Research article

Contractivity and expansivity of H-Toeplitz operators on the Bergman spaces

  • Received: 24 March 2022 Revised: 10 May 2022 Accepted: 16 May 2022 Published: 25 May 2022
  • MSC : 47B35, 46E20

  • In this paper we consider the properties of H-Toeplitz operators $ B_{\varphi} $ on the Bergman space $ L^2_a(\Bbb D) $. We present some necessary and sufficient conditions for the contractive and expansive H-Toeplitz operators $ B_\varphi $ with various symbols $ \varphi $.

    Citation: Sumin Kim, Jongrak Lee. Contractivity and expansivity of H-Toeplitz operators on the Bergman spaces[J]. AIMS Mathematics, 2022, 7(8): 13927-13944. doi: 10.3934/math.2022769

    Related Papers:

  • In this paper we consider the properties of H-Toeplitz operators $ B_{\varphi} $ on the Bergman space $ L^2_a(\Bbb D) $. We present some necessary and sufficient conditions for the contractive and expansive H-Toeplitz operators $ B_\varphi $ with various symbols $ \varphi $.



    加载中


    [1] S. C. Arora, S. Paliwal, On H-Toeplitz operators, Bull. Pure Appl. Math., 1 (2007), 141–154.
    [2] S. Axler, J. B. Conway, G. McDonald, Toeplitz operators on Bergman spaces, Canadian J. Math., 34 (1982), 466–483. https://doi.org/10.4153/CJM-1982-031-1 doi: 10.4153/CJM-1982-031-1
    [3] S. W. Brown, B. Chevreau, B. Pearcy, On the structure of contraction operators. Ⅱ, J. Funct. Anal., 76 (1988), 30–55. https://doi.org/10.1016/0022-1236(88)90047-X doi: 10.1016/0022-1236(88)90047-X
    [4] B. Chevreau, G. Exner, B. Pearcy, On the structure of contraction operators. Ⅲ, Michigan Math. J., 36 (1989), 29–62. https://doi.org/10.1307/mmj/1029003881 doi: 10.1307/mmj/1029003881
    [5] B. Chevreau, B. Pearcy, On the structure of contraction operators with applications to invariant subspaces, J. Funct. Anal., 67 (1986), 360–379. https://doi.org/10.1016/0022-1236(86)90031-5 doi: 10.1016/0022-1236(86)90031-5
    [6] B. Chevreau, B. Pearcy, On the structure of contraction operators, J. Funct. Anal., 76 (1988), 1–29. https://doi.org/10.1016/0022-1236(88)90046-8 doi: 10.1016/0022-1236(88)90046-8
    [7] C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc., 103 (1988), 809–812. https://doi.org/10.1090/S0002-9939-1988-0947663-4 doi: 10.1090/S0002-9939-1988-0947663-4
    [8] R. E. Curto, W. Y. Lee, Joint hyponormality of Toeplitz pairs, Mem. Amer. Math. Soc., 150 (2001), 1–65.
    [9] J. Eschmeier, Invariant subspaces for spherical contractions, Proc. London. Math. Soc., 75 (1997), 157–176. https://doi.org/10.1112/S0024611597000300 doi: 10.1112/S0024611597000300
    [10] A. Gupta, S. K. Singh, H-Toeplitz operators on the Bergman space, Bull. Korean Math. Soc., 58 (2021), 327–347. https://doi.org/10.4134/BKMS.b200260 doi: 10.4134/BKMS.b200260
    [11] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, New York, Springer-verlag, 2000.
    [12] I. S. Hwang, I. H. Kim, W. Y. Lee, Hyponormality of Toeplitz operators with polynomial symbol, Math. Ann., 313 (1999), 247–261. https://doi.org/10.1007/s002080050260 doi: 10.1007/s002080050260
    [13] I. S. Hwang, J. Lee, Hyponormal Toeplitz operators on the weighted Bergman spaces, Math. Inequal. Appl., 15 (2012), 323–330. http://dx.doi.org/10.7153/mia-15-26 doi: 10.7153/mia-15-26
    [14] I. S. Hwang, W. Y. Lee, Hyponormality of trigonometric Toeplitz operators, Trans. Amer. Math. Soc., 354 (2002), 2461–2474. https://www.jstor.org/stable/2693894
    [15] I. S. Hwang, Hyponormal Toeplitz operators on the Bergman spaces, J. Korean Math. Soc., 42 (2005), 387–403. https://doi.org/10.4134/JKMS.2005.42.2.387 doi: 10.4134/JKMS.2005.42.2.387
    [16] I. S. Hwang, Hyponormality of Toeplitz operators on the Bergman space, J. Korean Math. Soc., 45 (2008), 1027–1041. https://doi.org/10.4134/JKMS.2008.45.4.1027 doi: 10.4134/JKMS.2008.45.4.1027
    [17] J. Kim, W. Y. Lee, Invariant subspaces for operators whose spectra are Carathéodory regions, J. Math. Anal. Appl., 371 (2010), 184–189. http://dx.doi.org/10.1016/j.jmaa.2012.07.002 doi: 10.1016/j.jmaa.2012.07.002
    [18] Y. Lu, Y. Shi, Hyponormal Toeplitz operators on the weighted Bergman space, Int. Eq. Op. Th., 65 (2009), 115–129. https://doi.org/10.1007/s00020-009-1712-z doi: 10.1007/s00020-009-1712-z
    [19] G. McDonald, C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J., 28 (1979), 595–611. https://www.jstor.org/stable/24892252
    [20] T. Nakazi, K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc., 338 (1993), 759–769. https://doi.org/10.2307/2154427 doi: 10.2307/2154427
    [21] H. Sadraoui, M. Guediri, Hyponormal Toeplitz operators on the Bergman space, Oper. Matrices, 11 (2017), 669–677. https://doi.org/10.1007/s40065-017-0170-8 doi: 10.1007/s40065-017-0170-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1652) PDF downloads(115) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog