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1. Introduction

Let D denote the open unit disk in the complex plane C and dA the area measure on the complex
plane C. The space L2(D) is a Hilbert space with the inner product

〈 f , g〉 =
1
π

∫
D

f (z)g(z)dA(z).

The Bergman space L2
a(D) consists of all analytic functions on D and L∞(D) is the space of the essen-

tially bounded measurable function on D. For ϕ ∈ L∞(D), the multiplication operator Mϕ on L2
a(D) is

defined by Mϕ( f ) = ϕ · f and the Toeplitz operator Tϕ on L2
a(D) is defined by

Tϕ( f ) = P(ϕ · f ),

where P denotes the orthogonal projection of L2(D) onto L2
a(D) and f ∈ L2

a(D). It is clear that those
operators are bounded if ϕ ∈ L∞(D).

The harmonic Bergman space L2
harm(D) denotes the space of all complex-valued harmonic functions

in L2(D). The space L2
harm(D) is a closed subspace of L2(D) and it is a Hilbert space. Let Pharm be the

orthogonal projection from the space L2(D) onto the space L2
harm(D).
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Toeplitz operators on the Bergman space were studied by McDonald and Sundberg in [19]. Re-
cently, lots of research about Toeplitz operators has been conducted in the Bergman space (see [2, 11]).
In the Hardy space, the hyponormality of Toeplitz operators was studied in [7, 8, 12, 14, 20] ; re-
fer to references therein for more details. Recently, many authors characterized the hyponormality of
Toeplitz operators on the Bergman space and weighted Bergman space (see [7, 13, 15, 16, 18, 21]). In
2007, Arora and Paliwal [1] have introduced the notion of H-Toeplitz operators on the Hardy space.
Recently, in [10], the authors studied H-Toeplitz operators on the Bergman space. The research of
H-Toeplitz operators has arisen naturally in several fields of mathematics and in a variety problems.
For example, an H-Toeplitz system comprises a matrix equation of the form T x = y where T is an n
by n H-Toeplitz matrix with x, y in Cn. The n × n H-Toeplitz matrix T has 2n − 1 degrees of freedom
rather than n2. Thus for a large n, it is easier to solve the system of linear equations for an H-Toeplitz
matrix(cf. [10]). In this paper we consider the algebraic properties of H-Toeplitz operators Bϕ on the
Bergman space L2

a(D). More concretely, we establish a tractable and explicit criterion for the contrac-
tivity and expansivity of H-Toeplitz operators. Several decades ago, many researchers began studying
the contractive and expansive operators (see [3, 4, 5, 6]). In [5], the authors considered the invariant
subspace problem for contractive operators. Recently, various results have been derived based on the
papers (see [9, 17]).

The organization of this paper is as follows. In Section 2, we introduce the notion of H-Toeplitz
operators on the Bergman space and provide various well-known properties of these operators. In
Section 3, we focus on the contractive and expansive H-Toeplitz operators with analytic, coanalytic
and harmonic symbols.

2. Preliminaries and auxiliary lemmas

Let s, t be nonnegative integers and P be the orthogonal projection from L2(D) to L2
a(D). Then we

have

P(ztzs) =

 s−t+1
s+1 zs−t if s ≥ t

0 if s < t.

The following lemmas will be used frequently in this paper.

Lemma 2.1. ([10]) In the harmonic Bergman space L2
harm(D), for nonnegative integers s and t, the

following:

Pharm(ztzs) =

 s−t+1
s+1 zs−t if s ≥ t

t−s+1
t+1 zt−s if s < t.

Lemma 2.2. ([15]) For m ≥ 0, we have

(i) ||zm
∞∑

n=0

cizi||2 =

∞∑
n=0

1
i + m + 1

|ci|
2,

(ii) ||P(zm
∞∑

n=0

cizi)||2 =

∞∑
i=m

i − m + 1
(i + 1)2 |ci|

2.

By using Lemmas 2.1 and 2.2, we have the following result.
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Remark 2.3. For m ≥ 0, we have

||Pharm(zm
∞∑

n=0

cizi)||2 =

m−1∑
i=0

m − i + 1
(m + 1)2 |ci|

2 +

∞∑
i=m

i − m + 1
(i + 1)2 |ci|

2.

In order to define the notion of an H-Toeplitz operator on L2
a(D), we first consider the operator

K : L2
a(D)→ L2

harm(D) defined by

K(e2n(z)) = en(z) =
√

n + 1zn and K(e2n+1(z)) = en+1(z) =
√

n + 2zn+1

for all n ≥ 0 and z ∈ D. It can be checked that the operator K is bounded linear on L2
a(D) with ||K|| = 1.

Moreover, the adjoint K∗ of the operator K is given by

K∗(en(z)) = e2n(z) and K∗(en+1(z)) = e2n+1(z)

for all n ≥ 0. From the definition of K and K∗, we have that KK∗ = IL2
harm(D) and K∗K = IL2

a(D).

Remark 2.4. By the definitions of K and K∗, we can easily check that K(z2n) =
√

n+1
√

2n+1
zn, K(z2n+1) =

√
n+2
√

2n+2
zn+1, K∗(zn) =

√
2n+1
√

n+1
z2n and K∗(zn) =

√
2n

√
n+1

z2n−1.

Next, we define H-Toeplitz operators on the Bergman space L2
a(D) using the definition of the oper-

ator K.

Definition 2.5. ([10]) For ϕ ∈ L∞(D), the H-Toeplitz operator Bϕ with the symbol ϕ is defined as the
operator Bϕ : L2

a(D)→ L2
a(D) such that Bϕ( f ) = PMϕK( f ) for all f ∈ L2

a(D).

The next proposition follows from the definition of the H-Toeplitz operators.

Proposition 2.6. ([10]) For ϕ, ψ ∈ L∞(D), the operator Bϕ satisfies the following:
(i) Bϕ is a bounded linear operator on L2

a(D) with ||Bϕ|| ≤ ||ϕ||∞.
(ii) For any scalar α and β, Bαϕ+βψ = αBϕ + βBψ.
(iii) The adjoint of the H-Toeplitz operator Bϕ is given by B∗ϕ = K∗PharmMϕ.

The following remark provides important information for adjoint operators. It shows the difference
between adjoint Toeplitz operators and adjoint H-Toeplitz operators.

Remark 2.7. If f , g are in L∞(D) then by the definition of Toeplitz operators T f , we have that

T ∗f = T f and T f Tg = T f g if f or g is analytic.

But in the case of the H-Toeplitz operator,

B∗z(az) = K∗PharmMz(az) = K∗Pharm(azz) = K∗
(a
2

)
=

a
2

and
Bz(az) = PMzK(az) = PMzaz = P(az2) = 0.

Therefore, B∗z(az) , Bz(az). A straightforward calculation shows that BzBz , Bz2 (cf. [10]).
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3. Main results

A bounded linear operator T on a Hilbert space is said to be expansive if T ∗T ≥ I, contractive if
T ∗T ≤ I, and isometric if T ∗T = I.

For k ∈ L2
a(D), let k(z) = ke(z) + ko(z), where

ke(z) :=
∞∑

n=0

c2nz2n and ko(z) :=
∞∑

n=0

c2n+1z2n+1.

3.1. H-Toeplitz operators with analytic symbols

In this subsection, we consider the properties of H-Toeplitz operators Bϕ and B∗ϕ with analytic
symbols. First, we study the contractivity and expansivity of Bϕ and B∗ϕ with ϕ = azN for N ∈ N
and a ∈ C. Next, we extend the symbol ϕ of the form ϕ(z) =

∑∞
i=0 aizi with ai ∈ C.

Theorem 3.1. Let ϕ(z) = azN for N ∈ N and a ∈ C. Then Bϕ is contractive if and only if |a| ≤ 1.

Proof. For any k ∈ L2
a(D),

Bϕk(z) = PMϕK(k(z)) = PMϕK(ke(z) + ko(z))

= PMϕ

 ∞∑
n=0

 √n + 1
√

2n + 1
c2nzn +

√
n + 2
√

2n + 2
c2n+1zn+1


= a

∞∑
n=0

√
n + 1
√

2n + 1
c2nzn+N + P

azN
∞∑

n=0

√
n + 2
√

2n + 2
c2n+1zn+1


= a

∞∑
n=0

√
n + 1
√

2n + 1
c2nzn+N + a

N−1∑
n=0

√
n + 2
√

2n + 2
·

N − n
N + 1

c2n+1zN−n−1,

and we have that

||Bϕk(z)||2 = |a|2
 ∞∑

n=0

n + 1
(2n + 1)(n + N + 1)

|c2n|
2 +

N−1∑
n=0

(n + 2)(N − n)
2(n + 1)(N + 1)2 |c2n+1|

2

 .
According to the definition for the contractivity of Bϕ, the inequality B∗ϕBϕ ≤ I is equivalent to
||Bϕk(z)||2 ≤ ||k(z)||2 for any k ∈ L2

a(D). Thus, Bϕ on L2
a(D) is contractive if and only if

|a|2
 ∞∑

n=0

n + 1
(2n + 1)(n + N + 1)

|c2n|
2 +

N−1∑
n=0

(n + 2)(N − n)
2(n + 1)(N + 1)2 |c2n+1|

2


≤

∞∑
j=0

1
j + 1

|c j|
2.

(3.1)

There are two cases to consider. If c` , 0 for ` is even and c` = 0 for ` is odd, from (3.1), we have

|a|2
n + 1

(2n + 1)(n + N + 1)
|c2n|

2 ≤
1

2n + 1
|c2n|

2
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or equivalently,

|a|2 ≤
n + N + 1

n + 1
for any nonnegative integer n. Since n+N+1

n+1 is decreasing for n, we have

|a|2 ≤ min
n≥0

n + N + 1
n + 1

= lim
n→∞

n + N + 1
n + 1

= 1. (3.2)

If c` , 0 for ` is odd, and c` = 0 for ` is even, from (3.1), we have

|a|2
(n + 2)(N − n)

2(n + 1)(N + 1)2 |c2n+1|
2 ≤

1
2(n + 1)

|c2n+1|
2

or equivalently,

|a|2 ≤
(N + 1)2

(n + 2)(N − n)

for any 0 ≤ n ≤ N − 1. Put f (n) =
(N+1)2

(n+2)(N−n) , then f is increasing for N−2
2 ≤ n ≤ N − 1, and decreasing

for 0 ≤ n < N−2
2 . Moreover, if N is even, then Bϕ is contractive if and only if

|a|2 ≤ min
0≤n≤N−1

(N + 1)2

(n + 2)(N − n)
= f

(
N − 2

2

)
=

4(N + 1)2

(N + 2)2 . (3.3)

If N is odd, then Bϕ is contractive if and only if

|a|2 ≤ min
0≤n≤N−1

(N + 1)2

(n + 2)(N − n)
= f

(
N − 1

2

)
= f

(
N − 3

2

)
=

4(N + 1)
N + 3

. (3.4)

Since 4(N+1)2

(N+2)2 ≥ 1 and 4(N+1)
N+3 ≥ 1 for any N ∈ N, from (3.2)–(3.4), Bϕ is contractive if and only if |a| ≤ 1.

This completes the proof. �

Corollary 3.2. Let ϕ(z) = azN for N ∈ N and a ∈ C. Then Bϕ is neither expansive nor isometric.

Proof. From the proof of Theorem 3.1, Bϕ is expansive if and only if

|a|2
 ∞∑

n=0

n + 1
(2n + 1)(n + N + 1)

|c2n|
2 +

N−1∑
n=0

(n + 2)(N − n)
2(n + 1)(N + 1)2 |c2n+1|

2

 ≥ ∞∑
j=0

1
j + 1

|c j|
2. (3.5)

Set c2N+1 , 0 and ci = 0 for i , 2N + 1. Then from (3.5), 1
2(N+1) ≤ 0; it is a contradiction. �

In the next result, we have the sufficient condition for the contractivity and expansivity of the H-
Toeplitz operators Bϕ with symbols ϕ(z) =

∑∞
i=0 aizi where ai ∈ C on L2

a(D).

Theorem 3.3. Let ϕ(z) =
∑∞

i=0 aizi and ai ∈ C.
(i) If Bϕ is contractive then

∞∑
i=0

1
s + i + 1

|ai|
2 ≤

1
s + 1

and
∞∑

i=s+1

i − s
(i + 1)2 |ai|

2 ≤
1

s + 2
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for any nonnegative integer s.
(ii) If Bϕ is expansive then

∞∑
i=0

1
s + i + 1

|ai|
2 ≥

1
s + 1

and
∞∑

i=s+1

i − s
(i + 1)2 |ai|

2 ≥
1

s + 2
(3.6)

for any nonnegative integer s.

Proof. For any k ∈ L2
a(D),

Bϕk(z) = PMϕK(k(z)) = PMϕK(ke(z) + ko(z))

= PMϕ

 ∞∑
n=0

 √n + 1
√

2n + 1
c2nzn +

√
n + 2
√

2n + 2
c2n+1zn+1


=

∞∑
i=0

∞∑
n=0

√
n + 1
√

2n + 1
aic2nzn+i +

∞∑
i=1

i−1∑
n=0

√
n + 2
√

2n + 2
·

i − n
i + 1

aic2n+1zi−n−1

(3.7)

for any c j ∈ C ( j = 0, 1, 2, · · · ). Then on comparing the coefficient of zm, by the equation (3.7) we have
that

amc0 +

√
2
√

3
am−1c2 + · · · +

√
m + 1
√

2m + 1
a0c2m +

∞∑
n=0

√
n + 2
√

2n + 2
·

m + 1
n + m + 2

an+m+1c2n+1.

Set c` , 0 for some ` and c j = 0 for any j , `. Then we consider that the following two cases arise:
Case 1: If ` = 2s for any nonnegative integer s, then

Bϕk(z) =

∞∑
i=0

√
s + 1

√
2s + 1

aic2szs+i.

If Bϕ on L2
a(D) is contractive then

∞∑
i=0

s + 1
(2s + 1)(s + i + 1)

|ai|
2|c2s|

2 ≤
1

2s + 1
|c2s|

2.

Thus,
∑∞

i=0
1

s+i+1 |ai|
2 ≤ 1

s+1 for any nonnegative integer s. Similarly, if Bϕ on L2
a(D) is expansive then∑∞

i=0
1

s+i+1 |ai|
2 ≥ 1

s+1 for any nonnegative integer s.
Case 2: If ` = 2s + 1 for any nonnegative integer s, then

Bϕk(z) =

∞∑
i=s+1

√
s + 2

√
2s + 2

·
i − s
i + 1

aic2s+1zi−s−1.

If Bϕ on L2
a(D) is contractive then

∞∑
i=s+1

(s + 2)(i − s)
2(s + 1)(i + 1)2 |ai|

2|c2s+1|
2 ≤

1
2(s + 1)

|c2s+1|
2.

Thus,
∑∞

i=s+1
i−s

(i+1)2 |ai|
2 ≤ 1

s+2 for any nonnegative integer s. Similarly, if Bϕ on L2
a(D) is expansive then∑∞

i=s+1
i−s

(i+1)2 |ai|
2 ≥ 1

s+2 for any nonnegative integer s. This completes the proof. �
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Example 3.4. Let ϕ(z) =
∑∞

i=0
1
√

i+1
zi. Then

∞∑
i=0

1
(i + 1)2 =

π2

6
> 1,

and so, Bϕ is not contractive.

The following example shows that the converse of Theorem 3.3 (ii) is not true.

Example 3.5. Consider the polynomial ϕ(z) = z +
√

3z2. Then the conditions in (3.6) hold. Put k(z) =

−
√

2
3 + 1

√
6
z + z2. A straightforward calculation shows that Bϕk(z) = 1

2
√

6
+
√

2z3. Thus ||Bϕk(z)||2 = 13
24

and ||k(z)||2 = 23
36 . Therefore, Bϕ is not expansive.

We obtained the contractivity and expansivity of the adjoint H-Toeplitz operators B∗ϕ on L2
a(D).

Theorem 3.6. Let ϕ(z) = azN for N ∈ N and a ∈ C. Then B∗ϕ is contractive if and only if |a| ≤ 1.

Proof. For any k ∈ L2
a(D),

B∗ϕk(z) = K∗PharmMϕk(z)

= K∗Pharm

azN
∞∑

n=0

cnzn


= aK∗

N−1∑
n=0

N − n + 1
N + 1

cnzN−n
+

∞∑
n=N

n − N + 1
n + 1

cnzn−N


= a

N−1∑
n=0

√
N − n + 1

√
2N − 2n

N + 1
cnz2N−2n−1 + a

∞∑
n=N

√
n − N + 1

√
2n − 2N + 1

n + 1
cnz2n−2N .

Thus

||B∗ϕk(z)||2 = |a|2
N−1∑

n=0

N − n + 1
(N + 1)2 |cn|

2 +

∞∑
n=N

n − N + 1
(n + 1)2 |cn|

2

 .
Thus, B∗ϕ on L2

a(D) is contractive if and only if

|a|2
N−1∑

n=0

N − n + 1
(N + 1)2 |cn|

2 +

∞∑
n=N

n − N + 1
(n + 1)2 |cn|

2

 ≤ ∞∑
n=0

1
n + 1

|cn|
2. (3.8)

If 0 ≤ n ≤ N − 1, then |a|2 ≤ (N+1)2

(n+1)(N−n+1) ; so,

|a|2 ≤ min
0≤n≤N−1

(N + 1)2

(n + 1)(N − n + 1)
=

(N + 1)2

2N
,

since (N+1)2

(n+1)(N−n+1) is decreasing. If n ≥ N, then |a|2 ≤ n+1
n−N+1 ; so,

|a|2 ≤ min
n≥N

n + 1
n − N + 1

= 1,

since n+1
n−N+1 is decreasing. Hence, for any arbitrary ci (i = 0, 1, 2, · · · ), the inequality given by (3.8)

holds if and only if |a|2 ≤ min
{

(N+1)2

2N , 1
}

= 1. This completes the proof. �
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From Theorem 3.6, we get the following corollaries and example.

Corollary 3.7. Let ϕ(z) = azN for N ∈ N and a ∈ C. Then B∗ϕ is expansive if and only if |a|2 ≥ N + 1.

Proof. From the proof of Theorem 3.6, B∗ϕ is expansive if and only if

|a|2
N−1∑

n=0

N − n + 1
(N + 1)2 |cn|

2 +

∞∑
n=N

n − N + 1
(n + 1)2 |cn|

2

 ≥ ∞∑
n=0

1
n + 1

|cn|
2. (3.9)

If 0 ≤ n ≤ N −1, then |a|2 ≥ (N+1)2

(n+1)(N−n+1) ; thus |a|2 ≥ N + 1 since (N+1)2

(n+1)(N−n+1) is decreasing. If n ≥ N, then
|a|2 ≥ n+1

n−N+1 ; thus |a|2 ≥ N + 1 since n+1
n−N+1 is decreasing. Hence, the inequality given by (3.9) holds for

any arbitrary ci (i = 0, 1, 2, · · · ) if and only if |a|2 ≥ N + 1. �

Example 3.8. Let ϕ(z) = 2z4. By a direct calculation,

||B∗ϕk(z)||2 = 4

 3∑
n=0

5 − n
25
|cn|

2 +

∞∑
n=4

n − 3
(n + 1)2 |cn|

2


and

||k(z)||2 =

∞∑
n=0

1
n + 1

|cn|
2.

Since ci’s are arbitrary, set c0 , 0 and ci = 0 for i > 0; then ||B∗ϕk(z)||2 = 4
5 |c0|

2 and ||k(z)||2 = |c0|
2. Thus

||B∗ϕk(z)||2 < ||k(z)||2. Set c5 , 0 and ci = 0 for i , 5; then ||B∗ϕk(z)||2 = 2
9 |c5|

2 and ||k(z)||2 = 1
6 |c5|

2. Thus,
||B∗ϕk(z)||2 > ||k(z)||2. Hence B∗2z4 is neither contractive nor expansive.

Corollary 3.9. Let ϕ(z) = azN for N ∈ N and a ∈ C. Then Bϕ is not self-adjoint.

Proof. In the proof of Theorems 3.1 and 3.6,

Bϕk(z) = a
∞∑

n=0

√
n + 1
√

2n + 1
c2nzn+N + a

N−1∑
n=0

√
n + 2
√

2n + 2
·

N − n
N + 1

c2n+1zN−n−1

and

B∗ϕk(z) =a
N−1∑
n=0

√
N − n + 1

√
2N − 2n

N + 1
cnz2N−2n−1 + a

∞∑
n=N

√
n − N + 1

√
2n − 2N + 1

n + 1
cnz2n−2N .

Then, on comparing the coefficient of z0, we get

a
√

2N(N + 1)
c2N−1 and

a
N + 1

cN .

Since c2N−1 and cN are arbitrary, Bϕ is not self-adjoint. �

Corollary 3.10. Let ϕ(z) = azN for N ∈ N and a ∈ C. Then Bϕ is not normal.
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Proof. For any k ∈ L2
a(D) such that k(z) =

∑∞
n=0 cnzn, Bϕ is normal if and only if B∗ϕBϕk(z) = BϕB∗ϕk(z)

or equivalently, ||Bϕk(z)||2 = ||B∗ϕk(z)||2. As in the proof of Theorems 3.1 and 3.6, we have

||Bϕk(z)||2 = |a|2
 ∞∑

n=0

n + 1
(2n + 1)(n + N + 1)

|c2n|
2 +

N−1∑
n=0

(n + 2)(N − n)
2(n + 1)(N + 1)2 |c2n+1|

2


and

||B∗ϕk(z)||2 = |a|2
N−1∑

n=0

N − n + 1
(N + 1)2 |cn|

2 +

∞∑
n=N

n − N + 1
(n + 1)2 |cn|

2

 .
Since ci’s are arbitrary, set c2N+1 , 0 and ci = 0 for i , 2N + 1. Then ||Bϕk(z)||2 = 0 and ||B∗ϕk(z)||2 =
|a|2(N+2)
4(N+1)2 |c2N+1|

2; thus, ||Bϕk(z)||2 , ||B∗ϕk(z)||2. �

In the next result, we investigated a sufficient condition for the contractivity and expansivity of the
adjoint H-Toeplitz operators B∗ϕ with symbols ϕ(z) =

∑∞
i=0 aizi where ai ∈ C on L2

a(D).

Theorem 3.11. Let ϕ(z) =
∑∞

i=0 aizi and ai ∈ C.
(i) If B∗ϕ is contractive then

s∑
i=0

s − i + 1
(s + 1)2 |ai|

2 +

∞∑
i=s+1

i − s + 1
(i + 1)2 |ai|

2 ≤
1

s + 1

for any nonnegative integer s.
(ii) If B∗ϕ is expansive then

s∑
i=0

s − i + 1
(s + 1)2 |ai|

2 +

∞∑
i=s+1

i − s + 1
(i + 1)2 |ai|

2 ≥
1

s + 1
(3.10)

for any nonnegative integer s.

Proof. For any k ∈ L2
a(D),

B∗ϕk(z) = K∗PharmMϕk(z)

= K∗Pharm

 i−1∑
n=0

∞∑
i=1

aicnznzi
+

∞∑
n=i

∞∑
i=0

aicnznzi


= K∗

 i−1∑
n=0

∞∑
i=1

i − n + 1
i + 1

aicnzi−n
+

∞∑
n=i

∞∑
i=0

n − i + 1
n + 1

aicnzn−i


=

i−1∑
n=0

∞∑
i=1

i − n + 1
i + 1

·

√
2i − 2n

√
i − n + 1

aicnz2i−2n−1 +

∞∑
n=i

∞∑
i=0

n − i + 1
n + 1

·

√
2n − 2i + 1
√

n − i + 1
aicnz2n−2i.

Set cs , 0 for some s and c j = 0 for any j , s. Then

B∗ϕk(z) =

∞∑
i=s+1

i − s + 1
i + 1

·

√
2(i − s)
√

i − s + 1
aicsz2i−2s−1 +

s∑
i=0

s − i + 1
s + 1

·

√
2s − 2i + 1
√

s − i + 1
aicsz2s−2i.
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If B∗ϕ on L2
a(D) is contractive then

||B∗ϕk(z)||2 =

∞∑
i=s+1

i − s + 1
(i + 1)2 |ai|

2|cs|
2 +

s∑
i=0

s − i + 1
(s + 1)2 |ai|

2|cs|
2 ≤

1
s + 1

|cs|
2.

Thus,
s∑

i=0

s − i + 1
(s + 1)2 |ai|

2 +

∞∑
i=s+1

i − s + 1
(i + 1)2 |ai|

2 ≤
1

s + 1
.

Similarly, if B∗ϕ on L2
a(D) is expansive then

s∑
i=0

s − i + 1
(s + 1)2 |ai|

2 +

∞∑
i=s+1

i − s + 1
(i + 1)2 |ai|

2 ≥
1

s + 1
.

This completes the proof. �

The following example shows that the converse of Theorem 3.11 (ii) is not true.

Example 3.12. Consider the polynomial ϕ(z) =
√

2z +
√

2z2. Then the condition given by (3.10)
holds. Put k(z) = 4

9 −
2
3z + z2. A straightforward calculation shows that B∗ϕk(z) = 2

√
3

3 z2 + 8
√

6
27 z3. Then

||B∗ϕk(z)||2 = 140
243 and ||k(z)||2 = 183

243 . Therefore, B∗ϕ is not expansive.

Corollary 3.13. Let ϕ(z) =
∑∞

i=0 aizi and ai ∈ C. If B∗ϕ is contractive then
∑∞

i=0
1

i+1 |ai|
2 ≤ 1 and if B∗ϕ is

expansive then
∑∞

i=0
1

i+1 |ai|
2 ≥ 1.

Proof. We have the result by putting s = 0 in Theorem 3.11. �

Example 3.14. Let ϕ(z) =
∑∞

i=0
1
√

i+1
zi. Then

∞∑
i=0

1
(i + 1)2 =

π2

6
> 1

and by Corollary 3.13, B∗ϕ is not contractive.

3.2. H-Toeplitz operators with coanalytic symbols

In this subsection, we consider the properties of H-Toeplitz operators Bϕ and B∗ϕ with coanalytic, or
antianalytic symbols. First, we study the contractivity and expansivity of Bϕ and B∗ϕ with ϕ = bzN for
N ∈ N and b ∈ C. Next, we extend the symbol ϕ of the form ϕ(z) =

∑∞
i=1 biz

i with bi ∈ C.

Theorem 3.15. Let ϕ(z) = bzN for N ∈ N and b ∈ C. Then Bϕ is contractive if and only if |b| ≤ 1.

Proof. For any k ∈ L2
a(D),

Bϕk(z) = PMϕ

 ∞∑
n=0

 √n + 1
√

2n + 1
c2nzn +

√
n + 2
√

2n + 2
c2n+1zn+1


= b

∞∑
n=N

n − N + 1
√

2n + 1
√

n + 1
c2nzn−N

= b
∞∑

n=0

n + 1
√

2n + 2N + 1
√

n + N + 1
c2n+2Nzn.
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Thus

||Bϕk(z)||2 = |b|2
∞∑

n=0

n + 1
(2n + 2N + 1)(n + N + 1)

|c2n+2N |
2.

Hence Bϕ is contractive if and only if

|b|2
∞∑

n=0

n + 1
(2n + 2N + 1)(n + N + 1)

|c2n+2N |
2 ≤

∞∑
n=0

1
n + 1

|cn|
2.

If we compare the coefficients of c2n+2N , we have

|b|2(n + 1)
(2n + 2N + 1)(n + N + 1)

|c2n+2N |
2 ≤

1
2n + 2N + 1

|c2n+2N |
2

for any n ≥ 0; thus,

|b|2 ≤
n + N + 1

n + 1
for any n ≥ 0. Since n+N+1

n+1 is decreasing for n, Bϕ is contractive if and only if

|b|2 ≤ min
n≥0

n + N + 1
n + 1

= lim
n→∞

n + N + 1
n + 1

= 1.

This completes the proof. �

Corollary 3.16. Let ϕ(z) = bzN for N ∈ N and b ∈ C. Then Bϕ is neither expansive nor isometric.

Proof. From the proof of Theorem 3.15, Bϕ is expansive if and only if

|b|2
∞∑

n=0

n + 1
(2n + 2N + 1)(n + N + 1)

|c2n+2N |
2 ≥

∞∑
n=0

1
n + 1

|cn|
2.

Since ci’s (0 ≤ i < 2N) are arbitrary, we put ci , 0 if i is odd and ci = 0 if i is even; then, 0 ≥ 1
i+1 ; it is

a contradiction. �

In the next result, we get a sufficient condition for the contractivity of H-Toeplitz operators Bϕ with
symbols ϕ(z) =

∑∞
i=1 biz

i, where bi ∈ C on L2
a(D).

Theorem 3.17. Let ϕ(z) =
∑∞

i=1 biz
i and bi ∈ C. If Bϕ is contractive then

s∑
i=1

(s − i + 1)|bi|
2 ≤ s + 1

for any s ∈ N.

Proof. For any k ∈ L2
a(D),

Bϕk(z) = P

 ∞∑
i=1

∞∑
n=0

√
n + 1
√

2n + 1
bic2nznzi

 =

∞∑
n=1

n∑
i=1

1
√

2n + 1
·

n − i + 1
√

n + 1
bic2nzn−i. (3.11)
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Then on comparing the coefficient of zm, by the equation (3.11), we have that

∞∑
n=m+1

m + 1
√

2n + 1
√

n + 1
bn−mc2n.

We set c` , 0 if ` = 2s and c` = 0 if ` , 2s for some s ∈ N. Thus Bϕ on L2
a(D) is contractive then

s∑
i=1

(s − i + 1)|bi|
2

(2s + 1)(s + 1)
|c2s|

2 ≤
1

2s + 1
|c2s|

2.

Therefore,
∑s

i=1(s − i + 1)|bi|
2 ≤ s + 1. This completes the proof. �

On the other hand, we have that

Corollary 3.18. Let ϕ(z) =
∑∞

i=1 biz
i and bi ∈ C. Then Bϕ is not expansive.

Proof. Using the equation (3.11), we set ci = 0 if i is even and ci , 0 if i is odd; then, Bϕk(z) = 0.
Thus, Bϕ on L2

a(D) is not expansive. �

The following theorem is purposed to find the necessary and sufficient conditions for the contrac-
tivity of the adjoint H-Toeplitz operator B∗ϕ with coanalytic symbols ϕ.

Theorem 3.19. Let ϕ(z) = bzN for N ∈ N and b ∈ C. Then B∗ϕ is contractive if and only if |b| ≤ 1.

Proof. For any k ∈ L2
a(D),

B∗ϕk(z) = K∗Pharm

bzN
∞∑

n=0

cnzn

 = b
∞∑

n=0

√
2n + 2N + 1
√

n + N + 1
cnz2n+2N;

then,

||B∗ϕk(z)||2 = |b|2
∞∑

n=0

1
n + N + 1

|cn|
2.

Thus, B∗ϕ on L2
a(D) is contractive if and only if

|b|2
∞∑

n=0

1
n + N + 1

|cn|
2 ≤

∞∑
n=0

1
n + 1

|cn|
2.

Since n+N+1
n+1 is decreaing, B∗ϕ on L2

a(D) is contractive if and only if

|b|2 ≤ min
n≥0

n + N + 1
n + 1

= 1.

This completes the proof. �

From Theorem 3.19, we get the following corollary and example.

Corollary 3.20. Let ϕ(z) = bzN for N ∈ N and b ∈ C. Then, B∗ϕ is expansive if and only if |b|2 ≥ N + 1.
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Proof. From the proof of Theorem 3.19, B∗ϕ is expansive if and only if

|b|2
∞∑

n=0

1
n + N + 1

|cn|
2 ≥

∞∑
n=0

1
n + 1

|cn|
2

or equivalently,

|b|2 ≥
n + N + 1

n + 1
for any n ≥ 0. Hence B∗ϕ is expansive if and only if

|b|2 ≥ max
n≥0

n + N + 1
n + 1

= N + 1.

�

Example 3.21. Let ϕ(z) = 3
2z2. By direct calculations,

||B∗ϕk(z)||2 =
9
4

∞∑
n=0

1
n + 3

|cn|
2

and

||k(z)||2 =

∞∑
n=0

1
n + 1

|cn|
2.

Since ci’s are arbitrary, we set c0 , 0 and ci = 0 for i > 0; then, ||B∗ϕk(z)||2 = 3
4 |c0|

2 and ||k(z)||2 = |c0|
2.

Thus, ||B∗ϕk(z)||2 < ||k(z)||2. Set c1 , 0 and ci = 0 for i , 1; then, ||B∗ϕk(z)||2 = 9
16 |c1|

2 and ||k(z)||2 = 1
2 |c1|

2.

Thus, ||B∗ϕk(z)||2 > ||k(z)||2. Hence, B∗ϕ is neither contractive nor expansive.

In view of Corollaries 3.9 and 3.10, we have the following result.

Corollary 3.22. Let ϕ(z) = bzN for N ∈ N and b ∈ C. Then B∗ϕ is neither self-adjoint nor normal.

In the next theorem, we have the necessary and sufficient condition for the contractivity and expan-
sivity of adjoint H-Toeplitz operators B∗ϕ with symbols ϕ(z) =

∑∞
i=1 biz

i where bi ∈ C on L2
a(D).

Theorem 3.23. Let ϕ(z) =
∑∞

i=1 biz
i and bi ∈ C.

(i) B∗ϕ is contractive if and only if

∞∑
m=1

m∑
i=1

1
m + 1

|bi|
2|cm−i|

2 ≤

∞∑
j=0

1
j + 1

|c j|
2.

(ii) B∗ϕ is expansive if and only if

∞∑
m=1

m∑
i=1

1
m + 1

|bi|
2|cm−i|

2 ≥

∞∑
j=0

1
j + 1

|c j|
2.
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Proof. For any k ∈ L2
a(D),

B∗ϕk(z) =

∞∑
i=1

∞∑
n=0

√
2n + 2i + 1
√

n + i + 1
bicnz2n+2i.

Then B∗ϕ is contractive if and only if

||B∗ϕk(z)||2 =

∞∑
m=1

m∑
i=1

1
m + 1

|bi|
2|cm−i|

2 ≤

∞∑
j=0

1
j + 1

|c j|
2.

Similarly, B∗ϕ is expansive if and only if

||B∗ϕk(z)||2 =

∞∑
m=1

m∑
i=1

1
m + 1

|bi|
2|cm−i|

2 ≥

∞∑
j=0

1
j + 1

|c j|
2.

This completes the proof. �

Corollary 3.24. Let ϕ(z) = b1z + b2z2 and b1, b2 ∈ C. Then B∗ϕ is contractive if and only if

1
s + 2

|b1|
2 +

1
s + 3

|b2|
2 ≤

1
s + 1

for any nonnegative integer s.

3.3. H-Toeplitz operators with harmonic symbols

Finally, we study the properties of H-Toeplitz operators Bϕ with harmonic symbols of the form
ϕ(z) =

∑∞
i=0 aizi +

∑∞
i=1 biz

i with ai, bi ∈ C. Specifically, we focus on the necessary and sufficient
conditions of contractivity and expansivity for Bϕ and B∗ϕ, respectively.

Theorem 3.25. Let ϕ(z) =
∑∞

i=0 aizi +
∑∞

i=1 biz
i and ai, bi ∈ C.

(i) If Bϕ is contractive then
∞∑

i=1

s + 1
(2s + 1)(s + i + 1)

|ai|
2 +

s∑
i=1

s − i + 1
(2s + 1)(s + 1)

|bi|
2 ≤ 1

and
∞∑

i=s+1

i − s
(i + 1)2 |ai|

2 ≤
1

s + 2

for any nonnegative integer s.
(ii) If Bϕ is expansive then

∞∑
i=1

s + 1
(2s + 1)(s + i + 1)

|ai|
2 +

s∑
i=1

s − i + 1
(2s + 1)(s + 1)

|bi|
2 ≥ 1

and
∞∑

i=s+1

i − s
(i + 1)2 |ai|

2 ≥
1

s + 2

for any nonnegative integer s.
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Proof. By a similar argument as in the proof of Theorems 3.3 and 3.17, for any k ∈ L2
a(D),

Bϕk(z) =

∞∑
i=0

∞∑
n=0

√
n + 1
√

2n + 1
aic2nzn+i +

∞∑
i=0

i−1∑
n=0

√
n + 2
√

2n + 2
·

i − n
i + 1

aic2n+1zi−n−1

+

∞∑
n=1

n∑
i=1

1
√

2n + 1
·

n − i + 1
√

n + 1
bic2nzn−i

for any c j ∈ C ( j = 0, 1, 2, · · · ). Set c` , 0 for some ` and c j = 0 for any j , `. Then we consider the
following two cases:
Case 1: If ` = 2s for any nonnegative integer s and c2s , 0 then

Bϕk(z) =

∞∑
i=1

√
s + 1

√
2s + 1

aic2szs+i +

s∑
i=1

s − i + 1
√

2s + 1
√

s + 1
bic2szs−i.

If Bϕ on L2
a(D) is contractive then

∞∑
i=1

s + 1
(2s + 1)(s + i + 1)

|ai|
2 +

s∑
i=1

s − i + 1
(2s + 1)(s + 1)

|bi|
2 ≤ 1.

Similarly, if Bϕ on L2
a(D) is expansive then

∞∑
i=1

s + 1
(2s + 1)(s + i + 1)

|ai|
2 +

s∑
i=1

s − i + 1
(2s + 1)(s + 1)

|bi|
2 ≥ 1.

Case 2: If ` = 2s + 1 for any nonnegative integer s and c2s+1 , 0, then it follows from Case 2 of
Theorem 3.3. This completes the proof. �

Theorem 3.26. Let ϕ(z) =
∑∞

i=0 aizi +
∑∞

i=1 biz
i and ai, bi ∈ C.

(i) If B∗ϕ is contractive, then

∞∑
i=s+1

i − s + 1
(i + 1)2 |ai|

2 +

s∑
i=0

s − i + 1
(s + 1)2 |ai|

2 +

∞∑
i=1

1
s + i + 1

|bi|
2 ≤

1
s + 1

,

for any nonnegative integer s.
(ii) If B∗ϕ is expansive, then

∞∑
i=s+1

i − s + 1
(i + 1)2 |ai|

2 +

s∑
i=0

s − i + 1
(s + 1)2 |ai|

2 +

∞∑
i=1

1
s + i + 1

|bi|
2 ≥

1
s + 1

,

for any nonnegative integer s.

Proof. By a similar argument as in the proof of Theorems 3.11 and 3.23, for any k ∈ L2
a(D),

B∗ϕk(z) =

i−1∑
n=0

∞∑
i=1

i − n + 1
i + 1

·

√
2i − 2n

√
i − n + 1

aicnz2i−2n−1

+

∞∑
n=i

∞∑
i=0

n − i + 1
n + 1

·

√
2n − 2i + 1
√

n − i + 1
aicnz2n−2i +

∞∑
i=1

∞∑
n=0

√
2n + 2i + 1
√

n + i + 1
bicnz2n+2i.
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for any c j ∈ C ( j = 0, 1, 2, · · · ). Set cs , 0 for some s and c j = 0 for any j , s. Then

B∗ϕk(z) =

∞∑
i=s+1

√
i − s + 1

√
2i − 2s

i + 1
aicsz2i−2s−1

+

s∑
i=0

√
s − i + 1

√
2s − 2i + 1

s + 1
aicsz2s−2i +

∞∑
i=1

√
2s + 2i + 1
√

s + i + 1
bicsz2s+2i,

for any nonnegative integer s. If B∗ϕ on L2
a(D) is contractive, then

∞∑
i=s+1

i − s + 1
(i + 1)2 |ai|

2 +

s∑
i=0

s − i + 1
(s + 1)2 |ai|

2 +

∞∑
i=1

1
s + i + 1

|bi|
2 ≤

1
s + 1

.

Similarly, if B∗ϕ on L2
a(D) is expansive, then

∞∑
i=s+1

i − s + 1
(i + 1)2 |ai|

2 +

s∑
i=0

s − i + 1
(s + 1)2 |ai|

2 +

∞∑
i=1

1
s + i + 1

|bi|
2 ≥

1
s + 1

,

for any nonnegative integer s. This completes the proof. �

The following results are immediate from Theorem 3.26.

Corollary 3.27. Let ϕ(z) = a1z + a2z2 + b1z + b2z2 and ai, bi ∈ C where i = 1, 2. Then, B∗ϕ is contractive

=⇒

 s
(s+1)2 |a1|

2 + s+1
3s+1 |a2|

2 + 1
s+2 |b1|

2 + 1
s+3 |b2|

2 ≤ 1
s+1 if s = 0, 1,

s
(s+1)2 |a1|

2 + s−1
(s+1)2 |a2|

2 + 1
s+2 |b1|

2 + 1
s+3 |b2|

2 ≤ 1
s+1 if s ≥ 2.

Corollary 3.28. Let ϕ(z) = a1z + b1z and a1, b1 ∈ C. Then, B∗ϕ is contractive; then,

s
(s + 1)2 |a1|

2 +
1

s + 2
|b1|

2 ≤
1

s + 1
,

for any s ∈ N.

4. Conclusions

We characterized the necessary or sufficient conditions for the contractive and expansive H-Toeplitz
operators Bϕ with various symbols ϕ on the Bergman space L2

a(D). By these results, we expect to
provide the properties of these operators on the Bergman space.
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