
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(8): 21356–21382.
DOI: 10.3934/math.20241037
Received: 01 April 2024
Revised: 18 June 2024
Accepted: 21 June 2024
Published: 02 July 2024

Research article

On the application of subspace migration from scattering matrix with
constant-valued diagonal elements in microwave imaging

Won-Kwang Park*

Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul,
02707, Korea

* Correspondence: Email: parkwk@kookmin.ac.kr.

Abstract: We apply subspace migration (SM) for fast identification of a small object in microwave
imaging. Most research in this area is performed under the assumption that the diagonal elements of
the scattering matrix can be easily measured if the transmitter and the receiver are in the same location.
Unfortunately, it is very difficult to measure such elements in most real-world microwave imaging.
To address this issue, several studies have been conducted with the unknown diagonal elements set to
zero. In this paper, we generalize the imaging problem by using SM to set the diagonal elements of
the scattering matrix to a constant. To demonstrate the applicability of SM and its dependence on the
constant, we show that the imaging function of SM can be represented by an infinite series of Bessel
functions of integer order, antenna number and arrangement, and the applied constant. This result
allows us to discover additional properties, such as the unique determination of the object. We also
demonstrated simulation results using synthetic data to back up the theoretical result.
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1. Introduction

There are significant and intriguing inverse problems with retrieving inhomogeneities embedded in
a medium under multistatic measurement conditions. This is an old but interesting problem because
of its diverse applications, which have a significant impact on human lives. For example, it can
be used in biomedical imaging [1, 2], thermal therapy monitoring [3, 4], landmine detection [5, 6],
damage detection [7, 8], and radar imaging [9, 10]. To this end, several researchers have investigated
and successfully applied various iterative (quantitative) and non-iterative (qualitative) reconstruction
algorithms to address inverse scattering and microwave imaging problems.
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Some examples of iterative schemes are the Gauss–Newton method for biomedical imaging
[11], Born iterative method for brain stroke detection [12] and compressive sensing imaging [13],
Levenverg–Marquardt method for parameter distribution reconstruction [14], and level-set method for
shape reconstruction [15]. To successfully apply iterative-based algorithms, the iteration procedure
must begin with a good initial guess that is close to the true solution. If not, it will be difficult to
obtain good results due to the non-convergence issue, local minimizer problem, and demand of large
computational costs (see [16, 17] for instance).

Although the non-iterative scheme cannot retrieve complete information on parameter distribution
or unknown targets, it can quickly recognize the existence or obtain an outline shape of the target,
which can then be used as a good initial guess. For example, the bifocusing method for object
detection in microwave imaging [18] and damage detection of civil structure [7], MUltiple SIgnal
Classification (MUSIC) algorithm for detecting internal corrosion [19] and object detection in
microwave imaging [20], direct sampling method for diffusive optical tomography [21] and electrical
impedance tomography [22], topological derivative strategy for ultrasonic non-destructive testing [23]
and detection of impedance obstacles [24], orthogonality sampling method for object detection in
microwave imaging [25] and 3D objects [26], factorization method for breast cancer imaging [27] and
electrical impedance tomography [28], and linear sampling method for underwater acoustic imaging
[29] and microwave imaging [30].

In this paper, we investigate the use of subspace migration (SM) to rapidly identify a two-
dimensional small object with different dielectric permittivity and electric conductivity values from
the background homogeneous medium. SM is a novel and promising non-iterative imaging technique
for inverse scattering problems and microwave imaging. It is notable for its speed, accuracy in
recognizing target locations and shapes, and robustness to random noise. As a result, SM has been
successfully applied to several problems, including localization of small and extended targets [31–33],
crack imaging [34–36], and object detection in microwave imaging [37–39].

In designing an imaging function of SM, it is critical to consider the complete elements of the so-
called multistatic response matrix in inverse scattering problems and the scattering matrix in microwave
imaging. However, in some microwave imaging applications, collecting the diagonal elements of the
scattering matrix is difficult due to the difficulty in measuring scattering parameter data (elements of
the scattering matrix) or distinguishing weak scattered signals from relatively high antenna reflections
when the transmitting and receiving antennas coincide, refer to [4, 39–42] for a detailed discussion on
this topic. Therefore, applying SM directly without knowing the diagonal elements of the scattering
matrix is difficult. Numerical simulation results show that setting the diagonal elements to a nonzero
constant produces poor results. As a result, most studies on microwave imaging problems have used the
approach of setting the diagonal elements to zero, refer to [20,33,38,43–46]. However, the theoretical
basis for the effect of converting these elements to a constant value remains unknown.

In this study, we consider how SM can be used to quickly identify small object from a scattering
matrix with scattering parameter data as its elements. By converting the unknown diagonal elements of
the scattering matrix into a fixed constant, we introduce the imaging function of SM and demonstrate
that it can be represented by an infinite series of the Bessel function of integer order, total number
of antennas and their arrangement, applied frequency, background material properties, and applied
constant. Based on the investigated structure of the imaging function, we confirm that the imaging
performance is significantly affected by the applied constant, and the object can be identified if the
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absolute value of such a constant is zero or close to zero. We present simulation results based on
synthetic data to demonstrate the theoretical result.

The rest of the paper is organized as follows. In Section 2, we briefly present the concept of
scattering parameters in the presence of a small object and introduce the imaging function of SM from
a scattering matrix whose diagonal elements are fixed constants. In Section 3, we build a mathematical
theory for the imaging function, discuss its properties, including ideal and practical conditions for good
results, and explain the unique determination of the object. Section 4 provides numerical simulation
results for single and multiple objects to validate the theoretical result. Section 5 provides a brief
conclusion.

2. Scattering parameters and imaging function of the SM

This section briefly introduces the scattering parameters and the imaging function of the SM for
identifying a small object D with smooth boundary ∂D. Throughout this paper, we denote Ω as a
homogeneous region filled by a matching liquid andΛn as an antenna to transmit/receive signals located
at an with |an| = R, n = 1, 2, . . . ,N. We assume that D and Ω are characterized by their dielectric
permittivity and electrical conductivity at a given angular frequency ω = 2π f , where f denotes the
ordinary frequency measured in hertz. Correspondingly, the value of the magnetic permeability is set
to a constant µ(z) ≡ µb = 4π × 10−7 H/m for each z ∈ Ω. The values of permittivity of Ω and D are
represented by εb and εa, respectively. Similarly, σb and σa represent the values of the conductivity
of Ω and D, respectively. With this, we define k0 and kb as the lossless background and background
wavenumbers that satisfy

k2
0 = ω

2εbµb and k2
b = ω

2µb

(
εb − i

σb

ω

)
,

respectively.
Let S(n,m) be the scattering parameter, defined as the ratio

S(n,m) =
V

(n)
out

V
(m)
in

,

where V(m)
in and V(n)

out denote the input voltages (or incident waves) at Λm and the output voltages
(or reflected waves) at Λn. We denote Smeas(n,m) as the measurement data obtained by subtracting
scattering parameters with and without D. Then, according to [3], Smeas(n,m) can be expressed as

Smeas(n,m) = −
ik2

0

4ωµb

∫
D

(
εa − εb

εb
+ i
σa − σb

ωεb

)
Einc(am, x) · Etot(x, an)dx, (2.1)

where Einc(am, x) is the incident field due to the point current density at Λm, which satisfies

∇ × Einc(am, x) = iωµbH(am, x) and ∇ ×H(am, x) = (σb − iωεb)Einc(am, x),

and Etot(x, an) be the total field owing to the presence of the D measured at Λn that satisfies

∇ × Etot(x, an) = iωµbH(x, an) and ∇ ×H(x, an) = (σ(x) − iωε(x))Etot(x, an),
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with transmission conditions at the boundary ∂D. Here, H represents the magnetic field and the time-
harmonic dependence e−iωt is assumed.

Now, assume that the relations

ωεb ≫ σb and
√
εa

εb
diam(D) < λ

hold, where diam(D) and λ represent the diameter of D and the wavelength, respectively. Then, on the
basis of [47], it is possible to apply the first-order Born approximation Etot(x, an) ≈ Einc(x, an) to (2.1)
and, correspondingly, we can observe that

Smeas(n,m) ≈ −
ik2

0

4ωµb

∫
D

(
εa − εb

εb
+ i
σa − σb

ωεb

)
Einc(am, x) · Einc(x, an)dx. (2.2)

Let us emphasize that, based on the configuration of the microwave machine, only the z−component
of the incident and total fields can be handled because the antennas are arranged perpendicular to the
z−axis, see [40, 46]. Then, by letting z−component of incident field Einc as E(z)

inc and the reciprocity
property of Einc, (2.2) can be written by

Smeas(n,m) ≈ −
ik2

0

4ωµb

∫
D
ODE(z)

inc(am, x)E(z)
inc(an, x)dx, (2.3)

where

OD =
εa − εb

εb
+ i
σa − σb

ωεb
and E(z)

inc(an, x) = −
i
4

H(1)
0 (kb|an − x|). (2.4)

Here, H(1)
0 denotes the Hankel function of order zero of the first kind.

Next, we will briefly introduce the imaging function of SM. To this end, every element Smeas(n,m)
of the scattering matrix K must be collected such that

K =


Smeas(1, 1) Smeas(1, 2) · · · Smeas(1,N − 1) Smeas(1,N)
Smeas(2, 1) Smeas(2, 2) · · · Smeas(1,N − 1) Smeas(2,N)
...

...
. . .

...
...

Smeas(N, 1) Smeas(N, 2) · · · Smeas(N,N − 1) Smeas(N,N)

 .

Following the simulation setup of this study, it is impossible to measure Smeas(n, n), n = 1, 2, . . . ,N,
because when an antenna Λm is used for signal transmission, the remaining N − 1 antennas Λn, n =
1, 2, . . . ,N with n , m are used for signal reception (see [40] for a further discussion). Thus, we can
use the following scattering matrix:

K =


unknown Smeas(1, 2) · · · Smeas(1,N − 1) Smeas(1,N)
Smeas(2, 1) unknown · · · Smeas(1,N − 1) Smeas(2,N)
...

...
. . .

...
...

Smeas(N, 1) Smeas(N, 2) · · · Smeas(N,N − 1) unknown

 .
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Consequently, traditional SM cannot be applied directly. Instead, by converting unknown measurement
data to a fixed constant, we consider applying the following scattering matrix: given a constant C ∈ C,
let

K(C) =


C Smeas(1, 2) · · · Smeas(1,N − 1) Smeas(1,N)

Smeas(2, 1) C · · · Smeas(1,N − 1) Smeas(2,N)
...

...
. . .

...
...

Smeas(N, 1) Smeas(N, 2) · · · Smeas(N,N − 1) C

 . (2.5)

Since there exists a single small object D, there is only one nonzero singular value, refer to [38]. Thus,
the SVD of K(C) can be written as

K(C) =
N∑

n=1

τnUnV∗n ≈ τ1U1V∗1,

where Un and Vn are the left and right singular vectors of K(C), respectively, and τn are the singular
values satisfying τ1 > 0 and τn ≈ 0 for n = 2, 3, . . . ,N. With this, for each search point z ∈ Ω, using
(2.3) and (2.5), by generating a unit test vector

W(z) =
1 N∑

n=1

|E(z)
inc(an, z)|2

1/2


E(z)

inc(a1, z)

E(z)
inc(a2, z)
...

E(z)
inc(aN , z)

 , (2.6)

the imaging function can be introduced as

F(z,C) = |⟨W(z),U1⟩⟨W(z),V1⟩|, where ⟨W(z),U1⟩ =W(z)∗U1. (2.7)

Then, for some particular selection of C, it is possible to recognize x ∈ D through the map of F(z,C).

3. Analysis and some intrinsic properties of the imaging function

In this section, we explore the mathematical structure of the imaging function to ensure that the
constant C is chosen correctly to produce a good result and discuss some intrinsic properties of the
imaging function. The main result is as follows.

Theorem 3.1. Let θn = an/R = (cos θn, sin θn), z = |z|(cosφ, sinφ), and z − x = |z − x|(cos ϕ, sin ϕ). If
|k(z − an)| ≫ 0.25 for z ∈ Ω, then F(z,C) can be represented as follows:

F(z,C) = |Φ1(z) + Φ2(z) + Φ3(z,C)|, (3.1)

where

Φ1(z) =
Nωεbe2iRkbOD

32Rkbτ1π

∫
D

(
J0(kb|z − x|) +

1
N

N∑
n=1

∑
s∈Z0

isJs(kb|z − x|)eis(θn−ϕ)
)2

dx
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Φ2(z) = −
ωεbe2iRkbOD

32Rkbτ1π

∫
D

(
J0(2kb|z − x|) +

1
N

N∑
n=1

∑
s∈Z0

isJs(2kb|z − x|)eis(θn−ϕ)
)
dx

Φ3(z,C) =
C
τ1

(
J0(2kb|z|) +

1
N

N∑
n=1

∑
s∈Z0

isJs(2kb|z|)eisφ
)
.

Here, Js is the Bessel function of order s of the first kind and Z0 = Z ∪ {−∞,+∞} \ {0}, where Z
represents the set of integer numbers.

Proof. Since z ∈ Ω and |k(z − an)| ≫ 0.25 for all n, the Hankel function can be given as the following
asymptotic form (see [48, Theorem 2.5] for example)

H(1)
0 (kb|z − an|) ≈

(1 + i)eikb |an |

√
kbπ|an|

e−ikbθn·z.

By using this representation, we can examine that

E(z)
inc(an, z) = −

i
4

H(1)
0 (kb|z − an|) ≈

(1 − i)eikb |an |

4
√

kbπ|an|
e−ikbθn·z

and
N∑

n=1

|E(z)
inc(an, z)|2 ≈

N∑
n=1

E(z)
inc(an, z)E(z)

inc(an, z) =
N∑

n=1

1
8kbπ|an|

=
N

8Rkbπ
.

Thus, the test vector of (2.6) and the measurement data (2.3) can be expressed as

W(z) =
(1 − i)eikbR

√
2N


e−ikbθ1·z

e−ikbθ2·z

...

e−ikbθN ·z


and

Smeas(n,m) ≈ −
k2

0e2i|an |kbOD

32|an|kbωµbπ

∫
D

e−ikb(θm+θn)·xdx := A
∫

D
e−ikb(θm+θn)·xdx,

respectively. Since

U1V∗1 =
1
τ1
K(C) =

1
τ1


C Smeas(1, 2) · · · Smeas(1,N − 1) Smeas(1,N)

Smeas(2, 1) C · · · Smeas(1,N − 1) Smeas(2,N)
...

...
. . .

...
...

Smeas(N, 1) Smeas(N, 2) · · · Smeas(N,N − 1) C

 ,
we can examine that

W(z)∗U1V∗1 =
(1 − i)eikbR

√
2Nτ1


eikbθ1·z

eikbθ2·z

...

eikbθN ·z



T 
C Smeas(1, 2) · · · Smeas(1,N − 1) Smeas(1,N)

Smeas(2, 1) C · · · Smeas(1,N − 1) Smeas(2,N)
...

...
. . .

...
...

Smeas(N, 1) Smeas(N, 2) · · · Smeas(N,N − 1) C
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=
(1 − i)eikbR

√
2Nτ1



Ceikbθ1·z −
k2

0e2i|an |kbOD

32|an|kbωµbπ

∫
D

e−ikbθ1·x
∑
n∈N1

eikbθn·(z−x)dx

Ceikbθ2·z −
k2

0e2i|an |kbOD

32|an|kbωµbπ

∫
D

e−ikbθ2·x
∑
n∈N2

eikbθn·(z−x)dx

...

CeikbθN ·z −
k2

0e2i|an |kbOD

32|an|kbωµbπ

∫
D

e−ikbθN ·x
∑
n∈NN

eikbθN ·(z−x)dx



T

,

where Nn = {1, 2, . . . ,N} \ {n}.

Since the following relation holds uniformly (see [35] for derivation),

N∑
n=1

eikbθn·(z−x) =

N∑
n=1

eikb |z−x| cos(θn−ϕ) =

N∑
n=1

(
J0(kb|z − x|) +

∑
s∈Z0

isJs(kb|z − x|)eis(θn−ϕ)
)

= NJ0(kb|z − x|) +
N∑

n=1

∑
s∈Z0

isJs(kb|z − x|)eis(θn−ϕ) := J(x, z),

(3.2)

we can obtain

W(z)∗U1V∗1 =
(1 − i)eikbR

√
2Nτ1



Ceikbθ1·z + A
∫

D
e−ikbθ1·x

N∑
n=1

eikbθn·(z−x)dx − A
∫

D
e−ikbθ1·xeikbθ1·(z−x)dx

Ceikbθ2·z + A
∫

D
e−ikbθ2·x

N∑
n=1

eikbθn·(z−x)dx − A
∫

D
e−ikbθ2·xeikbθ2·(z−x)dx

...

CeikbθN ·z + A
∫

D
e−ikbθN ·x

N∑
n=1

eikbθn·(z−x)dx − A
∫

D
e−ikbθN ·xeikbθN ·(z−x)dx



T

=
(1 − i)eikbR

√
2Nτ1



Ceikbθ1·z + A
∫

D
e−ikbθ1·xJ(x, z)dx − A

∫
D

e−ikbθ1·xeikbθ1·(z−x)dx

Ceikbθ2·z + A
∫

D
e−ikbθ2·xJ(x, z)dx − A

∫
D

e−ikbθ2·xeikbθ2·(z−x)dx
...

CeikbθN ·z + A
∫

D
e−ikbθN ·xJ(x, z)dx − A

∫
D

e−ikbθN ·xeikbθN ·(z−x)dx



T
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and, correspondingly,

W(z)∗U1V∗1W(z) =
1
τ1N



Ceikbθ1·z + A
∫

D
e−ikbθ1·xJ(x, z)dx − A

∫
D

e−ikbθ1·xeikbθ1·(z−x)dx

Ceikbθ2·z + A
∫

D
e−ikbθ2·xJ(x, z)dx − A

∫
D

e−ikbθ2·xeikbθ2·(z−x)dx
...

CeikbθN ·z + A
∫

D
e−ikbθ1·xJ(x, z)dx − A

∫
D

e−ikbθN ·xeikbθN ·(z−x)dx



T 
eikbθ1·z

eikbθ2·z

...

eikbθN ·z



=
1
τ1N

N∑
n=1

(
Ce2ikbθn·z + A

∫
D

eikbθn·(z−x)J(x, z)dx − A
∫

D
e2ikbθn·(z−x)dx

)
.

Now, by applying (3.2) again, we can derive

⟨W(z),U1⟩⟨W(z),V1⟩ =W(z)∗U1V∗1W(z)

=
C
τ1N

N∑
n=1

e2ikbθn·z +
A
τ1N

∫
D
J(x, z)

N∑
n=1

eikbθn·(z−x)dx −
A
τ1N

∫
D

N∑
n=1

e2ikbθN ·(z−x)dx

=
A
τ1N

∫
D

(
NJ0(kb|z − x|) +

N∑
n=1

∑
s∈Z0

isJs(kb|z − x|)eis(θn−ϕ)
)2

dx

−
A
τ1N

∫
D

(
NJ0(2kb|z − x|) +

N∑
n=1

∑
s∈Z0

isJs(2kb|z − x|)eis(θn−ϕ)
)
dx

+
C
τ1N

(
NJ0(2kb|z|) +

N∑
n=1

∑
s∈Z0

isJs(2kb|z|)eisφ
)
.

This gives us the structure of (3.1). □

Based on Theorem 3.1, we can explain some imaging function properties and phenomena that can
occur in simulation results.

Remark 3.1 (Impact of the constant C and its best selection). BecauseΦ3(z,C) lacks information about
x ∈ D, this factor contributes to the generation of several artifacts, which disrupts the detection of D.
This means that using a nonzero constant C will make it difficult to retrieve the object via the map
of F(z,C), so choosing C = 0 will ensure good imaging results. This is the theoretical reason why
most studies set the unknown diagonal elements of the scattering matrix to zero. In this case, since
F(z, 0) ≈ 1 when z ∈ D,

F(z, 0) ≈

∣∣∣∣∣∣Nωεbe2iRkbOD

32Rkbτ1π
area(D) −

ωεbe2iRkbOD

32Rkbτ1π
area(D)

∣∣∣∣∣∣ ≈ 1.

Correspondingly, F(z, 0) can be represented as
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21364

F(z, 0) ≈
N

(N − 1) area(D)

∫
D

(
J0(kb|z − x|) +

1
N

N∑
n=1

∑
s∈Z0

isJs(kb|z − x|)eis(θn−ϕ)
)2

dx

−
1

(N − 1) area(D)

∫
D

(
J0(2kb|z − x|) +

1
N

N∑
n=1

∑
s∈Z0

isJs(2kb|z − x|)eis(θn−ϕ)
)
dx.

This result is the same as in [38]. Thus, we can say that Theorem 3.1 can be considered as a generalized
version of the previous study.

Remark 3.2 (Detectability of the object). Assume that C = 0. Then, since Φ1(z) and Φ(z) have factors
J0(kb|z − x|) and J0(2kb|z − x|), respectively, and J0(0) = 1, the map of F(z, 0) will contain a peak of
large magnitude when z = x ∈ D, allowing recognition of the existence, location, and outline shape of
object D.

Remark 3.3 (Ideal conditions for good results). According to Remarks 3.1 and 3.2, it will be possible
to obtain good results when Φ3(z,C) = 0, i.e., C = 0,

1
N

N∑
n=1

∑
s∈Z0

isJs(kb|z − x|)eis(θn−ϕ) = 0, and
1
N

N∑
n=1

∑
s∈Z0

isJs(2kb|z − x|)eis(θn−ϕ) = 0. (3.3)

The easiest and simplest method is to select N −→ +∞; however, this approach is impossible given the
simulation situation. Since the following asymptotic form holds for large z,

Js(z) =

√
2
πz

cos
(
z −

sπ
2
−
π

4

)
implies Js(kb|z − x|) ∝

√
2

kbπ|z − x|
,

it will be possible to make Js(kb|z−x|), Js(2kb|z−x|) −→ 0 when |kb| −→ +∞, or equivalently f −→ +∞.
However, using infinite-valued frequency is impossible in practice. Based on these examinations, we
can conclude that if the total number N is small or the applied frequency f is low, it will be difficult to
identify the object D.

Remark 3.4 (Practical condition for achieving good results). Here, we consider finding a condition that
satisfies the following relation: for C = 0, x , 0, and sufficiently large L,

E(x, L) =
N∑

n=1

L∑
s=−L,s,0

isJs(x)eis(θn−ϕ) ≈ 0.

If N = 16 and all antennas are uniformly distributed on a circle of radius R, as shown in Figure 1
of Section 4, then E(x, L) ≈ 0 for small L, according to [39]. If L is sufficiently large, then since
J−L(x) = (−1)LJL(x) and the following relationship holds (see [49] for instance),

|JL(x)| ≤
b
3√L
, b = 0.674885 . . . ,

the value of E(x, L) can be disregarded. Table 1 shows the values of |E(x, L)| for different x and L. This
is the theoretical reason for using a uniformly distributed antenna arrangement in most studies.

Following Remarks 3.1, 3.2, 3.3, and 3.4, we can achieve the following result of unique
identification.
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L = 1 L = 3 L = 5 L = 10 L ≥ 15
x = 0.1 1.5266 × 10−16 1.3877 × 10−16 1.8049 × 10−16 2.2053 × 10−16 2.2053 × 10−16

x = 0.3 3.3307 × 10−16 3.1772 × 10−16 4.8908 × 10−16 3.1406 × 10−16 3.0425 × 10−16

x = 0.5 5.5511 × 10−17 4.6230 × 10−16 7.4906 × 10−16 7.9050 × 10−16 6.6733 × 10−16

x = 0.7 3.3307 × 10−16 9.8275 × 10−16 5.5563 × 10−16 9.3646 × 10−16 7.0292 × 10−16

x = 1.0 5.5511 × 10−16 2.1957 × 10−16 4.6286 × 10−16 1.5563 × 10−16 1.6795 × 10−16

Table 1. (Remark 3.4) Values of |E(x, L)| for various x and L.

Corollary 3.1 (Unique identification of the object). Assume that N is an even number greater than 8
and that all antennas Λn, n = 1, 2, . . . ,N, are uniformly distributed on a circle with radius R. Then,
for sufficiently high frequency of operation f , the object D can be retrieved uniquely through the maps
of F(z, 0).

4. Simulation results with synthetic and experimental data

4.1. Simulation results with synthetic data

In this section, we present simulation results that demonstrate the theoretical result. To run the
simulation, we set the position of the dipole antennas for n = 1, 2, . . . ,N(= 16),

an = 0.09 m (cos θn, sin θn) , θn =
3π
2
−

2π(n − 1)
N

.

The ROI Ω was defined as the interior of a square region (−0.08 m, 0.08 m)2 with material properties
(εb, σb) = (20ε0, 0.2 S/m) with f = 1 GHz. Here, ε0 = 8.854 × 10−12 F/m represents vacuum
permittivity. We chose two balls D1 and D2 as objects with the same radii α = 0.01 m, centers
x1 = (0.01 m, 0.03 m) and x2 = (−0.04 m,−0.02 m), and material properties (ε1, σ1) = (55ε0, 1.2 S/m)
and (ε2, σ2) = (45ε0, 1.0 S/m). Figure 1 shows the simulation settings both without and with objects.

Ω

(εb, σb) = (20ε0, 0.2 S/m)

Ω

D1

(ε1, σ1) = (55ε0, 1.2 S/m)

Ω

D1

(ε1, σ1) = (55ε0, 1.2 S/m)

D2

(ε2, σ2) = (45ε0, 1.0 S/m)

Figure 1. Illustration of the background (left), single (center), and multiple (right) small
objects.
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Example 4.1 (Imaging of single object). In this example, we focus on imaging of a single object D1.
Figure 2 shows the distribution of singular values of K(C) for different C. Notice that we can easily
distinguish nonzero singular values τ1 when C = 0, 0.01, 0.001i, and 0.01i. However, if the value of
|C| is not near zero, it is difficult to distinguish between nonzero and near zero singular values, such as
C = 0.1 and C = 0.1i. Fortunately, considering differences τn − τn+1, n = 1, 2, . . . , 15, we selected τ1

as the nonzero singular value of K(C) and defined the imaging function F(z,C) of (2.7).

(a) C = 0 (b) C = 0.01 (c) C = 0.1

(d) C = 0.001i (e) C = 0.01i (f) C = 0.1i

Figure 2. (Example 4.1) Distribution of the singular values of K(C) at f = 1 GHz with
various C.

Figure 3 displays the maps of F(z,C) for different C. Note that if C = 0 or |C| is small (|C| ≤ 0.01),
we can precisely identify the existence, location, and shape of D1 via the map of F(z,C). Meanwhile,
it is difficult to distinguish D1 from an artifact with large magnitude at (−0.01 m,−0.03 m) if C = 0.1.
Although some artifacts are present in the imaging result, D1 can be identified because the magnitudes
of the artifacts are small when C = 0.1i. Thus, we can conclude that the imaging result of F(z,C) is
significantly dependent on the choice of C. Furthermore, good results can be obtained when C = 0 or
|C| is sufficiently small (|C| ≤ 0.01 in this example) for identifying a single object.

Example 4.2 (Imaging of multiple objects). Now, we use the imaging function F(z,C) to identify
multiple small objects D1 and D2. In this case, since the SVD of K(C) is

K(C) =
N∑

n=1

τnUnV∗n ≈
2∑

n=1

τnUnV∗n,
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the imaging function of (2.7) becomes

F(z,C) =

∣∣∣∣∣∣∣
2∑

n=1

⟨W(z),Un⟩⟨W(z),Vn⟩

∣∣∣∣∣∣∣ .

(a) C = 0 (b) C = 0.01 (c) C = 0.1

(d) C = 0.001i (e) C = 0.01i (f) C = 0.1i

Figure 3. (Example 4.1) Maps of F(z,C) at f = 1 GHz with various C. The black-colored
dashed line describes the ∂D1.

Figure 4 shows the distribution of singular values of K(C) for different C. Here, it is possible to
distinguish between nonzero singular values τ1 and τ2 when C = 0 and C = 0.001i. However, if the
value of |C| is not near zero, it is very difficult to distinguish between nonzero and near zero singular
values. To define the imaging function, we chose τ1 as the nonzero singular value ofK(C) for C = 0.01,
C = 0.01i, and 0.1i. For C = 0.1, we chose the first six τn as nonzero singular values.
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(a) C = 0 (b) C = 0.01 (c) C = 0.1

(d) C = 0.001i (e) C = 0.01i (f) C = 0.1i

Figure 4. (Example 4.2) Distribution of the singular values of K(C) at f = 1 GHz with
various C.

Figure 5 displays the maps of F(z,C) for different C. Similar to single object imaging, the locations
and shapes of D1 and D2 can be identified precisely through the map of F(z,C) when C = 0, 0001i,
and 0.01i. Moreover, it is possible to recognize D1 and D2, but the imaging result contains several
artifacts with small magnitudes if C = 0.01i and C = 0.1i. Unfortunately, it is difficult to distinguish
D1 and D2 from several artifacts of large magnitudes if C = 0.1. Therefore, similar to the single object
imaging, the imaging result of F(z,C) heavily depends on the choice of C. Additionally, good results
can be obtained when C = 0 or |C| is small enough to identify multiple objects.

Example 4.3 (Imaging of large object). Although equation (2.2) holds for small objects, we now use
the F(z,C) to retrieve a large object. Figures 6 and 7 show the distribution of singular values of K(C)
and corresponding imaging results of K(C) in the presence of a circular object with radius α = 0.048 m
and material properties (ε, σ) = (15ε0, 0.5 S/m). Similar to the previous results in Examples 4.1 and
4.2, it is possible to recognize the outline shape of an object if C = 0 and C = 0.001i, i.e., if the value of
|C| is very small. However, it is impossible to identify the object if |C| is not small enough (|C| ≥ 0.01
in this example).
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(a) C = 0 (b) C = 0.01 (c) C = 0.1

(d) C = 0.001i (e) C = 0.01i (f) C = 0.1i

Figure 5. (Example 4.2) Maps of F(z,C) at f = 1 GHz with various C. Black-colored
dashed lines describe ∂D1 ∪ ∂D2.
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(a) C = 0 (b) C = 0.01 (c) C = 0.1

(d) C = 0.001i (e) C = 0.01i (f) C = 0.1i

Figure 6. (Example 4.3) Distribution of the singular values of K(C) at f = 1 GHz with
various C.
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(a) C = 0 (b) C = 0.01 (c) C = 0.1

(d) C = 0.001i (e) C = 0.01i (f) C = 0.1i

Figure 7. (Example 4.3) Maps of F(z,C) at f = 1 GHz with various C. The black-colored
dashed line describes ∂D.

4.2. Simulation results with experimental data

We now apply the imaging function of (2.7) to identify small objects and illustrate the effect of
the converted constant C. To this end, the scattering matrix was constructed using the microwave
machine, which was filled with water, and manufactured by the research group of the Electronics and
Telecommunications Research Institute, see [4]. The ROI Ω was selected as the interior of a circular
region centered at the origin with radius 0.085 m and material properties (εb, σb) = (78ε0, 0.2 S/m) at
f = 925 MHz. We refer to Figure 8 for illustrations of the microwave machine and selected objects
(cross section of screwdrivers, hand hammer, and plastic straw).

Example 4.4 (Imaging of small objects with same material properties). Here, we consider the imaging
of the cross section of screwdrivers Ds, where s = 1, 2, 3. Figure 9 illustrates the distribution of singular
values of K(C) for different C. Similar to the synthetic data experiment (Example 4.1), it is simple to
choose the first three singular values to define the imaging function when C = 0, 0.01, 0.001i, and
0.01i. However, it is difficult to choose nonzero singular values when C = 0.1 and C = 0.1i.

Figure 10 displays the maps of F(z,C) for different C. Similar to the results in Example 4.1, the
existence, location, and outline shape of objects can be identified very accurately through the map of
F(z,C), but some artifacts are included in the map when |C| = 0.01. Unfortunately, identifying some
objects when C = 0.1 is extremely difficult, as is distinguishing between objects and artifacts of large
magnitude when C = 0.1i. As with synthetic data experiments, the imaging result of F(z,C) is highly
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dependent on the choice of C, and good results can be obtained when |C| is small enough to identify
small objects.

(a) three screwdrivers (b) hand hammer and screwdrivers (c) screwdriver and plastic straw

Figure 8. Pictures of real-data experiments for Examples 4.4 (left), 4.5 (center), and 4.6
(right).

(a) C = 0 (b) C = 0.01 (c) C = 0.1

(d) C = 0.001i (e) C = 0.01i (f) C = 0.1i

Figure 9. (Example 4.4) Distribution of the singular values of K(C) at f = 925 MHz with
various C.
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(a) C = 0 (b) C = 0.01 (c) C = 0.1

(d) C = 0.001i (e) C = 0.01i (f) C = 0.1i

Figure 10. (Example 4.4) Maps of F(z,C) at f = 925 MHz with various C.

Example 4.5 (Imaging of small objects with different sizes and shapes). Now, we exhibit a result for
identifying the cross section of two screwdrivers and a hand hammer. Figure 11 exhibits the distribution
of singular values of K(C) for different C. Same as in Example 4.4, it is easy to select nonzero singular
values to define the imaging function when C = 0, 0.01, 0.001i, and 0.01i, but it is difficult to select
when C = 0.1 and C = 0.1i.

Figure 12 shows the maps of F(z,C) for different C. Fortunately, it is possible to distinguish the
cross section of hand hammer, which is larger than the cross section of screwdrivers if C is small
enough. However, it is very difficult to recognize small objects when C = 0.1i and distinguish small
and large objects when C = 0.1.
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(a) C = 0 (b) C = 0.01 (c) C = 0.1

(d) C = 0.001i (e) C = 0.01i (f) C = 0.1i

Figure 11. (Example 4.5) Distribution of the singular values of K(C) at f = 925 MHz with
various C.
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(a) C = 0 (b) C = 0.01 (c) C = 0.1

(d) C = 0.001i (e) C = 0.01i (f) C = 0.1i

Figure 12. (Example 4.5) Maps of F(z,C) at f = 925 MHz with various C.

Example 4.6 (Imaging of small objects with different material properties). For the final example, we
show a result for identifying the cross section of a screwdriver and a plastic straw. Similar to the
previous result in Example 4.4, it is not difficult to select a nonzero singular value when C = 0, 0.01,
0.001i, and 0.01i, but it is still difficult to select when C = 0.1 and C = 0.1i, refer to Figure 13.
In this case, we selected τ1 as the nonzero singular value of K(C), considering differences τn − τn+1,
n = 1, 2, . . . , 15. It is worth noting that the values of permittivity of the plastic straw and screwdriver are
extremely low and high, respectively, and the existence of the plastic straw does not affect Smeas(n,m)
because the value of OD of (2.4) for the screwdriver is significantly larger than that of plastic straw.
Correspondingly, only one singular value of K(C) that is significantly larger than the others has been
observed.

Figure 14 displays the maps of F(z,C) for different C. Unlike previous results, the location and
outline shape of the cross section of a screwdriver can be identified correctly through the map of
F(z,C) with |C| ≤ 0.1. Unfortunately, the screwdriver’s cross section cannot be recognized for any
value C.
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(a) C = 0 (b) C = 0.01 (c) C = 0.1

(d) C = 0.001i (e) C = 0.01i (f) C = 0.1i

Figure 13. (Example 4.6) Distribution of the singular values of K(C) at f = 925 MHz with
various C.
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(a) C = 0 (b) C = 0.01 (c) C = 0.1

(d) C = 0.001i (e) C = 0.01i (f) C = 0.1i

Figure 14. (Example 4.6) Maps of F(z,C) at f = 925 MHz with various C.

Based on Theorem 3.1, Remark 3.1, and the simulation results, we can conclude that applying a
small value of |C| guarantees good imaging results. However, the criteria for small value is unclear.
Hence, converting unknown diagonal data to C = 0 will be the best choice for properly applying the
SM. This is the theoretical reason why most studies converted unknown measurement data to the zero
constant as we discussed in Remark 3.1.

5. Conclusions

In this study, we investigated the use of SM for the rapid identification of small objects by converting
unknown diagonal elements of the scattering matrix into a constant. We demonstrated the effectiveness
of this approach by showing that the imaging function can be represented by an infinite series of Bessel
functions of integer order, antenna number and arrangement, and an applied constant. Furthermore,
we demonstrated that small object can be uniquely retrieved when the absolute value of the applied
constant is zero or near zero.

It is important to note that the scope of this paper’s analysis and application is limited to retrieving
a small object in two dimensions. However, future research focusing on identifying large objects and
expanding to three-dimensional microwave imaging would provide intriguing research topics. Finally,
motivated by remarkable studies in regard to machine learning techniques [50–52], generating diagonal
elements of scattering matrix will be also a remarkable research topic.
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