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1. Introduction

Let D denote the open unit disk in the complex plane C and dA the area measure on the complex
plane C. The space L*(D) is a Hilbert space with the inner product

1 _
(f, &=~ f [(2)g(2)dA ).
T Jp

The Bergman space L2(D) consists of all analytic functions on D and L*(D) is the space of the essen-
tially bounded measurable function on D. For ¢ € L*(D), the multiplication operator M, on LZ(D) is
defined by M,(f) = ¢ - f and the Toeplitz operator T, on L2(D) is defined by

Ty (f) = Ple- /),

where P denotes the orthogonal projection of L?*(D) onto L*(D) and f € L2(D). It is clear that those
operators are bounded if ¢ € L™ (D).

The harmonic Bergman space Lﬁarm (D) denotes the space of all complex-valued harmonic functions

in L?(D). The space L? (D) is a closed subspace of L?(D) and it is a Hilbert space. Let Py, be the

harm

orthogonal projection from the space L*(D) onto the space L? (D).

harm
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Toeplitz operators on the Bergman space were studied by McDonald and Sundberg in [19]. Re-
cently, lots of research about Toeplitz operators has been conducted in the Bergman space (see [2, 11]).
In the Hardy space, the hyponormality of Toeplitz operators was studied in [7, 8, 12, 14, 20] ; re-
fer to references therein for more details. Recently, many authors characterized the hyponormality of
Toeplitz operators on the Bergman space and weighted Bergman space (see [7, 13, 15, 16, 18, 21]). In
2007, Arora and Paliwal [1] have introduced the notion of H-Toeplitz operators on the Hardy space.
Recently, in [10], the authors studied H-Toeplitz operators on the Bergman space. The research of
H-Toeplitz operators has arisen naturally in several fields of mathematics and in a variety problems.
For example, an H-Toeplitz system comprises a matrix equation of the form 7x = y where T is an n
by n H-Toeplitz matrix with x,y in C". The n X n H-Toeplitz matrix T has 2n — 1 degrees of freedom
rather than n?. Thus for a large n, it is easier to solve the system of linear equations for an H-Toeplitz
matrix(cf. [10]). In this paper we consider the algebraic properties of H-Toeplitz operators B, on the
Bergman space L2(D). More concretely, we establish a tractable and explicit criterion for the contrac-
tivity and expansivity of H-Toeplitz operators. Several decades ago, many researchers began studying
the contractive and expansive operators (see [3, 4, 5, 6]). In [5], the authors considered the invariant
subspace problem for contractive operators. Recently, various results have been derived based on the
papers (see [9, 17]).

The organization of this paper is as follows. In Section 2, we introduce the notion of H-Toeplitz
operators on the Bergman space and provide various well-known properties of these operators. In
Section 3, we focus on the contractive and expansive H-Toeplitz operators with analytic, coanalytic
and harmonic symbols.

2. Preliminaries and auxiliary lemmas

Let s, be nonnegative integers and P be the orthogonal projection from L*(D) to L2(D). Then we
have
s=t+1 _s— :
P(ZIZS) — Sj-*l— < ' lf S‘Z t
0 ifs<t
The following lemmas will be used frequently in this paper.

Lemma 2.1. ([10]) In the harmonic Bergman space L?
following:

v (D), for nonnegative integers s and t, the

s—t+1 _s—t :
P (—f S)_ s+1 1 % lfSZt
harm\Z Z°) = fmst]=t—s
—Z

e if s <t

Lemma 2.2. ([15]) For m > 0, we have

: 1
M) " ) edlP = ) ———lel,
nz(; Z(; +m+1

1
(i) IPE" Zcz)ﬂ2 Z Tl

By using Lemmas 2.1 and 2.2, we have the following result.
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Remark 2.3. For m > 0, we have

l+1 S i—m+ 1
Parm = 2 T v iz-
1Pharm @ Zcz)ll Z( Tl Z,,:‘ ol

In order to define the notion of an H-Toeplitz operator on L2(D), we first consider the operator
K : L2(D) — L? (D) defined by

harm

K(e2,(2)) = e,(z) = Vn + 17" and K(e3,41(2)) = €,431(2) = Vn + 27"

forall n > 0 and z € D. It can be checked that the operator K is bounded linear on L3(D) with ||K|| = 1.
Moreover, the adjoint K* of the operator K is given by

K*(e,(2)) = e2,(z) and K™ (e,,41(2)) = €2441(2)
for all n > 0. From the definition of K and K*, we have that KK* = ], 2 @ and K°K = I ).

Remark 2.4. By the definitions of K and K*, we can easily check that K(z*") = \/Ez”, K1) =

\/F—IHI xoony — V2n+l _2n sty _ N2n _2n—1
o5l o K@) = =" and K'(Z) = =577

Next, we define H-Toeplitz operators on the Bergman space L2(DD) using the definition of the oper-
ator K.

Definition 2.5. ([10]) For ¢ € L*(D), the H-Toeplitz operator B, with the symbol ¢ is defined as the
operator B, : L2(D) — LX(D) such that B,(f) = PM,K(f) for all f € LX(D).

The next proposition follows from the definition of the H-Toeplitz operators.

Proposition 2.6. ([10]) For ¢,y € L*(D), the operator B, satisfies the following:
(1) B, is a bounded linear operator on Lﬁ(D) with ||By|| < |¢l]co-
(i1) For any scalar a and 3, Byyipy = @By, + BB,,.
(iii) The adjoint of the H-Toeplitz operator By is given by B, = K" PpamM.

The following remark provides important information for adjoint operators. It shows the difference
between adjoint Toeplitz operators and adjoint H-Toeplitz operators.

Remark 2.7. If f, g are in L™ (D) then by the definition of Toeplitz operators T s, we have that
T;=T; and TT, =Ty, if f or g is analytic.
But in the case of the H-Toeplitz operator,

. — « [ a
B:(GZ) = K*PharmME(aZ) = K*Pharm(aZZ) =K (5) - E

and
B:(az) = PM:K(az) = PMzaZ = P(aZ°) = 0

Therefore, B}(az) # Bz(az). A straightforward calculation shows that BB, # B, (cf. [10]).

AIMS Mathematics Volume 7, Issue 8, 13927-13944.



13930

3. Main results

A bounded linear operator 7" on a Hilbert space is said to be expansive it T*T > I, contractive if
T*T < I, and isometric if T*T = I.
For k € Lg(ID)), let k(z) = k.(z) + k,(2), where

(o) [
k(@ = ) 2" and k() i= ) e
n=0 n=0

3.1. H-Toeplitz operators with analytic symbols

In this subsection, we consider the properties of H-Toeplitz operators B, and B, with analytic
symbols. First, we study the contractivity and expansivity of B, and B, with ¢ = a7’ for N € N
and a € C. Next, we extend the symbol ¢ of the form ¢(z) = 35, ;7' with ¢; € C.

Theorem 3.1. Let ¢(z) = az" for N € N and a € C. Then B, is contractive if and only if la| < 1.
Proof. For any k € L2(D),
Byk(z) = PM K (k(z)) = PM,K(ke(2) + ko(2))

= [ n+1 " n+2 _n+1)
)3 ZELI R B
V2n + 1 V2n+2

N Vn+1 = n+?2 it
=a Z ——, "V + P[aZN Z —202n+1z”+

= PM,

n=0

= V2n+1 = V2n+
= +1 = +2 N-
=a Y +a L T A
~\2n+1 “\an+2 N+1
and we have that
> n+1 S +2)(N-n)

Bok(2)II* = laf® A+ el ]
1BAQI = lal (n:o Gnr D+ N+ D! Z:(; 2 D+ 1<

According to the definition for the contractivity of By, the inequality B,B, < I is equivalent to
IB k(I < lIk(2)|I* for any k € L2(D). Thus, B, on LA(D) is contractive if and only if

) N-1
) n+1 ) (n+2)(N —n) )
l [Z_; i hmeN e T ZOJ 2 O+ e
=0 "= 3.1)
1
<> —leil
jZO j+1

There are two cases to consider. If ¢, # 0 for € is even and ¢, = O for ¢ is odd, from (3.1), we have

) n+1 )
| |C2n| <

2
Qn+ Dn+ N+ 1) e 1l

la
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or equivalently,
laf? < ntN+1
n+1

n+N+1

for any nonnegative integer n. Since is decreasing for n, we have

1 1
lal> < minﬂ — lim ﬂ -1 (3.2)
>0 n+1 n—eo  p+1

If ¢, # 0 for £ is odd, and ¢, = O for £ is even, from (3.1), we have

(n+2)(N —n)

|af* leonil* < ! o |*
a n —_ n
2n+ DN + D2 = 50,4 1) 2!

or equivalently,

af < (N + 1)?
T (n+2)(N-n)
forany 0 <n < N — 1. Put f(n) = %, then f is increasing for N ~2 < n < N - 1, and decreasing
for 0 < n < 252, Moreover, if N is even, then B, is contractive if and only if
N + 1) N-2\ 4(N+1)?
2< ( = - 3.3
lal” < min DN - f( 2 ) (N+272 (3-3)
If N is odd, then B, is contractive if and only if
. N + 1)? N-1 N-3) 4N+1)
2 ( _ - - , 3.4
lal = 0<neN-1 (n+2)(N - f( 2 ) f( 2 ) N+3 4

Since ‘t(zf/vle))Z > 1 and 4(N ”) > 1 forany N € N, from (3.2)—-(3.4), B, is contractive if and only if |a| < 1.

This completes the proof O
Corollary 3.2. Let ¢(z) = az" for N € N and a € C. Then B, is neither expansive nor isometric.
Proof. From the proof of Theorem 3.1, B, is expansive if and only if

(o) [oe]

2 n+1 (n+2)(N -n) 5 1 ,
> 2 .
al L4 (2n+ 1)+ N + ' l’ Z 2+ DN + 1)2|62n+1| > ]E:O i Tlei (3.5)
Set coyy1 # 0 and ¢; = 0 for i # 2N + 1. Then from (3.5) < 0; it is a contradiction. O

’ 2(N+1) =
In the next result, we have the sufficient condition for the contractivity and expansivity of the H-
Toeplitz operators B, with symbols ¢(z) = 3.7 a;z' where a; € C on LZ(D).

Theorem 3.3. Let ¢(z) = Y0y a7 and a; € C.
(1) If B, is contractive then

AIMS Mathematics Volume 7, Issue 8, 13927-13944.
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for any nonnegative integer s.
(i1) If B, is expansive then

(o9

1 N Q- 1
12> d 1F > 3.6
;s+l+1| a2 5 an _Zl(i+1)2|a| s+2 (3-6)

for any nonnegative integer s.

Proof. For any k € L2(D),

Byk(z) = PMyK(k(z)) = PMyK(ko(2) + ko(2))

(3.7

%) ) oo -1 .
n+1 i d Vn+2 i-n imn—1
= E E —(aiCpZ  + E " a;Cop+13

forany c; € C(j=0,1,2,---). Then on comparing the coefficient of ", by the equation (3.7) we have

that
Vm + 1 i Vn+2 m+ 1

apCo + —=ap-1Cy + -+ + —/————=0apCoy + : pim+1C2n+1-
~ \2n+2 n+m+?2

V3 V2m + 1

Set ¢, # 0 for some £ and c¢; = 0 for any j # £. Then we consider that the following two cases arise:
Case 1: If £ = 25 for any nonnegative integer s, then

o V2s+1
If B, on LX(D) is contractive then
- s+ 1 N 1 5
, < .
425+ D(s+i+ plalleal < 5l
Thus, 320 — +1| al’ < 1 . for any nonnegative integer s. Similarly, if B, on L2(D) is expansive then
Yo erl+1| al® > 11 for any nonnegative integer s.
Case 2: If £ = 25 + 1 for any nonnegative integer s, then
i - ,
Bok(z) = a;Cr5n2 "
IEI V2s + 2 i+1 "
If B, on Lﬁ(D) is contractive then
W U= i Plesenl? < caenl
L 2(s+ DG+ D2 T T s+ ) ol
Thus, Zl o+1 (l+1)2 |a ? < +2 for any nonnegative integer s. Similarly, if B, on L2(D) is expansive then
D G +1)2 |a;|*> > - +2 for any nonnegative integer s. This completes the proof. m|
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Example 3.4. Let ¢(2) = 3.7, ‘/f—lzi. Then

= 1 n?
Z TSI 6 L
o (+D

and so, B, is not contractive.

The following example shows that the converse of Theorem 3.3 (ii) is not true.

Example 3.5. Consider the polynomial ¢(z7) = z + V322, Then the conditions in (3.6) hold. Put k(z) =

—% + \fz + z A straightforward calculation shows that Byk(z) = vt 22, Thus |1B, k()|? = 13

and ||k(2)|*> = 5 Therefore B, is not expansive.

We obtained the contractivity and expansivity of the adjoint H-Toeplitz operators Bj, on L2(D).
Theorem 3.6. Let ¢(z) = az" for N € N and a € C. Then B, is contractive if and only if |a] < 1.
Proof. For any k € L2(D),

B:;k(Z) = K*PharmMﬁk(Z)

= K" Piam [a_zN i cnz")

n=0
I N-n+1 S n-N+1
—ak |y Ny Z - N
oy N+1 —on +1

_ Z\/N n+1V2N -2n ZZN_Z"_]+5§: \/n—N+1\/2n—2N+1CZ2n_2N'

B - N+1 n+1 "

Thus N
—~ N-n+1 -N+1
B*k 2: 2 n2+ cp
IBk@)IP = lal [0 W ZN P |)

Thus, B, on Lg(D) is contractive if and only if

S N-n+1 n—N+1 ©
2 2 2 2
lal [’Z N+ 1) —— e+ E n+ 1) ——lal ]s ng —1 1|Cn| : (3.8)

2
If0<n<N-1,thenaf < — N 5o,

(N + 1) (N1

la* < min = ,
0snsN-1 (n+ 1)(N —n+1) 2N

(N+1)?

n+l .
D=1+ 1) 80,

n—-N+12

since is decreasing. If n > N, then |a* <

n+1
|a| <min—— =1,
n>Nn—N+1

n+1

since -~ is decreasing. Hence, for any arbitrary ¢; (i = 0,1,2,---), the inequality given by (3.8)

holds 1f and only if la* < min {(N+1)2

N 1} = 1. This completes the proof. O
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From Theorem 3.6, we get the following corollaries and example.
Corollary 3.7. Let ¢(z) = az" for N € N and a € C. Then B is expansive if and only if la* > N + 1.

Proof. From the proof of Theorem 3.6, B, is expansive if and only if

N-1 )
N-n+1 n—-N+1 1
2 2
———c,|” + Ch —c, 3.9
MLﬂW+Wk| e W|q ; el (3.9)
IfO<n<N-1,then|af > —¥° - thus|af > N+ 1 since —&" g decreasing. If n > N, then

= (m+1)(N-n+1)° (n+1)(N-n+1)

la]* > %, thus |a|* > N + 1 since - "“ . is decreasing. Hence, the inequality given by (3.9) holds for

any arbitrary ¢; (i = 0,1,2,---) if and only if |a> > N + 1. O

Example 3.8. Let ¢(z) = 2z*. By a direct calculation,
3

5-n S n-3
Bxk 2:4 n2 n2
IB k)l 2]%kw+;@T§w

n=0

and

[Se]

1
2 _
k@I = > ——

n=0

2
leal”.

Since c¢;’s are arbitrary, set ¢y # 0 and ¢; = 0 for i > 0, then IIBZk(z)II2 4|c0|2 and ||k(z)|1> = |col*. Thus
||B:;k(z)||2 < [[k()I|>. Set cs # 0 and c; = 0 fori # 5; then ||B;k(z)||2 2|c5|2 and ||k(2)|]> = 6|C5|2 Thus,
||B:;k(z)||2 > ||k(2)||>. Hence B;Z4 is neither contractive nor expansive.

Corollary 3.9. Let ¢(z) = az" for N € N and a € C. Then B, is not self-adjoint.

Proof. In the proof of Theorems 3.1 and 3.6,

A+l & Vn+2 N-
B,k(z) = a — 7"V +a czn Wi
’ ;V2n+l L \pur2 N+17"

and

N-1 %)
N-n+1vV2N -2 - N+1V2n-2N +1
Bf;k @) =5Z vV n v n ¢, 2N +EZ Vn V2n ¢ 22N

£ N+1 n+1 "

Then, on comparing the coefficient of z°, we get

a a
——oy-1 and CN.
V2NN ! N+1 "
Since c,y-1 and cy are arbitrary, B, is not self-adjoint. O

Corollary 3.10. Let ¢(z) = az" for N € N and a € C. Then B, is not normal.

AIMS Mathematics Volume 7, Issue 8, 13927-13944.
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Proof. For any k € L2(D) such that k(z) = }.,° ¢,Z", B, is normal if and only if B,B k() = BwB:;k(z)
or equivalently, [|Byk(z)|I* = B, k(z)|*. As in the proof of Theorems 3.1 and 3.6, we have

(o9

B K 1P n+1 , W (n+ 2N -n) 5
1B = lal ;(2n+1)(n+N+l)|c2n| +;2(n+1)(N+1)2|Czn+1|

and
S N-n+1 2 N I)

N
* 2 _ 2
1B = lal [0 W 2

Since ¢;’s are arbitrary, set coy41 # 0 and ¢; = 0 for i # 2N + 1. Then ||Bk(z)|I* = 0 and ||B;;k(z)||2 =

2(N+2 .
LN o1 thus, [IBAQIP # (1B 5

In the next result, we investigated a sufficient condition for the contractivity and expansivity of the
adjoint H-Toeplitz operators B;, with symbols ¢(z) = ;% a;7" where a; € C on L2(D).

Theorem 3.11. Ler ¢(z) = Y2y a;z' and a; € C.
) If By is contractive then

s—l+1 s+1 1
(s+1) ( 1) s+ 1

for any nonnegative integer s.
(ii) If By, is expansive then

l+1 s+ 1 1
Z(s 1)2 Z( 1)2|i|22s+1 (3.10)

for any nonnegative integer s.

Proof. For any k € L2(D),

B;k(Z) = K*Pharmek(Z)

—KPharm(ZZacnzz iiacnz z]

n=0 i=1 n=i =0
i—1 .
*(t Si-n+l_ ., v n—l+1
)P REELERES 3 JELE
n:0i=1l n=i i=0

' i—n+l N2U-2n_ i NN n—l+1 V2n—2i+1_ .,
=) _ : +ZZ G, Y
per e A Vien+ 1 e Vn—i+1

Set c; # 0 for some s and c¢; = O for any j # s. Then

SN i-s+1 20— - N s—i+1 V2s—2i+1_ ‘
Bk(z) = Z ! . S _ (i—s) Fe, 20 4 Z s§—1 o NesS— 4 dic, 222

AIMS Mathematics Volume 7, Issue 8, 13927-13944.
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If B, on Lﬁ(D) is contractive then

-s+1 —-i+1 1
1Bk = Z T et Z G rllel < sled

i=s+1

Thus,

i+ 1 2, -s+1 5 1
g E 1% < .
(s+l)2|l| ( 1)2|'| T s+ 1

Similarly, if B on L2(D) is expansive then

Z 1+1 P ii—s+lla_|2> 1
(+1)2 G+1)27" T s+

i=s+1

This completes the proof. O

The following example shows that the converse of Theorem 3.11 (ii) is not true.

Example 3.12. Consider the polynomial ¢(z) = V2z + V222 Then the condition given by (3.10)
holds. Put k(z) = = — —z + 22, A straightforward calculation shows that B, oK(2) = 2;fz2 + 8‘7@2”. Then

Bk = 0 and III’c(z)II2 183 Therefore, B}, is not expansive.

Corollary 3.13. Let ¢(z) = Yoy iz and a; € C. If B;, is contractive then 3.7,
expansive then Y72 —la;* > 1.

Lla P <1 and if B, is

il

Proof. We have the result by putting s = 0 in Theorem 3.11. O

Example 3.14. Let ¢(2) = .12, \/i]le". Then

(o)

Z z+1)2:6>1

i=0

and by Corollary 3.13, By, is not contractive.

3.2. H-Toeplitz operators with coanalytic symbols

In this subsection, we consider the properties of H-Toeplitz operators B, and B, with coanalytic, or
antianalytic symbols. First, we study the contractivity and expansivity of B, and B;, with ¢ = b7" for
N € N and b € C. Next, we extend the symbol ¢ of the form ¢(z) = 3.7, b7 with b; € C.

Theorem 3.15. Let ¢(z) = b7" for N € N and b € C. Then B, is contractive if and only if |b] < 1.
Proof. For any k € L2(D),

B,k(z) = PM,

CZnZn + —— b /I V4
Van+ 1 \/Zn T2

n=

= -N+1
= bZ " CznZn_N
—~ V2n+1vVn+1
= n+1
= bz Cons2NT -

V2n+2N +1Vn+ N+ 1

AIMS Mathematics Volume 7, Issue 8, 13927-13944.
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Thus
n+1

B 2 = 2 2.
1Bk = |b] Z(; T Ty S

Hence B, is contractive if and only if

[

n+1 1
b2 \ 2< n2.
1] ;(2n+2N+1)(n+N+1)|02 2 _Zn+1lc|

n=0

If we compare the coefficients of ¢;,,2y, we have

|bI*(n + 1)

1 2
(2n+2N+1)(n+N + e el < TN 1 CaneaN

for any n > 0; thus,

n+N+1

for any n > 0. Since is decreasing for n, B, is contractive if and only if

) n+N+1 = n+N+1
b < min ——— = lim —— = 1.
>0 n+1 n—eo  pu+1

This completes the proof. O
Corollary 3.16. Let ¢(z) = bz for N € Nand b € C. Then B, is neither expansive nor isometric.
Proof. From the proof of Theorem 3.15, B, is expansive if and only if

ey n ] el 2 > — e

L n+ 2N+ D+ N+ 1) " = Ly 1

Since ¢;’s (0 < i < 2N) are arbitrary, we put ¢; # 0 if i is odd and ¢; = 0 if i is even; then, 0 > ﬁ, it is
a contradiction. O

In the next result, we get a sufficient condition for the contractivity of H-Toeplitz operators B, with

symbols ¢(z) = Y, bz, where b; € C on L2(D).
Theorem 3.17. Let ¢(z) = Y., b7 and b; € C. If B, is contractive then

Z(s—i+ Db <s+1
i=1

forany s € N.
Proof. For any k € L2(D),

n+

i=l n n=1 i=

e Vn+ 1 - n—i+l .
Bk(z) = ——— b2 bicon7.
’ ZZ‘ el Z 1\/2n+1 iil

(3.11)

AIMS Mathematics Volume 7, Issue 8, 13927-13944.
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Then on comparing the coefficient of 7, by the equation (3.11), we have that

Z m+1 b c
n-m&2n-
narty V2n+1Vn+1
We set ¢y # 0if £ = 2s and ¢, = 0 if £ # 25 for some s € N. Thus B, on Lﬁ(D) is contractive then

(s—z+1)|b|| ool Lo
425+ D(s + 1) sl =5t

Therefore, Y7, (s — i + 1)|b;]> < s + 1. This completes the proof. O
On the other hand, we have that
Corollary 3.18. Let p(z) = 3.2, bz and b; € C. Then B, is not expansive.

Proof. Using the equation (3.11), we set ¢; = 0 if i is even and ¢; # 0 if i is odd; then, Byk(z) = 0.
Thus, B, on Li(D) 1S not expansive. O

The following theorem is purposed to find the necessary and sufficient conditions for the contrac-
tivity of the adjoint H-Toeplitz operator B, with coanalytic symbols ¢.

Theorem 3.19. Let ¢(z) = bZ" for N € N and b € C. Then By is contractive if and only if |b] < 1.
Proof. For any k € L2(D),

. . - 2 V2n+ 2N + 1
Bk(z) = K*P,m,m( bZ" Z CnZ ] Z z 22N

p— V4 ;
Vn+ N +1

n=0

then,

- 1
B*k 2 — b 2 . 2.
Bk = 1b] n§=0 ——
Thus, B, on Li(D) is contractive if and only if

C 1 1
2 2 2
b Q1o < 2y ol

Since "*N ” is decreaing, B;, on L2(D) is contractive if and only if
+N+1
P < min ———— =
n=0 n+1
This completes the proof. O

From Theorem 3.19, we get the following corollary and example.

Corollary 3.20. Let ¢(z) = b7" for N € N and b € C. Then, B is expansive if and only if Ib> > N + 1.
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Proof. From the proof of Theorem 3.19, B}, is expansive if and only if

[59) (5]

1 1
b2 —,122 _nz
||Z_;n+N+1|c| Z;n+1|c|

or equivalently,
n+N+1

b)> >
IbI* = n+1

for any n > 0. Hence B is expansive if and only if

+N+1
bR > max T N1
n>0 n+1

Example 3.21. Let ¢(z2) = %Zz. By direct calculations,

(o)

9 1
Bik(z)|I> = = —
IBKQIF = 7 ) ——

and

[Se]

1
»_ Vb e
k@I = E n+llcn|-

n=0

Since c;’s are arbitrary, we set ¢y # 0 and c¢; = 0 for i > 0; then, ||B:;k(z)||2 3ICol2 and ||k(2)|I> = |col?.
Thus, ||B;§,k(z)||2 < |lk()I>. Setc; # 0andc; = 0 fori # 1; then, ||B;§,k(z)||2 = 16|cl|2 and ||kQ)|? = 2|cl|2

Thus, ||Bz;k(z)||2 > ||k(2)||>. Hence, B, is neither contractive nor expansive.

In view of Corollaries 3.9 and 3.10, we have the following result.

Corollary 3.22. Let ¢(z) = bZ" for N € N and b € C. Then B, is neither self-adjoint nor normal.

In the next theorem, we have the necessary and sufficient condition for the contractivity and expan-
sivity of adjoint H-Toeplitz operators B, with symbols ¢(z) = 3.2, bz’ where b; € C on LZ(D).

Theorem 3.23. Let ¢(z) = 3., b7 and b; € C.
(1) Bj, is contractive if and only if

m (o]

3> — bl < Dl

m=1 i=1 j=0

(i1) By, is expansive if and only if

o1
2o

1 i=1

M

- 1
bi2 m—iZZ —— ¢
lbifle- ;J.Hl,

3
I
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Proof. For any k € L2(D),

V2n+2i+1 ,
B k(Z) _ blanZn+21'

Then B; is contractive if and only if

WWW—Zz}—ﬂM%J_Z——M

m=1 i=1 =

Similarly, Bj, is expansive if and only if

HMWZZZ—HW%FZ—AK

m=1 i=1

This completes the proof. O

Corollary 3.24. Let ¢(z) = b1z + byz* and by, by € C. Then B, is contractive if and only if

1 1
b + by|* <
s+2| 1 s+3| d s+ 1

for any nonnegative integer s.

3.3. H-Toeplitz operators with harmonic symbols

Finally, we study the properties of H-Toeplitz operators B, with harmonic symbols of the form
0(z) = Y20z + Yo bz with a;,b; € C. Specifically, we focus on the necessary and sufficient
conditions of contractivity and expansivity for B, and By, respectively.

Theorem 3.25. Let ¢(z) = Y00 a7 + Y., biz and a;, b; € C.
() If B, is contractive then

[e9)

a; T~ 4N Y
4 2s+D(s+i+1) — 2s+ D(s+1)

>

i=s+1

and

HWM

for any nonnegative integer s.
(ii) If B, is expansive then

[ee)

s+1 al + s—i+1
a; _—
4 2s+ D(s+i+1) — (2s+ D(s+ 1

>

i=s+1

il = 1

and

2
|ail” >

(i + 1)2

for any nonnegative integer s.
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Proof. By a similar argument as in the proof of Theorems 3.3 and 3.17, for any k € L2(D),

Bok(z)= )

[Se]
i=0
n=1

-1

n+1 i O Vn+2 i—n
aCZnZ +Z

2 =0 n=0 V2n V2

i-n—1
a iCon+1<
+1

S

(o8]

2,

foranyc; € C(j=0,1,2,
following two cases:
Case 1: If £ = 2s for any nonnegative integer s and ¢,; # O then

N .
. s—i+1 .
a 2,2 + E bica 2"

i=1 l i=1 V2s + 1 Vs+1

If B, on L2(D) is contractive then

1 n—i+1
\/2n+1 Vi +1

_l_

o 1M8

i=

v'—‘

Set ¢, # 0 for some £ and c¢; = 0 for any j # . Then we consider the

Mz

B,k(z) =

(9]

+1 ‘ —i+1
d e+ Y —— P <
- Qs+ D)(s+i+1) — Rs+1D)(s+ 1)
Similarly, if B, on L2(D) is expansive then
s+ 1 af s—i+1 b > 1

L @s+ D +i+ D T L2 s+ D)

Case 2: If £ = 2s + 1 for any nonnegative integer s and c,;.; # 0, then it follows from Case 2 of
Theorem 3.3. This completes the proof. O

Theorem 3.26. Let () = Y00 aiZ + Y., biz' and a;, b; € C.
) If B, is contractive, then

l—s+1 z+1 P+ - 1 5 1
a;’ —— bl < >
Z (z+1)2 Z( 1)2 ;s+i+1| | s+ 1

i=s+1

for any nonnegative integer s.
(i) If B, is expansive, then

l—s+1 l+1 af + 1 ) 1
: — b=
Z (z+1)2 al Z( 1)2 Z +z+1|’| Ts+ 1

i=s+1

for any nonnegative integer s.
Proof. By a similar argument as in the proof of Theorems 3.11 and 3.23, for any k € L2(D),
' i—n+1 ~N2i-2n .
B* k(z) — - . a_ianZI—zn—l
; = i+l Ni-n+1
+i°°n_i+1_ V2n—2z+1 2n21+ii \/2n+21+1 e,
e n+l Vn—i+1 == Vn+i+1

AIMS Mathematics Volume 7, Issue 8, 13927-13944.



13942

forany c; € C(j=0,1,2,---). Set c; # 0 for some s and c¢; = 0 for any j # s. Then

. o Vi—s+1V2i- .
Bik@) = ) a2

i+1

i=s+1

+Zs: Vs—i+1V2s=2i+1_ , V2s+2i+1

blcsz2s+21

a;Csg +

— s+1 ‘ — s+i+

. . * 2 . .
for any nonnegative integer s. If B}, on L;(ID) is contractive, then

s+1 i+1
<
Z el Z( 1)2|“|+Z T +1|’| st 1

i=s+1

Similarly, if B on L2(D) is expansive, then

s+1 i+1
>
Z G Z( 1)2|“|+Z T +1|’| s+ 1

i=s+1

for any nonnegative integer s. This completes the proof. O

The following results are immediate from Theorem 3.26.

Corollary 3.27. Let ¢(z) = a1z +a»z> +b 7+ bZZZ and a;, b; € C where i = 1,2. Then, Bj; is contractive

2 1 2 2 2 1 .
{(S_fl)z |al| + ;:;1 |a2| S+2 |b | S+3|b | < 1 l‘f s = O, 1,
2

s 2 s—1 2 2
(s+12 lai|” + (s+l)2|a2| s+2|b I+ s+3|b2|

Corollary 3.28. Let ¢(z) = a1z + bz and a,, b, € C. Then, B; is contractive; then,

2
<
5 +1)2| af + 2|bl| <—.

forany s € N.
4. Conclusions

We characterized the necessary or sufficient conditions for the contractive and expansive H-Toeplitz
operators B, with various symbols ¢ on the Bergman space L2(D). By these results, we expect to
provide the properties of these operators on the Bergman space.
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