" be an S DD] matrix. Then,

max{l max(s+ nid )) max(8+"(M))}

ZEN(I) | lll iENz I lll

I, <
(o)

i b
min < min M;, min N;, min Z;
ieN?V iens) €Nz

(3.5)

where €, M;, N;, and Z; are defined in (2.8), (2.9), and (3.1)—(3.3), respectively.

Proof. By Theorem 1, there exists a positive diagonal matrix D such that MD is an S DD matrix, where
D is defined as (2.13). Hence, we have the following result:

1), = [|p (01| = oy, < ol Dy (3.6)

and

sisn ieND |m11| €N |mii|

IDlleo = {naxd max{l maX(8+ I”(M)) max (3+ ri(M))}’

where ¢ is given by (2.8). Note that M D is an S DD matrix, by Theorem 2, we have

1

-1
lpy]l, < min {(MD);] - r; (MD)}

AIMS Mathematics Volume 9, Issue 8, 21294-21320.
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However, there are three scenarios to solve |(MD);;| — r; (MD) . For i € N(l), we get

|(MD);i| — ri(MD)

(M) M
= |mii| — Z |m,~j| - Z (8 + Jm—)|ml]| — Z (8 + FJ( ))|m1|

i i

JEN(I)\{I} ]EN(I) jENz
r (M) r,(M)
bl 3 pul= 3l o = Sl T | 5l Y
JeN\(i) jens" JeN jens” JEN

:M,'.
Fori e Nél), we have

|(MD);;| — ri(MD)

(M) (M
:( l( ))|mu| Z | Z (8+r|jm“|)|mij|—2(8+rj(”))|mij|
ji

‘ il
N(l> EN;I)\{I} ]€N2 JJ
, Z (M) ri(M)
:ri(M) - Z Imij| - |ml]| | | Z | 11| | | te |mll| Z |mij| - Z |mij|
jENil) JEN(I)\ j€N2 ]EN;I)\{i} jGNz

:N,'.
For i € N,, we obtain

|(MD);i| — ri(MD)

_ rMY e r}(M)] s ( rj(M)] )
_(8+ i )lm”| ; " Z;[H jmjj] il Z ° | il

jen® jeNt JEN2\ i)
(M) M
_rl(M) Z |m1]| Z |m11| Z |mi]| rj( ) +e& |m11| Z |ml]| Z |mij|
jentd jeny" | JEN2\{i} | | jeNs” JEN2 i}
:Z,'.

Hence, according to (3.6) we have

rz(M))

max l,max(8+ nid )) max(s+ o

iEN;l) | Lll iENz

I~ <
(o8]

min < min M;, min N;, min Z;
N ieN) €N

The proof is completed. O

It is noted that the upper bound in Theorem 3 is related to the interval values of the parameter. Next,
another upper bound of ||M - ||00 is given, which depends only on the elements in the matrix.
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Theorem 4. Let M = (m;;) € C™" be an S DD| matrix. Then,

1 1 1

a7 < max
’EN teN
where Fi(M) and F;(M) are shown in (2.6).
Proof. By the well-known fact (see [21,22]) that

e e M
[ = inf =
[o0)

n Ml = lIMx[leo = max [(Mx),
20 1l ol

for some x = [xy, X2, -+ , x,]’, we have
—111-1
17 = 1M
Assume that there is a unique k € N such that ||x|l, = 1 = |xi|, then

myxy =(Mx); — Z myX;

Jj#k
=(Mx); — Z myX; — Z My jXj — Z My X;.
JjeN\(k} JjeN\ (kY JEN2\{K}

/(M)

When k € Nil), let |x,| ( € N(l)) and |x,| (j € N;). Then we have

|yl = Imiexel = ((Mx), — Z My Xj = Z My jXj — Z My j X

JeN{P\(k) jeNy” JEN2
<|(Mx)i| + Z myx;| + Z myx;| + kajxj
JjeN\(k) jeNy? JeN:2
<|(Mx) + Z |mkj| |xj| + Z |mkj| |x/| + Z |mk.i| |xj|
JjeN"\(k) jeNs” JeN2
r; (M) M
<ltis 3 e 3% ol = 3l - )
jeN{\(k) jeny” | JEN2
_ r (M) (M
S”M_l”w1 + Z |mkj| + Z |mkj| | | Z |mkj| F
JEN\\ ik} jenV JjEN Mjj |
=[|m|1 + Fuo.
Which implies that
M), = i = T =
® 0 Imud = Fy(M) — min {jmg| — Fi(M)}

iEN;

min (sl = FMO} min {imil - F00) o {|m~| 5 |m,,|}
ieNs u iy

b

(3.7)

(3.8)

(3.9)
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For k € Ny, let z || = 0. Tt follows that
]GN b

el I+ Y g [+ > g Pl + > ][]

jen\" JENSO\ (k) JEN>
r; (M) (M)
<||m~ ||Oo +0+ Z |ka| Z |m kj| L
JeNS (k) JeN
= M| + Fum.
Hence, we obtain that
1 1
Il < O an
] — Fi( )= min {|m,,| Fi(M)}
lEN
For k € N,, we get
0< Illell{lrzl ;| — Z |mij| < || = :
J#i J*k
and
0 < min | mal = > i el < el sl = 3 | [
J# Jj#k
< el x| = kajxj < Z my;Xj| < max Zmijxj
Jk keN.jeN el
< [l
which implies that
| 1 1
Il <

< .
lmyg| — Fi(M) .
min 4 |m;| — X |mij|
i€EN; J#

To sum up, we obtain that

1 1 1
min (fmal = FDY mig il = F/D} oo {|m--| ¥ |m._|}
ieN, 124 £ 1]

lEN l€N

||M‘1||m <max

The proof is completed.

Next, some numerical examples are given to illustrate the superiority of our results.
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Example 7. Consider the following matrix:

|
(S
[\
|
[
(e}
(e}
oS O O O

0
0
O 0 0 -1 2 -1
o 0 o0 o0 2 -1

It is easy to verify that M7 is an S DD} matrix. However, we know that M5 is not an S DD matrix, a
GS DD, matrix, an S DD, matrix and a CKV-type matrix. By the bound in Theorem 3, we have

min p; = 0.25, € € (0,0.25).

When € = 0.1225 , we get
M5, < 8.1633.

The range of parameter values in Theorem 3 is not empty set, and its optimal solution can be
illustrated through examples. In Example 7, the range of values for the error bound and its optimal
solution can be seen from Figure 2. The bound for Example 7 is (8.1633,100) , and the optimal
solution for Example 7 is 8.1633.

100 T T T T I

The bound in Theorem 3
90 T

80
70 |
60 /
50

40 |

The bound of [[M™]|__

30

20

~—

10t —

(0.1225, 8.1633 )

P .
min

0 0.05 0.1 0.15 0.2 0.25

€

Figure 2. The bound of Theorem 3.

However, according to Theorem 4, we obtain
|M51]|, < max {4,1,1} = 4.

Through this example, it can be found that the bound of Theorem 4 is better than Theorem 3 in some
cases.
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Example 8. Consider the following matrix:

b, ¢ 0000 0 0 O
a by ¢ 00 0 0 0 0 O
0 a b ¢ 0 0 0 0 0 O
0 0 a by ¢ 0 0 0 0 O
| © 0 0 a b c 0 0 0 0
5710 0 0 0 a bg ¢ 0O 0 O
0 000 O a b ¢ 0 0
0 000 O 0 a bg ¢ O
00 00 0 0 0 a by c
00 00O O O 0 0 a by

Here, a = -2, ¢ = 2.99, by = 6.3304, b, = 6.0833, b3 = 5.8412, by = 5.6065, bs = 5.3814,
be = 5.1684, b; = 4.9695, bg = 4.7866, by = 4.6217, and b,y = 4.4763. It is easy to verify that Mg
is an S DD} matrix. However, we can get that Mg is not an S DD matrix, a GS DD matrix, an S DD,
matrix, and a CKV-type matrix. By the bound in Theorem 3, we have

min p; = 0.1298, & € (0,0.1298).

When € = 0.01, we have

= 61.3620.
mm {0. 5981 0. 0163 0.1765}
If € = 0.1, we have ( 0902, 1.0655)
max{l, 1. 1.
M| < ’ ’ = 7.3168.
” ||°° ~ min{0.1490, 0.1632,0.1925}
Taking € = 0.11, then it is easy to calculate
1,1.1002, 1.
5|, < L L1902, 07550 _ _ 11 1010,

~ min{0.0991,0.1795, 0.1943}

By the bound in Theorem 4, we have
|M5"|., < max {1.5433,0.6129,5.6054} = 5.6054.
Example 9. Consider the following matrix:

11.3 -1.2 -1.1 4.7
-1.2 142 9.1 -4
32 -1.1 143 03
46 76 32 113

M9:

It is easy to verify that the matrix My is a GS DD, matrix and an S DD matrix. When My is a GS DD,
matrix, it can be calculated according to Lemma 1 that

£ €(1.0484,1.1265).
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According to Figure 3, if we take £ = 1.0964, we can obtain an optimal bound, namely
|M5]|., < 6.1806.
When My is an § DD| matrix, it can be calculated according to Theorem 3. We obtain

£€(0,0.2153).

50 T T T T 50— T T i
The bound in Theorem 3 | The bound in Lemma 1
| |
45 451 | |
| |

30 “\“ ‘}‘

@
8

The bound of [IM”]|
o
%

The bound of M|
o
%

\
\

/

\ //'

“ AN /

10 . 10 L 4
\ /

e S
—
P (1.0964,6.1806)
/ min
P, in( 0.1707./1.5021 )

L L L L 0 L L
0 0.05 01 0.15 0.2 0.25 105 1.06 107 108 1.09 11 111 112 113

€ €

Figure 3. The bound of infinity norm.

According to Figure 3, if we take £ = 0.1707, we can obtain an optimal bound, namely

|51, < 1.5021.

However, according to Theorem 4, we get

[M5"]|., < max {0.3016,0.2564,0.2326} = 0.3016.

Example 10. Consider the following matrix:

7 31 1
1 7 3 4
M10‘2293
3137

It is easy to verify that the matrix M, is a CKV-type matrix and an S DD} matrix. When M, is a
CKYV-type matrix, it can be calculated according to Theorem 21 in [9]

[M107|, < 11

When M, is an S DD matrix, take & = 0.0914 according to Theorem 3. We obtain an optimal bound,

namely
max{1,0.8737,0.8692}

min{0.0919, 0.0914, 3.5901}
When M is an S DD matrix, it can be calculated according to Theorem 4. We can obtain

[M107"|, < max{1,2149,1, 1} = 1.2149.

= 10.9409.

-1
(L (N
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From Examples 9 and 10, it is easy to know that the bound in Theorem 3 and Theorem 4 in our
paper is better than available results in some cases.

4. Error bound of the LCP associated with S DDT matrices

The P-matrix refers to a matrix in which all principal minors are positive [19], and it is widely
used in optimization problems in economics, engineering, and other fields. In fact, the linear
complementarity problem in the field of optimization has a unique solution if and only if the
correlation matrix is a P-matrix, so the P-matrix has attracted extensive attention, see [23-25]. As we
all know, the linear complementarity problem of matrix M, denoted by LCP(M, g), is to find a vector
X € R" such that

Mx+g>0, Mx+qg)'x=0, x>0, 4.1)

or to prove that no such vector x exists, where M € R™" and ¢ € R". One of the essential problems in
LCP(M, q) is to estimate

max ||(I — D + DM)™ ||,
de[0,11?

where D = diag(d;),d = (d,,d,--- ,d,),0<d; <1,i=1,2,---,n. Itis well known that when M is a
P-matrix, there is a unique solution to linear complementarity problems.
In [2], Chen et al. gave the following error bound for LCP(M, g),

[l = x[leo < Dax I = D+ DM) lolr(®)lle, ~ Yx € R, (4.2)
<[0,1]"

where x* is the solution of LCP(M, q), r(x) = min{x, Mx + g}, and the min operator r(x) denotes the
componentwise minimum of two vectors. However, for P-matrices that do not have a specific
structure and have a large order, it is very difficult to calculate the error bound of

drr[l(fll)% (I = D + DM)™!||.. Nevertheless, the above problem is greatly alleviated when the proposed
c 5 n

matrix has a specific structure [7, 16,26-28].

It is well known that a nonsingular H-matrix with positive diagonal entries is a P-matrix. In [29],
when the matrix M is a nonsingular H-matrix with positive diagonal entries, and there is a diagonal
matrix D so that M D is an § DD matrix, the authors propose a method to solve the error bounds of the
linear complementarity problem of the matrix M. Now let us review it together.

Theorem 5. [29] Assume that M = (m;;) € R™" is an H-matrix with positive diagonal entries. Let
D = diag(d;), d; > 0, foralli € N = {1, ...,n}, be adiagonal matrix such that M D is strictly diagonally

dominant by rows. Foranyi € N ={1,...,n}, let B; := myd; — ), |m;jld;. Then,
Jj#i

max 4.3)

de[0,1]"

(I-D+DM)™||_ < max {ma"i {di} max; {di}} .

min; {8;} " min; {d;}
Next, the error bound of the linear complementarity problem of S DD} matrices is given by using
the positive diagonal matrix D in Theorem 1.

Theorem 6. Suppose that M = (m;;) € R™" (n > 2) is an S DD} matrix with positive diagonal entries,
and for any i € NEI), D |ml~j| + |mij # 0. Then,
jeN® Jj€N>
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max ||(I - D+ DM)™||
de[0,1]" e
/(M) r{ (M)
max{ 1, max (8 + = ) max (8 + ”(M)) max? 1, max (8 + = ) max (8 + ”(M))
[ [mil [ [l
zeN iEN, zeN i€N
<max . .
. . . . . . l’( ) . ri(M)
min < min M;, min N;, min Z; min< 1, min (& + ,min(& +
N ieN.) ieN, ieNy) Imil ) ien, m;il

4.4)
where €, M;, N;, and Z; are defined in (2.8), (2.9), and (3.1)—(3.3), respectively.

Proof. Since M is an S DD} matrix with positive diagonal elements, the existence of a positive diagonal
matrix D such that M D is a strictly diagonal dominance matrix can be seen. For i € N, we can get

Bi =I(MD)il = ' |(MD),|

JEN\{i}

=MDyl =| > |[MDy|+ > [MDy|+ > [(MD))

JjeN i) JeN\(i) JENLi)
=MDy~ Y |MDy, |- Y |MDy - Y (D).
JeN\(i) jeN\(i) JENI\i}

By Theorem 5, for i € Nil), we get

(M) ri(M)
ﬁz :miidi — Z |m,-j|dj = |mil~| — Z |m,'j| + Z £+ |m,-j| + Z g+ |m,-j|
r (M) (M)
=lmal = ) maf = ) Imul = Dol L = | 3 |+ D
N\ JeNy) jEN, | jeNy) jeN,
Fori e Ngl), we have
Bi =myd; — Z |mij| d;
j#i
ri(M) (M) ri(M)
:(5+m)|m,~i|— Z |m,-j|+ Z E+ — |ml~j|+Z E+ — |m,-j|
i jen JeNTl i JeN i
r (M) M
=g |my| + ri(M) — Z |m,-j| - Z |ml]| | | Z |ml]| Z| U| 7’1( ) Z|mu|
jeN NG JENDG) jEN, jEN,
r (M) M
:r;(M)— Z |m,~j| - Z |mlj| Z| le rJ( ) +& |mii| - Z |m11| Z |mlj|
jeN JeNSi) J jeN> | JJ| JEND\L) jEN,
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For i € N,, we have

Bi =myd; — Z |mij| ey

Jj#i
ri(M) ri(M) ri(M)
=le+ - || — Z |m,j|+ Z g+ |m,,|+ Z g+ |m,-j|
Mii N(” jeN;n |mjj| JeEN\{i} |m.i.i|
r (M) ri(M)
_8|m11| + rl(M) Z |m1]| Z |mlj| Z |mlj| Z | lj| | | —& Z |mij|
JGN(I) ]GN(I) JEN(I) JENZ\ jENz\{l}
ri(M) ri(M)
T
=r(M) — Z |mij|_ Z Imu|ﬁ Z | lj| | | +&|lmy| - Z |mij|_ Z |mij| .
jend jen{ mj; JEN\Li} mjj jeny JEN i)
To sum up, it can be seen that
M;, ieND,
Bi={ Ni, ieN,
Z;, 1€N,.
According to Theorems 1 and 5, it can be obtained that
max ||(1 - D+ DM)™||_
def0,1]
max 1,max(8+ il )) max(s+M) max l,max(8+ i )) max(s+w)
ieN(d miil A lmiil ieN® [mii] €N, [miil
< max ,
. . . . . ) ‘(M .
min < min M;, min N;, min Z; min{ 1, min (s + L)) , min (s + r’(M))
l'E]\/vi1> iENgl) iEN2 l'EN;D [ iEN> [
The proof is completed. O

It is noted that the error bound of Theorem 6 is related to the interval of the parameter &.
Lemma 3. [16] Letting v > 0 and n > 0, for any x € [0, 1],

1 1 nx

=

< , < - 4.5
l-x+xy min{y,1} 1-x+xy vy (4.5)

Theorem 7. Let M = (m;;) € R™" be an S DD} matrix. Then, M = (m; ) =1—D+ DM is also an
S DD7 matrix, where D = diag (d;) with0 < d; < 1, Vi € N.

Proof. Since M = I — D + DM = (m;;), then

T = 1 —d;+dmy, i=]
v d,-m,j, i+ ]
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By Lemma 3, forany i € Nfl), we have

L d;r’ (M) djri(M)
Fi(M) = Z |dmu|+Z|de| —d; +mjd, +Z|’ ”|1—dj+m
JeN ) JeNy” U
d;r’ (M) djri(M)
=l 2, il 2 Il v 2l
]eN(l)\ ]eN(l) JJ
ri(M) (M)
<d, Z i + Z fmij| ~— +Z| ”| 7
jeNi”\{ J€N<1) | JJ| JEN,
:lel(M)

In addition, d;Fi(M) < 1 — d; + d; |m| = |m;l, that is, for each i € N\"(M) € N\V(M), [imi;| > Fi(M).
Forany i € N;l), we have

FM)= > dmyl+ > |dmi| =di| > |myl+ > |mij| | = difF (M),

JeND\(i) JEN: JENP\( JEN>

So, d;F!(M) < 1 — d; + d;|my| = [m;], that is, for each i € N\"(M) € N\"(M), [m;| > F!(M). Therefore,

M= (m,-,-) = [ — D+ DM is an S DD} matrix. O

Next, another upper bound about drr[l(% ||(I -D+ DM)‘1|| is given, which depends on the result
€[0,1]" o0

in Theorem 4.

Theorem 8. Assume that M = (m;;) € R™" (n > 2) is an S DD} matrix with positive diagonal entries,
and M =1 - D+ DM, D = diag (d;) with 0 < d; < 1. Then,

1 1 1

mln{|mu| Fi(M), 1} m1n{|m”| F;(M),l}’ .
N e min |m;i| —

max , (4.6)

de[0,1]"

——1
H < max

)

Proof. Because M is an § DD] matrix, according to Theorem 7, M = 1-D + DM is also an SDD7
matrix, where

where N,, Nil), NS), Fi(M), and F!(M) are given by (2.1), (2.2), and (2.6), respectively.

7 (= \ _ 1—d,-+d,-m,-l~, i:j,
M= (mij) - { d,'ml'j, ] * _]

By (3.7), we can obtain that

1 1 1

min {|mi,~| - Fi(M)} min {|mi,.| — Ff(M)} I
N D17 (D77 i min | |[my| — > |m;
ieN" (M) ieNS" (M) b | ]¢l| lJ|

——1
H ” <max
[e9)
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According to Theorem 7, fori € N il), let

V(M) = |dim,‘j| + |dﬂ’l’l,’j| ]— + |dl'm,‘j| j—,
jENiZl)\{i} jelg)\{i} l—dj+djmjj ]GZNZ l—dj+djmjj
we have
1 3 1
| = Fi(M) 1 —d; +dm; — V(M)
1
r’(M) ri(M
1 —d; + dim;; — d; |mu| + Z |mij Tt 2 |mij |/m_.|)
/eNm\{ ) jeNSD\(i) Y e Y
3 1
- d; + d; (Imy| — Fi(M))
<— ! .
min {|m;| — Fi(M), 1}
. (D
Forie N,”, we get
1 3 1

7l — Fi(M)
1 —d; +dm; — |d m,,| + Z |d mu|
]EN(I)\{l

1

1 —d; +dm; — di[ |mlJ| + 2 |m‘1|)
]GNm\ JEN.

1
1= d; + d; (jmil = F1(M))
1
min {|m;] — F(M), 1}

IA

For i € N,, we can obtain that

1 B 1

Imail — % |”_1ij| 1 —di+dm; — %, |dimij|
J#i J#i

1

1 —d;+d (lmiil |mu|)
JEi
1

min{lmﬁl— 3 mif, 1}
J#i

IA
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To sum up, it holds that

— 1 1 1
max HM IH < max - , )
def0,1]" S min {jm| — Fi(M), 1} min {lmii| — F((M), 1} . my] 1
ieN, ieNy) 111611{,121 ;| — jé:i mij|,
The proof is completed. O

The following examples show that the bound (4.6) in Theorem 8 is better than the bound (4.4) in
some conditions.

Example 11. Let us consider the matrix in Example 6. According to Theorem 6, by calculation, we
obtain

£ € (0,0.0386).
Taking € = 0.01, then
max (7 - D+ DMg)™'||, < 589.4024.

de[0,1] 12000

In addition, from Theorem 8, we get

max |7 - D+ DMg)™!|| , < 929.6202.

de[O,l]lZOOO

Example 12. Let us consider the matrix in Example 9. Since My is a GS DD, matrix, then, by
Lemma 2, we get

& €(1.0484,1.1265).

From Figure 4, when € = 1.0964 , the optimal bound can be obtained as follows:

max ||( — D + DMs)™'|, < 6.1806.
de[0,11* ©

Moreover, My is an § DD} matrix, and by Theorem 6 , we get
£€(0,0.2153).
From Figure 4, when £ = 0.1794, the optimal bound can be obtained as follows:

max (I - D+ DMy)™'|| , < 1.9957.
del0,1]* 0

However, according to Theorem 8, we obtain that

max ||(I = D + DMo)™!||_ < 1.
de[0,1]* 0
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T
——— The bound in Theorem 6 |

T T
——— The bound in Lemma 4

The bound of [[(-D+DM) |||
I R
B

The bound of |[(-D+DM) |||
N
B

P_.(0.1794,1.9957 ) min!
"

L L 0 L L L L
[ 0.05 0.1 0.15 02 0.25 1.05 1.06 1.07 1.08 1.09 11 111 112 113

Figure 4. The bound of LCP.

Example 13. Consider the following matrix:

7 -3 -1 -1
-1 7 -3 -4
Mu=| 5, 9 -3
-3 -1 -3 7

Obviously, B* = M;; and C = 0. By calculations, we know that the matrix B* is a CKV-type matrix
with positive diagonal entries, and thus M, is a CKV-type B-matrix. It is easy to verify that the matrix
M, is an S DD} matrix. By bound (4.4) in Theorem 6, we get

max [|(7 = D+ DM)™'|| | < 10.9890(s = 0.091), & € (0,0.1029).
de[0,1]

By the bound (4.6) in Theorem 8, we get

max (I - D+ DMy)™"|| < 1.2149,
del[0,1]* °°

while by Theorem 3.1 in [18], it holds that

max ||(I - D+ DM;)7"|| < 147.
de[0,174 *®

From Examples 12 and 13, it is obvious to know that the bounds in Theorems 6 and 8 in our paper
is better than available results in some cases.

5. Conclusions
In this paper, a new subclass of nonsingular H-matrices, S DD} matrices, have been introduced.
Some properties of S DD} matrices are discussed, and the relationships among S DD} matrices and

S DD, matrices, GS DD; matrices, and CKV-type matrices are analyzed through numerical examples.
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A scaling matrix D is used to transform the matrix M into a strictly diagonal dominant matrix, which
proves the non-singularity of S DD} matrices. Two upper bounds of the infinity norm of the inverse
matrix are deduced by two methods. On this basis, two error bounds of the linear complementarity
problem are given. Numerical examples show the validity of the obtained results.
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