In this paper, we characterize the commutativity of H-Toeplitz operators with quasihomogeneous symbols on the Bergman space, which is different from the case of Toeplitz operators with same symbols on the Bergman space.
Citation: Jinjin Liang, Liling Lai, Yile Zhao, Yong Chen. Commuting H-Toeplitz operators with quasihomogeneous symbols[J]. AIMS Mathematics, 2022, 7(5): 7898-7908. doi: 10.3934/math.2022442
In this paper, we characterize the commutativity of H-Toeplitz operators with quasihomogeneous symbols on the Bergman space, which is different from the case of Toeplitz operators with same symbols on the Bergman space.
[1] | S. Axler, Z. Cuckovic, N. V. Rao, Commutants of analytic Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc., 128 (2000), 1951–1953. https://doi.org/10.1090/S0002-9939-99-05436-2 doi: 10.1090/S0002-9939-99-05436-2 |
[2] | S. C. Arora, S. Paliwal, On H-Toeplitz operators, Bull. Pure Appl. Math., 1 (2007), 141–154. |
[3] | S. Axler, Z. Cuckovic, Commuting Toeplitz operators with harmonic symbols, Integr. Equ. Oper. Theor., 14 (1991), 1–12. https://doi.org/10.1007/BF01194925 doi: 10.1007/BF01194925 |
[4] | A. Brown, P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math., 213 (1963), 89–102. https://doi.org/10.1515/crll.1964.213.89 doi: 10.1515/crll.1964.213.89 |
[5] | Z. Cuckovic, N. V. Rao, Mellin transform, monomial symbols and commuting Toeplitz operators, J. Funct. Anal., 154 (1998), 195–214. https://doi.org/10.1006/jfan.1997.3204 doi: 10.1006/jfan.1997.3204 |
[6] | X. T. Dong, Z. H. Zhou, Algebraic properties of Toeplitz operators with separately quasihomogeneous symbols on the Bergman space of the unit ball, J. Operat. Theor., 66 (2011), 193–207. https://www.jstor.org/stable/24715990 |
[7] | H. Y. Guan, Y. F. Lu, Algebraic properties of Toeplitz and small Hankel operators on the harmonic Bergman space, Acta Math. Sin., 30 (2014), 1395–1406. https://doi.org/10.1007/s10114-014-3276-3 doi: 10.1007/s10114-014-3276-3 |
[8] | A. Gupta, S. K. Singh, H-Toeplitz operators on Bergman space, Bull. Korean Math., 58 (2021), 327–347. https://doi.org/10.4134/BKMS.b200260 doi: 10.4134/BKMS.b200260 |
[9] | K. Y. Guo, D. C. Zheng, Essentially commuting Hankel and Toeplitz operators, J. Funct. Anal., 201 (2003), 121–147. https://doi.org/10.1016/S0022-1236(03)00100-9 doi: 10.1016/S0022-1236(03)00100-9 |
[10] | I. Louhichi, L. Zakariasy, On Toeplitz operators with quasihomogeneous symbols, Arch. Math., 85 (2005), 248–257. https://doi.org/10.1007/s00013-005-1198-0 doi: 10.1007/s00013-005-1198-0 |
[11] | R. Martinez-Avendano, When do Toeplitz and Hankel operators commute? Integr. Equ. Oper. Theor., 37 (2000), 341–349. https://doi.org/10.1007/BF01194483 doi: 10.1007/BF01194483 |
[12] | R. Remmert, Classical topics in complex function theory, Graduate Texts in Methematics, Springer, New York, 1998. https: //doi.org.10.1007/978-1-4757-2956-6 |
[13] | H. Sadraoui, M. Guediri, Hyponormal Toeplitz operators on the Bergman space, Oper. Matrices, 11 (2017), 669–677. https://doi.org/10.7153/oam-11-44 doi: 10.7153/oam-11-44 |
[14] | D. Suarez, A generalization of Toeplitz operators on the Bergman space, J. Operat. Theor., 73 (2015), 315–332. https://doi.org/10.7900/jot.2013nov28.2023 doi: 10.7900/jot.2013nov28.2023 |
[15] | X. F. Zhao, D. C. Zheng, The spectrum of Bergman Toeplitz operators with some harmonic symbols, Sci. China Math., 59 (2016), 731–740. https://doi.org/10.1007/s11425-015-5083-4 doi: 10.1007/s11425-015-5083-4 |