In this paper, we study the multiplicity results of positive solutions for a class of Kirchhoff type problems with singularity and critical exponents. Combining with the Nehari method and variational method, we prove the existence of positive ground state solutions. Furthermore, we obtain a relationship between the number of positive solutions and the topology of the global maximum set of $ Q(x) $.
Citation: Deke Wu, Hongmin Suo, Linyan Peng, Guaiqi Tian, Changmu Chu. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems with singularity and critical exponents[J]. AIMS Mathematics, 2022, 7(5): 7909-7935. doi: 10.3934/math.2022443
In this paper, we study the multiplicity results of positive solutions for a class of Kirchhoff type problems with singularity and critical exponents. Combining with the Nehari method and variational method, we prove the existence of positive ground state solutions. Furthermore, we obtain a relationship between the number of positive solutions and the topology of the global maximum set of $ Q(x) $.
[1] | G. R. Kirchhoff, Vorlesungen über Matematische Physik: Mechanik, 1877. |
[2] | X. Liu, Y. J. Sun, Multiple positive solutions for Kirchhoff type problems with singularity, Commun. Pure Appl. Anal., 12 (2013), 721–733. http://doi.org/10.3934/cpaa.2013.12.721 doi: 10.3934/cpaa.2013.12.721 |
[3] | J. F. Liao, P. Zhang, J. Liu, C. L. Tang, Existence and multiplicity of positive solutions for a class of Kirchhoff type problems with singularity, J. Math. Anal. Appl., 430 (2015), 1124–1148. https://doi.org/10.1016/j.jmaa.2015.05.038 doi: 10.1016/j.jmaa.2015.05.038 |
[4] | H. Y. Li, Y. T. Tang, J. F. Liao, Existence and multiplicity of positive solutions for a class of singular Kirchhoff type problems with sign-changing potential, Math. Method. Appl. Sci., 41 (2018), 2971–2986. https://doi.org/10.1002/mma.4795 doi: 10.1002/mma.4795 |
[5] | C. Y. Lei, J. F. Liao, C. L. Tang, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents, J. Math. Anal. Appl., 421 (2015), 521–538. https://doi.org/10.1016/j.jmaa.2014.07.031 doi: 10.1016/j.jmaa.2014.07.031 |
[6] | R. Q. Liu, C. L. Tang, J. F. Liao, X. P. Wu, Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four, Commun. Pure Appl. Anal., 15 (2016), 1841–1856. https://doi.org/10.3934/cpaa.2016006 doi: 10.3934/cpaa.2016006 |
[7] | J. F. Liao, X. F. Ke, C. Y. Lei, C. L. Tang, A uniqueness result for Kirchhoff type problems with singularity, Appl. Math. Lett., 59 (2016), 24–30. https://doi.org/10.1016/j.aml.2016.03.001 doi: 10.1016/j.aml.2016.03.001 |
[8] | M. J. Mu, H. Q. Lu, Existence and multiplicity of positive solutions for Kirchhoff-Schrödinger-Poisson system with singularity, J. Funct. Spaces, 2017 (2017), 5985962. https://doi.org/10.1155/2017/5985962 doi: 10.1155/2017/5985962 |
[9] | Q. Zhang, Multiple positive solutions for Kirchhoff-Schrödinger-Poisson system with general singularity, Bound. Value Probl., 2017 (2017), 127. https://doi.org/10.1186/s13661-017-0858-x doi: 10.1186/s13661-017-0858-x |
[10] | F. Y. Li, Z. X. Song, Q. Zhang, Existence and uniqueness results for Kirchhoff-Schrödinger-Poisson system with general singularity, J. Appl. Anal., 96 (2017), 2906–2916. https://doi.org/10.1080/00036811.2016.1253065 doi: 10.1080/00036811.2016.1253065 |
[11] | C. Y. Lei, H. M. Suo, C. M. Chu, Multiple positive solutions for a Schrödinger-Newton system with singularity and critical growth, Electron. J. Differ. Equ., 2018 (2018), 86. |
[12] | Q. Zhang, Existence of positive solution to Kirchhoff-Schrödinger-Poisson system with strong singular term, J. Math. Phys., 60 (2019), 041504. https://doi.org/10.1063/1.5065521 doi: 10.1063/1.5065521 |
[13] | G. S. Yin, J. S. Liu, Existence and multiplicity of nontrivial solutions for a nonlocal problem, Bound. Value Probl., 2015 (2015), 26. https://doi.org/10.1186/s13661-015-0284-x doi: 10.1186/s13661-015-0284-x |
[14] | C. Y. Lei, C. M. Chu, H. M. Suo, Positive solutions for a nonlocal problem with singularity, Electron. J. Differ. Equ., 2017 (2017), 85. |
[15] | Y. Wang, H. M. Suo, C. Y. Lei, Multiple positive solutions for a nonlocal problem involving critical exponent, Electron. J. Differ. Equ., 2017 (2017), 275. |
[16] | C. Y. Lei, J. F. Liao, H. M. Suo, Multiple positive solutions for nonlocal problems involving a sign-changing potential, Electron. J. Differ. Equ., 2017 (2017), 9. |
[17] | X. T. Qian, W. Chao, Existence of positive solutions for nonlocal problems with indefinite nonlinearity, Bound. Value Probl., 2020 (2020), 40. https://doi.org/10.1186/s13661-020-01343-2 doi: 10.1186/s13661-020-01343-2 |
[18] | I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. https://doi.org/10.1016/0022-247X(74)90025-0 doi: 10.1016/0022-247X(74)90025-0 |
[19] | M. K. Hamdani, Eigenvalues of a new $p(x)$ -Kirchhoff problem with variable exponent, 2019, hal-02078035. Available from: https://hal.archives-ouvertes.fr/ha1-02078035. |
[20] | M. K. Hamdani, Existence and multiplicity results for a new $p(x)$ -Kirchhoff problem with variable exponent, 2019, hal-02164195. Available from: https://hal.archives-ouvertes.fr/hal-02164195. |
[21] | C. M. Chu, Y. X. Xiao, The multiplicity of nontrivial solutions for a new $p(x)$ -Kirchhoff-Type elliptic problem, J. Funct. Spaces, 2021 (2021), 1569376. https://doi.org/10.1155/2021/1569376 doi: 10.1155/2021/1569376 |
[22] | M. K. Hamdani, A. Harrabi, F. Mtiri, D. D. Repovs, Existence and multiplicity results for a new $p(x)$ -Kirchhoff problem, Nonlinear Anal., 190 (2020), 111598. https://doi.org/10.1016/j.na.2019.111598 doi: 10.1016/j.na.2019.111598 |
[23] | C. Vetro, Variable exponent $p(x)$ -Kirchhoff type problem with convection, J. Math. Anal. Appl., 506 (2022), 125721. https://doi.org/10.1016/j.jmaa.2021.125721 doi: 10.1016/j.jmaa.2021.125721 |
[24] | Y. J. Sun, S. J. Li, Structure of ground state solutions of singular semilinear elliptic equations, Nonlinear Anal.-Theor., 55 (2003), 399–417. https://doi.org/10.1016/S0362-546X(03)00244-X doi: 10.1016/S0362-546X(03)00244-X |
[25] | H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405 |
[26] | D. M. Cao, E. S. Noussair, Multiple positive and nodal solutions for semilinear elliptic problems with critical exponents, Indiana Univ. Math. J., 44 (1995), 1249–1271. https://doi.org/10.1512/iumj.1995.44.2027 doi: 10.1512/iumj.1995.44.2027 |
[27] | P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 2, Rev. Mat. Iberoam., 1 (1985), 45–121. https://doi.org/10.4171/RMI/12 doi: 10.4171/RMI/12 |
[28] | X. T. Qian, J. Q. Chen, Multiple positive and sign-changing solutions of an elliptic equation with fast increasing weight and critical growth, J. Math. Anal. Appl., 465 (2018), 1186–1208. https://doi.org/10.1016/j.jmaa.2018.05.058 doi: 10.1016/j.jmaa.2018.05.058 |
[29] | H. N. Fan, Multiple positive solutions for a class of Kirchhoff type problems involving critical Sobolev exponents, J. Math. Anal. Appl., 431 (2015), 150–168. https://doi.org/10.1016/j.jmaa.2015.05.053 doi: 10.1016/j.jmaa.2015.05.053 |
[30] | Y. Wang, X. Yang, Infinitely many solutions for a new Kirchhoff-type equation with subcritical exponent, Applicable. Anal., 4 (2020), 1–14. https://doi.org/10.1080/00036811.2020.1767288 doi: 10.1080/00036811.2020.1767288 |
[31] | X. T. Qian, Multiplicity of positive solutions for a class of nonlocal problem involving critical exponent, Electron. J. Qual. Differ. Equ., 57 (2021), 1–14. https://doi.org/10.14232/ejqtde.2021.1.57 doi: 10.14232/ejqtde.2021.1.57 |
[32] | S. B. Yu, J. Q. Chen, Multiple positive solutions for critical elliptic problem with singularity, Monatsh. Math., 194 (2021), 395–423. https://doi.org/10.1007/s00605-021-01510-2 doi: 10.1007/s00605-021-01510-2 |