
Research article

Contractivity and expansivity of H-Toeplitz operators on the Bergman spaces

Sumin Kim¹ and Jongrak Lee^{2,*}

¹ Department of Mathematics and Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea

² Department of Mathematics, Sungkyunkwan University, Suwon 16419, Korea

* Correspondence: Email: jrlee01@skku.edu; Tel: +82312994527.

Abstract: In this paper we consider the properties of H-Toeplitz operators B_φ on the Bergman space $L_a^2(\mathbb{D})$. We present some necessary and sufficient conditions for the contractive and expansive H-Toeplitz operators B_φ with various symbols φ .

Keywords: H-Toeplitz operators, contractive operators, expansive operators, Bergman space

Mathematics Subject Classification: 47B35, 46E20

1. Introduction

Let \mathbb{D} denote the open unit disk in the complex plane \mathbb{C} and dA the area measure on the complex plane \mathbb{C} . The space $L^2(\mathbb{D})$ is a Hilbert space with the inner product

$$\langle f, g \rangle = \frac{1}{\pi} \int_{\mathbb{D}} f(z) \overline{g(z)} dA(z).$$

The Bergman space $L_a^2(\mathbb{D})$ consists of all analytic functions on \mathbb{D} and $L^\infty(\mathbb{D})$ is the space of the essentially bounded measurable function on \mathbb{D} . For $\varphi \in L^\infty(\mathbb{D})$, the multiplication operator M_φ on $L_a^2(\mathbb{D})$ is defined by $M_\varphi(f) = \varphi \cdot f$ and the Toeplitz operator T_φ on $L_a^2(\mathbb{D})$ is defined by

$$T_\varphi(f) = P(\varphi \cdot f),$$

where P denotes the orthogonal projection of $L^2(\mathbb{D})$ onto $L_a^2(\mathbb{D})$ and $f \in L_a^2(\mathbb{D})$. It is clear that those operators are bounded if $\varphi \in L^\infty(\mathbb{D})$.

The harmonic Bergman space $L_{harm}^2(\mathbb{D})$ denotes the space of all complex-valued harmonic functions in $L^2(\mathbb{D})$. The space $L_{harm}^2(\mathbb{D})$ is a closed subspace of $L^2(\mathbb{D})$ and it is a Hilbert space. Let P_{harm} be the orthogonal projection from the space $L^2(\mathbb{D})$ onto the space $L_{harm}^2(\mathbb{D})$.

Toeplitz operators on the Bergman space were studied by McDonald and Sundberg in [19]. Recently, lots of research about Toeplitz operators has been conducted in the Bergman space (see [2, 11]). In the Hardy space, the hyponormality of Toeplitz operators was studied in [7, 8, 12, 14, 20] ; refer to references therein for more details. Recently, many authors characterized the hyponormality of Toeplitz operators on the Bergman space and weighted Bergman space (see [7, 13, 15, 16, 18, 21]). In 2007, Arora and Paliwal [1] have introduced the notion of H-Toeplitz operators on the Hardy space. Recently, in [10], the authors studied H-Toeplitz operators on the Bergman space. The research of H-Toeplitz operators has arisen naturally in several fields of mathematics and in a variety of problems. For example, an H-Toeplitz system comprises a matrix equation of the form $Tx = y$ where T is an n by n H-Toeplitz matrix with x, y in \mathbb{C}^n . The $n \times n$ H-Toeplitz matrix T has $2n - 1$ degrees of freedom rather than n^2 . Thus for a large n , it is easier to solve the system of linear equations for an H-Toeplitz matrix(cf. [10]). In this paper we consider the algebraic properties of H-Toeplitz operators B_φ on the Bergman space $L_a^2(\mathbb{D})$. More concretely, we establish a tractable and explicit criterion for the contractivity and expansivity of H-Toeplitz operators. Several decades ago, many researchers began studying the contractive and expansive operators (see [3, 4, 5, 6]). In [5], the authors considered the invariant subspace problem for contractive operators. Recently, various results have been derived based on the papers (see [9, 17]).

The organization of this paper is as follows. In Section 2, we introduce the notion of H-Toeplitz operators on the Bergman space and provide various well-known properties of these operators. In Section 3, we focus on the contractive and expansive H-Toeplitz operators with analytic, coanalytic and harmonic symbols.

2. Preliminaries and auxiliary lemmas

Let s, t be nonnegative integers and P be the orthogonal projection from $L^2(\mathbb{D})$ to $L_a^2(\mathbb{D})$. Then we have

$$P(\bar{z}^t z^s) = \begin{cases} \frac{s-t+1}{s+1} z^{s-t} & \text{if } s \geq t \\ 0 & \text{if } s < t. \end{cases}$$

The following lemmas will be used frequently in this paper.

Lemma 2.1. ([10]) *In the harmonic Bergman space $L_{harm}^2(\mathbb{D})$, for nonnegative integers s and t , the following:*

$$P_{harm}(\bar{z}^t z^s) = \begin{cases} \frac{s-t+1}{s+1} z^{s-t} & \text{if } s \geq t \\ \frac{t-s+1}{t+1} \bar{z}^{t-s} & \text{if } s < t. \end{cases}$$

Lemma 2.2. ([15]) *For $m \geq 0$, we have*

- (i) $\|\bar{z}^m \sum_{n=0}^{\infty} c_n z^n\|^2 = \sum_{n=0}^{\infty} \frac{1}{i+m+1} |c_i|^2$,
- (ii) $\|P(\bar{z}^m \sum_{n=0}^{\infty} c_n z^n)\|^2 = \sum_{i=m}^{\infty} \frac{i-m+1}{(i+1)^2} |c_i|^2$.

By using Lemmas 2.1 and 2.2, we have the following result.

Remark 2.3. For $m \geq 0$, we have

$$\|P_{harm}(\bar{z}^m \sum_{n=0}^{\infty} c_n z^n)\|^2 = \sum_{i=0}^{m-1} \frac{m-i+1}{(m+1)^2} |c_i|^2 + \sum_{i=m}^{\infty} \frac{i-m+1}{(i+1)^2} |c_i|^2.$$

In order to define the notion of an H-Toeplitz operator on $L_a^2(\mathbb{D})$, we first consider the operator $K : L_a^2(\mathbb{D}) \rightarrow L_{harm}^2(\mathbb{D})$ defined by

$$K(e_{2n}(z)) = e_n(z) = \sqrt{n+1} z^n \text{ and } K(e_{2n+1}(z)) = \overline{e_{n+1}(z)} = \sqrt{n+2} \bar{z}^{n+1}$$

for all $n \geq 0$ and $z \in \mathbb{D}$. It can be checked that the operator K is bounded linear on $L_a^2(\mathbb{D})$ with $\|K\| = 1$. Moreover, the adjoint K^* of the operator K is given by

$$K^*(e_n(z)) = e_{2n}(z) \text{ and } K^*(\overline{e_{n+1}(z)}) = e_{2n+1}(z)$$

for all $n \geq 0$. From the definition of K and K^* , we have that $KK^* = I_{L_{harm}^2(\mathbb{D})}$ and $K^*K = I_{L_a^2(\mathbb{D})}$.

Remark 2.4. By the definitions of K and K^* , we can easily check that $K(z^{2n}) = \frac{\sqrt{n+1}}{\sqrt{2n+1}} z^n$, $K(z^{2n+1}) = \frac{\sqrt{n+2}}{\sqrt{2n+2}} \bar{z}^{n+1}$, $K^*(z^n) = \frac{\sqrt{2n+1}}{\sqrt{n+1}} z^{2n}$ and $K^*(\bar{z}^n) = \frac{\sqrt{2n}}{\sqrt{n+1}} z^{2n-1}$.

Next, we define H-Toeplitz operators on the Bergman space $L_a^2(\mathbb{D})$ using the definition of the operator K .

Definition 2.5. ([10]) For $\varphi \in L^\infty(\mathbb{D})$, the H-Toeplitz operator B_φ with the symbol φ is defined as the operator $B_\varphi : L_a^2(\mathbb{D}) \rightarrow L_a^2(\mathbb{D})$ such that $B_\varphi(f) = PM_\varphi K(f)$ for all $f \in L_a^2(\mathbb{D})$.

The next proposition follows from the definition of the H-Toeplitz operators.

Proposition 2.6. ([10]) For $\varphi, \psi \in L^\infty(\mathbb{D})$, the operator B_φ satisfies the following:

- (i) B_φ is a bounded linear operator on $L_a^2(\mathbb{D})$ with $\|B_\varphi\| \leq \|\varphi\|_\infty$.
- (ii) For any scalar α and β , $B_{\alpha\varphi+\beta\psi} = \alpha B_\varphi + \beta B_\psi$.
- (iii) The adjoint of the H-Toeplitz operator B_φ is given by $B_\varphi^* = K^* P_{harm} M_{\bar{\varphi}}$.

The following remark provides important information for adjoint operators. It shows the difference between adjoint Toeplitz operators and adjoint H-Toeplitz operators.

Remark 2.7. If f, g are in $L^\infty(\mathbb{D})$ then by the definition of Toeplitz operators T_f , we have that

$$T_f^* = T_{\bar{f}} \quad \text{and} \quad T_{\bar{f}} T_g = T_{\bar{f}g} \text{ if } f \text{ or } g \text{ is analytic.}$$

But in the case of the H-Toeplitz operator,

$$B_z^*(az) = K^* P_{harm} M_{\bar{z}}(az) = K^* P_{harm}(a\bar{z}z) = K^*\left(\frac{a}{2}\right) = \frac{a}{2}$$

and

$$B_{\bar{z}}(az) = PM_{\bar{z}}K(az) = PM_{\bar{z}}a\bar{z} = P(a\bar{z}^2) = 0.$$

Therefore, $B_z^*(az) \neq B_{\bar{z}}(az)$. A straightforward calculation shows that $B_z B_{\bar{z}} \neq B_{z^2}$ (cf. [10]).

3. Main results

A bounded linear operator T on a Hilbert space is said to be *expansive* if $T^*T \geq I$, *contractive* if $T^*T \leq I$, and *isometric* if $T^*T = I$.

For $k \in L_a^2(\mathbb{D})$, let $k(z) = k_e(z) + k_o(z)$, where

$$k_e(z) := \sum_{n=0}^{\infty} c_{2n} z^{2n} \quad \text{and} \quad k_o(z) := \sum_{n=0}^{\infty} c_{2n+1} z^{2n+1}.$$

3.1. H-Toeplitz operators with analytic symbols

In this subsection, we consider the properties of H-Toeplitz operators B_φ and B_φ^* with analytic symbols. First, we study the contractivity and expansivity of B_φ and B_φ^* with $\varphi = az^N$ for $N \in \mathbb{N}$ and $a \in \mathbb{C}$. Next, we extend the symbol φ of the form $\varphi(z) = \sum_{i=0}^{\infty} a_i z^i$ with $a_i \in \mathbb{C}$.

Theorem 3.1. *Let $\varphi(z) = az^N$ for $N \in \mathbb{N}$ and $a \in \mathbb{C}$. Then B_φ is contractive if and only if $|a| \leq 1$.*

Proof. For any $k \in L_a^2(\mathbb{D})$,

$$\begin{aligned} B_\varphi k(z) &= PM_\varphi K(k(z)) = PM_\varphi K(k_e(z) + k_o(z)) \\ &= PM_\varphi \left[\sum_{n=0}^{\infty} \left(\frac{\sqrt{n+1}}{\sqrt{2n+1}} c_{2n} z^n + \frac{\sqrt{n+2}}{\sqrt{2n+2}} c_{2n+1} \bar{z}^{n+1} \right) \right] \\ &= a \sum_{n=0}^{\infty} \frac{\sqrt{n+1}}{\sqrt{2n+1}} c_{2n} z^{n+N} + P \left(az^N \sum_{n=0}^{\infty} \frac{\sqrt{n+2}}{\sqrt{2n+2}} c_{2n+1} \bar{z}^{n+1} \right) \\ &= a \sum_{n=0}^{\infty} \frac{\sqrt{n+1}}{\sqrt{2n+1}} c_{2n} z^{n+N} + a \sum_{n=0}^{N-1} \frac{\sqrt{n+2}}{\sqrt{2n+2}} \cdot \frac{N-n}{N+1} c_{2n+1} z^{N-n-1}, \end{aligned}$$

and we have that

$$\|B_\varphi k(z)\|^2 = |a|^2 \left(\sum_{n=0}^{\infty} \frac{n+1}{(2n+1)(n+N+1)} |c_{2n}|^2 + \sum_{n=0}^{N-1} \frac{(n+2)(N-n)}{2(n+1)(N+1)^2} |c_{2n+1}|^2 \right).$$

According to the definition for the contractivity of B_φ , the inequality $B_\varphi^* B_\varphi \leq I$ is equivalent to $\|B_\varphi k(z)\|^2 \leq \|k(z)\|^2$ for any $k \in L_a^2(\mathbb{D})$. Thus, B_φ on $L_a^2(\mathbb{D})$ is contractive if and only if

$$\begin{aligned} |a|^2 \left(\sum_{n=0}^{\infty} \frac{n+1}{(2n+1)(n+N+1)} |c_{2n}|^2 + \sum_{n=0}^{N-1} \frac{(n+2)(N-n)}{2(n+1)(N+1)^2} |c_{2n+1}|^2 \right) \\ \leq \sum_{j=0}^{\infty} \frac{1}{j+1} |c_j|^2. \end{aligned} \tag{3.1}$$

There are two cases to consider. If $c_\ell \neq 0$ for ℓ is even and $c_\ell = 0$ for ℓ is odd, from (3.1), we have

$$|a|^2 \frac{n+1}{(2n+1)(n+N+1)} |c_{2n}|^2 \leq \frac{1}{2n+1} |c_{2n}|^2$$

or equivalently,

$$|a|^2 \leq \frac{n+N+1}{n+1}$$

for any nonnegative integer n . Since $\frac{n+N+1}{n+1}$ is decreasing for n , we have

$$|a|^2 \leq \min_{n \geq 0} \frac{n+N+1}{n+1} = \lim_{n \rightarrow \infty} \frac{n+N+1}{n+1} = 1. \quad (3.2)$$

If $c_\ell \neq 0$ for ℓ is odd, and $c_\ell = 0$ for ℓ is even, from (3.1), we have

$$|a|^2 \frac{(n+2)(N-n)}{2(n+1)(N+1)^2} |c_{2n+1}|^2 \leq \frac{1}{2(n+1)} |c_{2n+1}|^2$$

or equivalently,

$$|a|^2 \leq \frac{(N+1)^2}{(n+2)(N-n)}$$

for any $0 \leq n \leq N-1$. Put $f(n) = \frac{(N+1)^2}{(n+2)(N-n)}$, then f is increasing for $\frac{N-2}{2} \leq n \leq N-1$, and decreasing for $0 \leq n < \frac{N-2}{2}$. Moreover, if N is even, then B_φ is contractive if and only if

$$|a|^2 \leq \min_{0 \leq n \leq N-1} \frac{(N+1)^2}{(n+2)(N-n)} = f\left(\frac{N-2}{2}\right) = \frac{4(N+1)^2}{(N+2)^2}. \quad (3.3)$$

If N is odd, then B_φ is contractive if and only if

$$|a|^2 \leq \min_{0 \leq n \leq N-1} \frac{(N+1)^2}{(n+2)(N-n)} = f\left(\frac{N-1}{2}\right) = f\left(\frac{N-3}{2}\right) = \frac{4(N+1)}{N+3}. \quad (3.4)$$

Since $\frac{4(N+1)^2}{(N+2)^2} \geq 1$ and $\frac{4(N+1)}{N+3} \geq 1$ for any $N \in \mathbb{N}$, from (3.2)–(3.4), B_φ is contractive if and only if $|a| \leq 1$. This completes the proof. \square

Corollary 3.2. *Let $\varphi(z) = az^N$ for $N \in \mathbb{N}$ and $a \in \mathbb{C}$. Then B_φ is neither expansive nor isometric.*

Proof. From the proof of Theorem 3.1, B_φ is expansive if and only if

$$|a|^2 \left(\sum_{n=0}^{\infty} \frac{n+1}{(2n+1)(n+N+1)} |c_{2n}|^2 + \sum_{n=0}^{N-1} \frac{(n+2)(N-n)}{2(n+1)(N+1)^2} |c_{2n+1}|^2 \right) \geq \sum_{j=0}^{\infty} \frac{1}{j+1} |c_j|^2. \quad (3.5)$$

Set $c_{2N+1} \neq 0$ and $c_i = 0$ for $i \neq 2N+1$. Then from (3.5), $\frac{1}{2(N+1)} \leq 0$; it is a contradiction. \square

In the next result, we have the sufficient condition for the contractivity and expansivity of the H-Toeplitz operators B_φ with symbols $\varphi(z) = \sum_{i=0}^{\infty} a_i z^i$ where $a_i \in \mathbb{C}$ on $L_a^2(\mathbb{D})$.

Theorem 3.3. *Let $\varphi(z) = \sum_{i=0}^{\infty} a_i z^i$ and $a_i \in \mathbb{C}$.*

(i) *If B_φ is contractive then*

$$\sum_{i=0}^{\infty} \frac{1}{s+i+1} |a_i|^2 \leq \frac{1}{s+1} \quad \text{and} \quad \sum_{i=s+1}^{\infty} \frac{i-s}{(i+1)^2} |a_i|^2 \leq \frac{1}{s+2}$$

for any nonnegative integer s .

(ii) If B_φ is expansive then

$$\sum_{i=0}^{\infty} \frac{1}{s+i+1} |a_i|^2 \geq \frac{1}{s+1} \quad \text{and} \quad \sum_{i=s+1}^{\infty} \frac{i-s}{(i+1)^2} |a_i|^2 \geq \frac{1}{s+2} \quad (3.6)$$

for any nonnegative integer s .

Proof. For any $k \in L_a^2(\mathbb{D})$,

$$\begin{aligned} B_\varphi k(z) &= PM_\varphi K(k(z)) = PM_\varphi K(k_e(z) + k_o(z)) \\ &= PM_\varphi \left[\sum_{n=0}^{\infty} \left(\frac{\sqrt{n+1}}{\sqrt{2n+1}} c_{2n} z^n + \frac{\sqrt{n+2}}{\sqrt{2n+2}} c_{2n+1} \bar{z}^{n+1} \right) \right] \\ &= \sum_{i=0}^{\infty} \sum_{n=0}^{\infty} \frac{\sqrt{n+1}}{\sqrt{2n+1}} a_i c_{2n} z^{n+i} + \sum_{i=1}^{\infty} \sum_{n=0}^{i-1} \frac{\sqrt{n+2}}{\sqrt{2n+2}} \cdot \frac{i-n}{i+1} a_i c_{2n+1} z^{i-n-1} \end{aligned} \quad (3.7)$$

for any $c_j \in \mathbb{C}$ ($j = 0, 1, 2, \dots$). Then on comparing the coefficient of z^m , by the equation (3.7) we have that

$$a_m c_0 + \frac{\sqrt{2}}{\sqrt{3}} a_{m-1} c_2 + \dots + \frac{\sqrt{m+1}}{\sqrt{2m+1}} a_0 c_{2m} + \sum_{n=0}^{\infty} \frac{\sqrt{n+2}}{\sqrt{2n+2}} \cdot \frac{m+1}{n+m+2} a_{n+m+1} c_{2n+1}.$$

Set $c_\ell \neq 0$ for some ℓ and $c_j = 0$ for any $j \neq \ell$. Then we consider that the following two cases arise:

Case 1: If $\ell = 2s$ for any nonnegative integer s , then

$$B_\varphi k(z) = \sum_{i=0}^{\infty} \frac{\sqrt{s+1}}{\sqrt{2s+1}} a_i c_{2s} z^{s+i}.$$

If B_φ on $L_a^2(\mathbb{D})$ is contractive then

$$\sum_{i=0}^{\infty} \frac{s+1}{(2s+1)(s+i+1)} |a_i|^2 |c_{2s}|^2 \leq \frac{1}{2s+1} |c_{2s}|^2.$$

Thus, $\sum_{i=0}^{\infty} \frac{1}{s+i+1} |a_i|^2 \leq \frac{1}{s+1}$ for any nonnegative integer s . Similarly, if B_φ on $L_a^2(\mathbb{D})$ is expansive then $\sum_{i=0}^{\infty} \frac{1}{s+i+1} |a_i|^2 \geq \frac{1}{s+1}$ for any nonnegative integer s .

Case 2: If $\ell = 2s+1$ for any nonnegative integer s , then

$$B_\varphi k(z) = \sum_{i=s+1}^{\infty} \frac{\sqrt{s+2}}{\sqrt{2s+2}} \cdot \frac{i-s}{i+1} a_i c_{2s+1} z^{i-s-1}.$$

If B_φ on $L_a^2(\mathbb{D})$ is contractive then

$$\sum_{i=s+1}^{\infty} \frac{(s+2)(i-s)}{2(s+1)(i+1)^2} |a_i|^2 |c_{2s+1}|^2 \leq \frac{1}{2(s+1)} |c_{2s+1}|^2.$$

Thus, $\sum_{i=s+1}^{\infty} \frac{i-s}{(i+1)^2} |a_i|^2 \leq \frac{1}{s+2}$ for any nonnegative integer s . Similarly, if B_φ on $L_a^2(\mathbb{D})$ is expansive then $\sum_{i=s+1}^{\infty} \frac{i-s}{(i+1)^2} |a_i|^2 \geq \frac{1}{s+2}$ for any nonnegative integer s . This completes the proof. \square

Example 3.4. Let $\varphi(z) = \sum_{i=0}^{\infty} \frac{1}{\sqrt{i+1}} z^i$. Then

$$\sum_{i=0}^{\infty} \frac{1}{(i+1)^2} = \frac{\pi^2}{6} > 1,$$

and so, B_φ is not contractive.

The following example shows that the converse of Theorem 3.3 (ii) is not true.

Example 3.5. Consider the polynomial $\varphi(z) = z + \sqrt{3}z^2$. Then the conditions in (3.6) hold. Put $k(z) = -\frac{\sqrt{2}}{3} + \frac{1}{\sqrt{6}}z + z^2$. A straightforward calculation shows that $B_\varphi k(z) = \frac{1}{2\sqrt{6}} + \sqrt{2}z^3$. Thus $\|B_\varphi k(z)\|^2 = \frac{13}{24}$ and $\|k(z)\|^2 = \frac{23}{36}$. Therefore, B_φ is not expansive.

We obtained the contractivity and expansivity of the adjoint H-Toeplitz operators B_φ^* on $L_a^2(\mathbb{D})$.

Theorem 3.6. Let $\varphi(z) = az^N$ for $N \in \mathbb{N}$ and $a \in \mathbb{C}$. Then B_φ^* is contractive if and only if $|a| \leq 1$.

Proof. For any $k \in L_a^2(\mathbb{D})$,

$$\begin{aligned} B_\varphi^* k(z) &= K^* P_{harm} M_{\bar{\varphi}} k(z) \\ &= K^* P_{harm} \left(\bar{a} z^N \sum_{n=0}^{\infty} c_n z^n \right) \\ &= \bar{a} K^* \left(\sum_{n=0}^{N-1} \frac{N-n+1}{N+1} c_n \bar{z}^{N-n} + \sum_{n=N}^{\infty} \frac{n-N+1}{n+1} c_n z^{n-N} \right) \\ &= \bar{a} \sum_{n=0}^{N-1} \frac{\sqrt{N-n+1} \sqrt{2N-2n}}{N+1} c_n z^{2N-2n-1} + \bar{a} \sum_{n=N}^{\infty} \frac{\sqrt{n-N+1} \sqrt{2n-2N+1}}{n+1} c_n z^{2n-2N}. \end{aligned}$$

Thus

$$\|B_\varphi^* k(z)\|^2 = |a|^2 \left(\sum_{n=0}^{N-1} \frac{N-n+1}{(N+1)^2} |c_n|^2 + \sum_{n=N}^{\infty} \frac{n-N+1}{(n+1)^2} |c_n|^2 \right).$$

Thus, B_φ^* on $L_a^2(\mathbb{D})$ is contractive if and only if

$$|a|^2 \left(\sum_{n=0}^{N-1} \frac{N-n+1}{(N+1)^2} |c_n|^2 + \sum_{n=N}^{\infty} \frac{n-N+1}{(n+1)^2} |c_n|^2 \right) \leq \sum_{n=0}^{\infty} \frac{1}{n+1} |c_n|^2. \quad (3.8)$$

If $0 \leq n \leq N-1$, then $|a|^2 \leq \frac{(N+1)^2}{(n+1)(N-n+1)}$; so,

$$|a|^2 \leq \min_{0 \leq n \leq N-1} \frac{(N+1)^2}{(n+1)(N-n+1)} = \frac{(N+1)^2}{2N},$$

since $\frac{(N+1)^2}{(n+1)(N-n+1)}$ is decreasing. If $n \geq N$, then $|a|^2 \leq \frac{n+1}{n-N+1}$; so,

$$|a|^2 \leq \min_{n \geq N} \frac{n+1}{n-N+1} = 1,$$

since $\frac{n+1}{n-N+1}$ is decreasing. Hence, for any arbitrary c_i ($i = 0, 1, 2, \dots$), the inequality given by (3.8) holds if and only if $|a|^2 \leq \min \left\{ \frac{(N+1)^2}{2N}, 1 \right\} = 1$. This completes the proof. \square

From Theorem 3.6, we get the following corollaries and example.

Corollary 3.7. *Let $\varphi(z) = az^N$ for $N \in \mathbb{N}$ and $a \in \mathbb{C}$. Then B_φ^* is expansive if and only if $|a|^2 \geq N + 1$.*

Proof. From the proof of Theorem 3.6, B_φ^* is expansive if and only if

$$|a|^2 \left(\sum_{n=0}^{N-1} \frac{N-n+1}{(N+1)^2} |c_n|^2 + \sum_{n=N}^{\infty} \frac{n-N+1}{(n+1)^2} |c_n|^2 \right) \geq \sum_{n=0}^{\infty} \frac{1}{n+1} |c_n|^2. \quad (3.9)$$

If $0 \leq n \leq N-1$, then $|a|^2 \geq \frac{(N+1)^2}{(n+1)(N-n+1)}$; thus $|a|^2 \geq N+1$ since $\frac{(N+1)^2}{(n+1)(N-n+1)}$ is decreasing. If $n \geq N$, then $|a|^2 \geq \frac{n+1}{n-N+1}$; thus $|a|^2 \geq N+1$ since $\frac{n+1}{n-N+1}$ is decreasing. Hence, the inequality given by (3.9) holds for any arbitrary c_i ($i = 0, 1, 2, \dots$) if and only if $|a|^2 \geq N+1$. \square

Example 3.8. *Let $\varphi(z) = 2z^4$. By a direct calculation,*

$$\|B_\varphi^* k(z)\|^2 = 4 \left(\sum_{n=0}^3 \frac{5-n}{25} |c_n|^2 + \sum_{n=4}^{\infty} \frac{n-3}{(n+1)^2} |c_n|^2 \right)$$

and

$$\|k(z)\|^2 = \sum_{n=0}^{\infty} \frac{1}{n+1} |c_n|^2.$$

Since c_i 's are arbitrary, set $c_0 \neq 0$ and $c_i = 0$ for $i > 0$; then $\|B_\varphi^* k(z)\|^2 = \frac{4}{5}|c_0|^2$ and $\|k(z)\|^2 = |c_0|^2$. Thus $\|B_\varphi^* k(z)\|^2 < \|k(z)\|^2$. Set $c_5 \neq 0$ and $c_i = 0$ for $i \neq 5$; then $\|B_\varphi^* k(z)\|^2 = \frac{2}{9}|c_5|^2$ and $\|k(z)\|^2 = \frac{1}{6}|c_5|^2$. Thus, $\|B_\varphi^* k(z)\|^2 > \|k(z)\|^2$. Hence $B_{2z^4}^*$ is neither contractive nor expansive.

Corollary 3.9. *Let $\varphi(z) = az^N$ for $N \in \mathbb{N}$ and $a \in \mathbb{C}$. Then B_φ is not self-adjoint.*

Proof. In the proof of Theorems 3.1 and 3.6,

$$B_\varphi k(z) = a \sum_{n=0}^{\infty} \frac{\sqrt{n+1}}{\sqrt{2n+1}} c_{2n} z^{n+N} + a \sum_{n=0}^{N-1} \frac{\sqrt{n+2}}{\sqrt{2n+2}} \cdot \frac{N-n}{N+1} c_{2n+1} z^{N-n-1}$$

and

$$B_\varphi^* k(z) = \bar{a} \sum_{n=0}^{N-1} \frac{\sqrt{N-n+1} \sqrt{2N-2n}}{N+1} c_n z^{2N-2n-1} + \bar{a} \sum_{n=N}^{\infty} \frac{\sqrt{n-N+1} \sqrt{2n-2N+1}}{n+1} c_n z^{2n-2N}.$$

Then, on comparing the coefficient of z^0 , we get

$$\frac{a}{\sqrt{2N(N+1)}} c_{2N-1} \quad \text{and} \quad \frac{\bar{a}}{N+1} c_N.$$

Since c_{2N-1} and c_N are arbitrary, B_φ is not self-adjoint. \square

Corollary 3.10. *Let $\varphi(z) = az^N$ for $N \in \mathbb{N}$ and $a \in \mathbb{C}$. Then B_φ is not normal.*

Proof. For any $k \in L_a^2(\mathbb{D})$ such that $k(z) = \sum_{n=0}^{\infty} c_n z^n$, B_φ is normal if and only if $B_\varphi^* B_\varphi k(z) = B_\varphi B_\varphi^* k(z)$ or equivalently, $\|B_\varphi k(z)\|^2 = \|B_\varphi^* k(z)\|^2$. As in the proof of Theorems 3.1 and 3.6, we have

$$\|B_\varphi k(z)\|^2 = |a|^2 \left(\sum_{n=0}^{\infty} \frac{n+1}{(2n+1)(n+N+1)} |c_{2n}|^2 + \sum_{n=0}^{N-1} \frac{(n+2)(N-n)}{2(n+1)(N+1)^2} |c_{2n+1}|^2 \right)$$

and

$$\|B_\varphi^* k(z)\|^2 = |a|^2 \left(\sum_{n=0}^{N-1} \frac{N-n+1}{(N+1)^2} |c_n|^2 + \sum_{n=N}^{\infty} \frac{n-N+1}{(n+1)^2} |c_n|^2 \right).$$

Since c_i 's are arbitrary, set $c_{2N+1} \neq 0$ and $c_i = 0$ for $i \neq 2N+1$. Then $\|B_\varphi k(z)\|^2 = 0$ and $\|B_\varphi^* k(z)\|^2 = \frac{|a|^2(N+2)}{4(N+1)^2} |c_{2N+1}|^2$; thus, $\|B_\varphi k(z)\|^2 \neq \|B_\varphi^* k(z)\|^2$. \square

In the next result, we investigated a sufficient condition for the contractivity and expansivity of the adjoint H-Toeplitz operators B_φ^* with symbols $\varphi(z) = \sum_{i=0}^{\infty} a_i z^i$ where $a_i \in \mathbb{C}$ on $L_a^2(\mathbb{D})$.

Theorem 3.11. *Let $\varphi(z) = \sum_{i=0}^{\infty} a_i z^i$ and $a_i \in \mathbb{C}$.*

(i) *If B_φ^* is contractive then*

$$\sum_{i=0}^s \frac{s-i+1}{(s+1)^2} |a_i|^2 + \sum_{i=s+1}^{\infty} \frac{i-s+1}{(i+1)^2} |a_i|^2 \leq \frac{1}{s+1}$$

for any nonnegative integer s .

(ii) *If B_φ^* is expansive then*

$$\sum_{i=0}^s \frac{s-i+1}{(s+1)^2} |a_i|^2 + \sum_{i=s+1}^{\infty} \frac{i-s+1}{(i+1)^2} |a_i|^2 \geq \frac{1}{s+1} \quad (3.10)$$

for any nonnegative integer s .

Proof. For any $k \in L_a^2(\mathbb{D})$,

$$\begin{aligned} B_\varphi^* k(z) &= K^* P_{harm} M_{\bar{\varphi}} k(z) \\ &= K^* P_{harm} \left(\sum_{n=0}^{i-1} \sum_{i=1}^{\infty} \bar{a}_i c_n z^n \bar{z}^i + \sum_{n=i}^{\infty} \sum_{i=0}^{\infty} \bar{a}_i c_n z^n \bar{z}^i \right) \\ &= K^* \left(\sum_{n=0}^{i-1} \sum_{i=1}^{\infty} \frac{i-n+1}{i+1} \bar{a}_i c_n \bar{z}^{i-n} + \sum_{n=i}^{\infty} \sum_{i=0}^{\infty} \frac{n-i+1}{n+1} \bar{a}_i c_n \bar{z}^{n-i} \right) \\ &= \sum_{n=0}^{i-1} \sum_{i=1}^{\infty} \frac{i-n+1}{i+1} \cdot \frac{\sqrt{2i-2n}}{\sqrt{i-n+1}} \bar{a}_i c_n z^{2i-2n-1} + \sum_{n=i}^{\infty} \sum_{i=0}^{\infty} \frac{n-i+1}{n+1} \cdot \frac{\sqrt{2n-2i+1}}{\sqrt{n-i+1}} \bar{a}_i c_n z^{2n-2i}. \end{aligned}$$

Set $c_s \neq 0$ for some s and $c_j = 0$ for any $j \neq s$. Then

$$B_\varphi^* k(z) = \sum_{i=s+1}^{\infty} \frac{i-s+1}{i+1} \cdot \frac{\sqrt{2(i-s)}}{\sqrt{i-s+1}} \bar{a}_i c_s z^{2i-2s-1} + \sum_{i=0}^s \frac{s-i+1}{s+1} \cdot \frac{\sqrt{2s-2i+1}}{\sqrt{s-i+1}} \bar{a}_i c_s z^{2s-2i}.$$

If B_φ^* on $L_a^2(\mathbb{D})$ is contractive then

$$\|B_\varphi^*k(z)\|^2 = \sum_{i=s+1}^{\infty} \frac{i-s+1}{(i+1)^2} |a_i|^2 |c_s|^2 + \sum_{i=0}^s \frac{s-i+1}{(s+1)^2} |a_i|^2 |c_s|^2 \leq \frac{1}{s+1} |c_s|^2.$$

Thus,

$$\sum_{i=0}^s \frac{s-i+1}{(s+1)^2} |a_i|^2 + \sum_{i=s+1}^{\infty} \frac{i-s+1}{(i+1)^2} |a_i|^2 \leq \frac{1}{s+1}.$$

Similarly, if B_φ^* on $L_a^2(\mathbb{D})$ is expansive then

$$\sum_{i=0}^s \frac{s-i+1}{(s+1)^2} |a_i|^2 + \sum_{i=s+1}^{\infty} \frac{i-s+1}{(i+1)^2} |a_i|^2 \geq \frac{1}{s+1}.$$

This completes the proof. \square

The following example shows that the converse of Theorem 3.11 (ii) is not true.

Example 3.12. Consider the polynomial $\varphi(z) = \sqrt{2}z + \sqrt{2}z^2$. Then the condition given by (3.10) holds. Put $k(z) = \frac{4}{9} - \frac{2}{3}z + z^2$. A straightforward calculation shows that $B_\varphi^*k(z) = \frac{2\sqrt{3}}{3}z^2 + \frac{8\sqrt{6}}{27}z^3$. Then $\|B_\varphi^*k(z)\|^2 = \frac{140}{243}$ and $\|k(z)\|^2 = \frac{183}{243}$. Therefore, B_φ^* is not expansive.

Corollary 3.13. Let $\varphi(z) = \sum_{i=0}^{\infty} a_i z^i$ and $a_i \in \mathbb{C}$. If B_φ^* is contractive then $\sum_{i=0}^{\infty} \frac{1}{i+1} |a_i|^2 \leq 1$ and if B_φ^* is expansive then $\sum_{i=0}^{\infty} \frac{1}{i+1} |a_i|^2 \geq 1$.

Proof. We have the result by putting $s = 0$ in Theorem 3.11. \square

Example 3.14. Let $\varphi(z) = \sum_{i=0}^{\infty} \frac{1}{\sqrt{i+1}} z^i$. Then

$$\sum_{i=0}^{\infty} \frac{1}{(i+1)^2} = \frac{\pi^2}{6} > 1$$

and by Corollary 3.13, B_φ^* is not contractive.

3.2. H-Toeplitz operators with coanalytic symbols

In this subsection, we consider the properties of H-Toeplitz operators B_φ and B_φ^* with coanalytic, or antianalytic symbols. First, we study the contractivity and expansivity of B_φ and B_φ^* with $\varphi = b\bar{z}^N$ for $N \in \mathbb{N}$ and $b \in \mathbb{C}$. Next, we extend the symbol φ of the form $\varphi(z) = \sum_{i=1}^{\infty} b_i \bar{z}^i$ with $b_i \in \mathbb{C}$.

Theorem 3.15. Let $\varphi(z) = b\bar{z}^N$ for $N \in \mathbb{N}$ and $b \in \mathbb{C}$. Then B_φ is contractive if and only if $|b| \leq 1$.

Proof. For any $k \in L_a^2(\mathbb{D})$,

$$\begin{aligned} B_\varphi k(z) &= PM_\varphi \left[\sum_{n=0}^{\infty} \left(\frac{\sqrt{n+1}}{\sqrt{2n+1}} c_{2n} z^n + \frac{\sqrt{n+2}}{\sqrt{2n+2}} c_{2n+1} \bar{z}^{n+1} \right) \right] \\ &= b \sum_{n=N}^{\infty} \frac{n-N+1}{\sqrt{2n+1} \sqrt{n+1}} c_{2n} z^{n-N} \\ &= b \sum_{n=0}^{\infty} \frac{n+1}{\sqrt{2n+2N+1} \sqrt{n+N+1}} c_{2n+2N} z^n. \end{aligned}$$

Thus

$$\|B_\varphi k(z)\|^2 = |b|^2 \sum_{n=0}^{\infty} \frac{n+1}{(2n+2N+1)(n+N+1)} |c_{2n+2N}|^2.$$

Hence B_φ is contractive if and only if

$$|b|^2 \sum_{n=0}^{\infty} \frac{n+1}{(2n+2N+1)(n+N+1)} |c_{2n+2N}|^2 \leq \sum_{n=0}^{\infty} \frac{1}{n+1} |c_n|^2.$$

If we compare the coefficients of c_{2n+2N} , we have

$$\frac{|b|^2(n+1)}{(2n+2N+1)(n+N+1)} |c_{2n+2N}|^2 \leq \frac{1}{2n+2N+1} |c_{2n+2N}|^2$$

for any $n \geq 0$; thus,

$$|b|^2 \leq \frac{n+N+1}{n+1}$$

for any $n \geq 0$. Since $\frac{n+N+1}{n+1}$ is decreasing for n , B_φ is contractive if and only if

$$|b|^2 \leq \min_{n \geq 0} \frac{n+N+1}{n+1} = \lim_{n \rightarrow \infty} \frac{n+N+1}{n+1} = 1.$$

This completes the proof. \square

Corollary 3.16. *Let $\varphi(z) = b\bar{z}^N$ for $N \in \mathbb{N}$ and $b \in \mathbb{C}$. Then B_φ is neither expansive nor isometric.*

Proof. From the proof of Theorem 3.15, B_φ is expansive if and only if

$$|b|^2 \sum_{n=0}^{\infty} \frac{n+1}{(2n+2N+1)(n+N+1)} |c_{2n+2N}|^2 \geq \sum_{n=0}^{\infty} \frac{1}{n+1} |c_n|^2.$$

Since c_i 's ($0 \leq i < 2N$) are arbitrary, we put $c_i \neq 0$ if i is odd and $c_i = 0$ if i is even; then, $0 \geq \frac{1}{i+1}$; it is a contradiction. \square

In the next result, we get a sufficient condition for the contractivity of H-Toeplitz operators B_φ with symbols $\varphi(z) = \sum_{i=1}^{\infty} b_i \bar{z}^i$, where $b_i \in \mathbb{C}$ on $L_a^2(\mathbb{D})$.

Theorem 3.17. *Let $\varphi(z) = \sum_{i=1}^{\infty} b_i \bar{z}^i$ and $b_i \in \mathbb{C}$. If B_φ is contractive then*

$$\sum_{i=1}^s (s-i+1) |b_i|^2 \leq s+1$$

for any $s \in \mathbb{N}$.

Proof. For any $k \in L_a^2(\mathbb{D})$,

$$B_\varphi k(z) = P \left(\sum_{i=1}^{\infty} \sum_{n=0}^{\infty} \frac{\sqrt{n+1}}{\sqrt{2n+1}} b_i c_{2n} z^n \bar{z}^i \right) = \sum_{n=1}^{\infty} \sum_{i=1}^n \frac{1}{\sqrt{2n+1}} \cdot \frac{n-i+1}{\sqrt{n+1}} b_i c_{2n} z^{n-i}. \quad (3.11)$$

Then on comparing the coefficient of z^m , by the equation (3.11), we have that

$$\sum_{n=m+1}^{\infty} \frac{m+1}{\sqrt{2n+1} \sqrt{n+1}} b_{n-m} c_{2n}.$$

We set $c_\ell \neq 0$ if $\ell = 2s$ and $c_\ell = 0$ if $\ell \neq 2s$ for some $s \in \mathbb{N}$. Thus B_φ on $L_a^2(\mathbb{D})$ is contractive then

$$\sum_{i=1}^s \frac{(s-i+1)|b_i|^2}{(2s+1)(s+1)} |c_{2s}|^2 \leq \frac{1}{2s+1} |c_{2s}|^2.$$

Therefore, $\sum_{i=1}^s (s-i+1)|b_i|^2 \leq s+1$. This completes the proof. \square

On the other hand, we have that

Corollary 3.18. *Let $\varphi(z) = \sum_{i=1}^{\infty} b_i \bar{z}^i$ and $b_i \in \mathbb{C}$. Then B_φ is not expansive.*

Proof. Using the equation (3.11), we set $c_i = 0$ if i is even and $c_i \neq 0$ if i is odd; then, $B_\varphi k(z) = 0$. Thus, B_φ on $L_a^2(\mathbb{D})$ is not expansive. \square

The following theorem is purposed to find the necessary and sufficient conditions for the contractivity of the adjoint H-Toeplitz operator B_φ^* with coanalytic symbols φ .

Theorem 3.19. *Let $\varphi(z) = b \bar{z}^N$ for $N \in \mathbb{N}$ and $b \in \mathbb{C}$. Then B_φ^* is contractive if and only if $|b| \leq 1$.*

Proof. For any $k \in L_a^2(\mathbb{D})$,

$$B_\varphi^* k(z) = K^* P_{harm} \left(\bar{b} z^N \sum_{n=0}^{\infty} c_n z^n \right) = \bar{b} \sum_{n=0}^{\infty} \frac{\sqrt{2n+2N+1}}{\sqrt{n+N+1}} c_n z^{2n+2N};$$

then,

$$\|B_\varphi^* k(z)\|^2 = |b|^2 \sum_{n=0}^{\infty} \frac{1}{n+N+1} |c_n|^2.$$

Thus, B_φ^* on $L_a^2(\mathbb{D})$ is contractive if and only if

$$|b|^2 \sum_{n=0}^{\infty} \frac{1}{n+N+1} |c_n|^2 \leq \sum_{n=0}^{\infty} \frac{1}{n+1} |c_n|^2.$$

Since $\frac{n+N+1}{n+1}$ is decreasing, B_φ^* on $L_a^2(\mathbb{D})$ is contractive if and only if

$$|b|^2 \leq \min_{n \geq 0} \frac{n+N+1}{n+1} = 1.$$

This completes the proof. \square

From Theorem 3.19, we get the following corollary and example.

Corollary 3.20. *Let $\varphi(z) = b \bar{z}^N$ for $N \in \mathbb{N}$ and $b \in \mathbb{C}$. Then, B_φ^* is expansive if and only if $|b|^2 \geq N+1$.*

Proof. From the proof of Theorem 3.19, B_φ^* is expansive if and only if

$$|b|^2 \sum_{n=0}^{\infty} \frac{1}{n+N+1} |c_n|^2 \geq \sum_{n=0}^{\infty} \frac{1}{n+1} |c_n|^2$$

or equivalently,

$$|b|^2 \geq \frac{n+N+1}{n+1}$$

for any $n \geq 0$. Hence B_φ^* is expansive if and only if

$$|b|^2 \geq \max_{n \geq 0} \frac{n+N+1}{n+1} = N+1.$$

□

Example 3.21. Let $\varphi(z) = \frac{3}{2}\bar{z}^2$. By direct calculations,

$$\|B_\varphi^* k(z)\|^2 = \frac{9}{4} \sum_{n=0}^{\infty} \frac{1}{n+3} |c_n|^2$$

and

$$\|k(z)\|^2 = \sum_{n=0}^{\infty} \frac{1}{n+1} |c_n|^2.$$

Since c_i 's are arbitrary, we set $c_0 \neq 0$ and $c_i = 0$ for $i > 0$; then, $\|B_\varphi^* k(z)\|^2 = \frac{3}{4}|c_0|^2$ and $\|k(z)\|^2 = |c_0|^2$. Thus, $\|B_\varphi^* k(z)\|^2 < \|k(z)\|^2$. Set $c_1 \neq 0$ and $c_i = 0$ for $i \neq 1$; then, $\|B_\varphi^* k(z)\|^2 = \frac{9}{16}|c_1|^2$ and $\|k(z)\|^2 = \frac{1}{2}|c_1|^2$. Thus, $\|B_\varphi^* k(z)\|^2 > \|k(z)\|^2$. Hence, B_φ^* is neither contractive nor expansive.

In view of Corollaries 3.9 and 3.10, we have the following result.

Corollary 3.22. Let $\varphi(z) = b\bar{z}^N$ for $N \in \mathbb{N}$ and $b \in \mathbb{C}$. Then B_φ^* is neither self-adjoint nor normal.

In the next theorem, we have the necessary and sufficient condition for the contractivity and expansivity of adjoint H-Toeplitz operators B_φ^* with symbols $\varphi(z) = \sum_{i=1}^{\infty} b_i \bar{z}^i$ where $b_i \in \mathbb{C}$ on $L_a^2(\mathbb{D})$.

Theorem 3.23. Let $\varphi(z) = \sum_{i=1}^{\infty} b_i \bar{z}^i$ and $b_i \in \mathbb{C}$.

(i) B_φ^* is contractive if and only if

$$\sum_{m=1}^{\infty} \sum_{i=1}^m \frac{1}{m+1} |b_i|^2 |c_{m-i}|^2 \leq \sum_{j=0}^{\infty} \frac{1}{j+1} |c_j|^2.$$

(ii) B_φ^* is expansive if and only if

$$\sum_{m=1}^{\infty} \sum_{i=1}^m \frac{1}{m+1} |b_i|^2 |c_{m-i}|^2 \geq \sum_{j=0}^{\infty} \frac{1}{j+1} |c_j|^2.$$

Proof. For any $k \in L_a^2(\mathbb{D})$,

$$B_\varphi^* k(z) = \sum_{i=1}^{\infty} \sum_{n=0}^{\infty} \frac{\sqrt{2n+2i+1}}{\sqrt{n+i+1}} \bar{b}_i c_n z^{2n+2i}.$$

Then B_φ^* is contractive if and only if

$$\|B_\varphi^* k(z)\|^2 = \sum_{m=1}^{\infty} \sum_{i=1}^m \frac{1}{m+1} |b_i|^2 |c_{m-i}|^2 \leq \sum_{j=0}^{\infty} \frac{1}{j+1} |c_j|^2.$$

Similarly, B_φ^* is expansive if and only if

$$\|B_\varphi^* k(z)\|^2 = \sum_{m=1}^{\infty} \sum_{i=1}^m \frac{1}{m+1} |b_i|^2 |c_{m-i}|^2 \geq \sum_{j=0}^{\infty} \frac{1}{j+1} |c_j|^2.$$

This completes the proof. \square

Corollary 3.24. Let $\varphi(z) = b_1 \bar{z} + b_2 \bar{z}^2$ and $b_1, b_2 \in \mathbb{C}$. Then B_φ^* is contractive if and only if

$$\frac{1}{s+2} |b_1|^2 + \frac{1}{s+3} |b_2|^2 \leq \frac{1}{s+1}$$

for any nonnegative integer s .

3.3. H-Toeplitz operators with harmonic symbols

Finally, we study the properties of H-Toeplitz operators B_φ with harmonic symbols of the form $\varphi(z) = \sum_{i=0}^{\infty} a_i z^i + \sum_{i=1}^{\infty} b_i \bar{z}^i$ with $a_i, b_i \in \mathbb{C}$. Specifically, we focus on the necessary and sufficient conditions of contractivity and expansivity for B_φ and B_φ^* , respectively.

Theorem 3.25. Let $\varphi(z) = \sum_{i=0}^{\infty} a_i z^i + \sum_{i=1}^{\infty} b_i \bar{z}^i$ and $a_i, b_i \in \mathbb{C}$.

(i) If B_φ is contractive then

$$\sum_{i=1}^{\infty} \frac{s+1}{(2s+1)(s+i+1)} |a_i|^2 + \sum_{i=1}^s \frac{s-i+1}{(2s+1)(s+1)} |b_i|^2 \leq 1$$

and

$$\sum_{i=s+1}^{\infty} \frac{i-s}{(i+1)^2} |a_i|^2 \leq \frac{1}{s+2}$$

for any nonnegative integer s .

(ii) If B_φ is expansive then

$$\sum_{i=1}^{\infty} \frac{s+1}{(2s+1)(s+i+1)} |a_i|^2 + \sum_{i=1}^s \frac{s-i+1}{(2s+1)(s+1)} |b_i|^2 \geq 1$$

and

$$\sum_{i=s+1}^{\infty} \frac{i-s}{(i+1)^2} |a_i|^2 \geq \frac{1}{s+2}$$

for any nonnegative integer s .

Proof. By a similar argument as in the proof of Theorems 3.3 and 3.17, for any $k \in L_a^2(\mathbb{D})$,

$$\begin{aligned} B_\varphi k(z) &= \sum_{i=0}^{\infty} \sum_{n=0}^{\infty} \frac{\sqrt{n+1}}{\sqrt{2n+1}} a_i c_{2n} z^{n+i} + \sum_{i=0}^{\infty} \sum_{n=0}^{i-1} \frac{\sqrt{n+2}}{\sqrt{2n+2}} \cdot \frac{i-n}{i+1} a_i c_{2n+1} z^{i-n-1} \\ &\quad + \sum_{n=1}^{\infty} \sum_{i=1}^n \frac{1}{\sqrt{2n+1}} \cdot \frac{n-i+1}{\sqrt{n+1}} b_i c_{2n} z^{n-i} \end{aligned}$$

for any $c_j \in \mathbb{C}$ ($j = 0, 1, 2, \dots$). Set $c_\ell \neq 0$ for some ℓ and $c_j = 0$ for any $j \neq \ell$. Then we consider the following two cases:

Case 1: If $\ell = 2s$ for any nonnegative integer s and $c_{2s} \neq 0$ then

$$B_\varphi k(z) = \sum_{i=1}^{\infty} \frac{\sqrt{s+1}}{\sqrt{2s+1}} a_i c_{2s} z^{s+i} + \sum_{i=1}^s \frac{s-i+1}{\sqrt{2s+1} \sqrt{s+1}} b_i c_{2s} z^{s-i}.$$

If B_φ on $L_a^2(\mathbb{D})$ is contractive then

$$\sum_{i=1}^{\infty} \frac{s+1}{(2s+1)(s+i+1)} |a_i|^2 + \sum_{i=1}^s \frac{s-i+1}{(2s+1)(s+1)} |b_i|^2 \leq 1.$$

Similarly, if B_φ on $L_a^2(\mathbb{D})$ is expansive then

$$\sum_{i=1}^{\infty} \frac{s+1}{(2s+1)(s+i+1)} |a_i|^2 + \sum_{i=1}^s \frac{s-i+1}{(2s+1)(s+1)} |b_i|^2 \geq 1.$$

Case 2: If $\ell = 2s+1$ for any nonnegative integer s and $c_{2s+1} \neq 0$, then it follows from Case 2 of Theorem 3.3. This completes the proof. \square

Theorem 3.26. Let $\varphi(z) = \sum_{i=0}^{\infty} a_i z^i + \sum_{i=1}^{\infty} b_i \bar{z}^i$ and $a_i, b_i \in \mathbb{C}$.

(i) If B_φ^* is contractive, then

$$\sum_{i=s+1}^{\infty} \frac{i-s+1}{(i+1)^2} |a_i|^2 + \sum_{i=0}^s \frac{s-i+1}{(s+1)^2} |a_i|^2 + \sum_{i=1}^{\infty} \frac{1}{s+i+1} |b_i|^2 \leq \frac{1}{s+1},$$

for any nonnegative integer s .

(ii) If B_φ^* is expansive, then

$$\sum_{i=s+1}^{\infty} \frac{i-s+1}{(i+1)^2} |a_i|^2 + \sum_{i=0}^s \frac{s-i+1}{(s+1)^2} |a_i|^2 + \sum_{i=1}^{\infty} \frac{1}{s+i+1} |b_i|^2 \geq \frac{1}{s+1},$$

for any nonnegative integer s .

Proof. By a similar argument as in the proof of Theorems 3.11 and 3.23, for any $k \in L_a^2(\mathbb{D})$,

$$\begin{aligned} B_\varphi^* k(z) &= \sum_{n=0}^{i-1} \sum_{i=1}^{\infty} \frac{i-n+1}{i+1} \cdot \frac{\sqrt{2i-2n}}{\sqrt{i-n+1}} \bar{a}_i c_n z^{2i-2n-1} \\ &\quad + \sum_{n=i}^{\infty} \sum_{i=0}^{\infty} \frac{n-i+1}{n+1} \cdot \frac{\sqrt{2n-2i+1}}{\sqrt{n-i+1}} \bar{a}_i c_n z^{2n-2i} + \sum_{i=1}^{\infty} \sum_{n=0}^{\infty} \frac{\sqrt{2n+2i+1}}{\sqrt{n+i+1}} \bar{b}_i c_n z^{2n+2i}. \end{aligned}$$

for any $c_j \in \mathbb{C}$ ($j = 0, 1, 2, \dots$). Set $c_s \neq 0$ for some s and $c_j = 0$ for any $j \neq s$. Then

$$\begin{aligned} B_\varphi^* k(z) &= \sum_{i=s+1}^{\infty} \frac{\sqrt{i-s+1} \sqrt{2i-2s}}{i+1} \overline{a_i c_s z}^{2i-2s-1} \\ &\quad + \sum_{i=0}^s \frac{\sqrt{s-i+1} \sqrt{2s-2i+1}}{s+1} \overline{a_i c_s z}^{2s-2i} + \sum_{i=1}^{\infty} \frac{\sqrt{2s+2i+1}}{\sqrt{s+i+1}} \overline{b_i c_s z}^{2s+2i}, \end{aligned}$$

for any nonnegative integer s . If B_φ^* on $L_a^2(\mathbb{D})$ is contractive, then

$$\sum_{i=s+1}^{\infty} \frac{i-s+1}{(i+1)^2} |a_i|^2 + \sum_{i=0}^s \frac{s-i+1}{(s+1)^2} |a_i|^2 + \sum_{i=1}^{\infty} \frac{1}{s+i+1} |b_i|^2 \leq \frac{1}{s+1}.$$

Similarly, if B_φ^* on $L_a^2(\mathbb{D})$ is expansive, then

$$\sum_{i=s+1}^{\infty} \frac{i-s+1}{(i+1)^2} |a_i|^2 + \sum_{i=0}^s \frac{s-i+1}{(s+1)^2} |a_i|^2 + \sum_{i=1}^{\infty} \frac{1}{s+i+1} |b_i|^2 \geq \frac{1}{s+1},$$

for any nonnegative integer s . This completes the proof. \square

The following results are immediate from Theorem 3.26.

Corollary 3.27. *Let $\varphi(z) = a_1 z + a_2 z^2 + b_1 \bar{z} + b_2 \bar{z}^2$ and $a_i, b_i \in \mathbb{C}$ where $i = 1, 2$. Then, B_φ^* is contractive*

$$\implies \begin{cases} \frac{s}{(s+1)^2} |a_1|^2 + \frac{s+1}{3^{s+1}} |a_2|^2 + \frac{1}{s+2} |b_1|^2 + \frac{1}{s+3} |b_2|^2 \leq \frac{1}{s+1} & \text{if } s = 0, 1, \\ \frac{s}{(s+1)^2} |a_1|^2 + \frac{s-1}{(s+1)^2} |a_2|^2 + \frac{1}{s+2} |b_1|^2 + \frac{1}{s+3} |b_2|^2 \leq \frac{1}{s+1} & \text{if } s \geq 2. \end{cases}$$

Corollary 3.28. *Let $\varphi(z) = a_1 z + b_1 \bar{z}$ and $a_1, b_1 \in \mathbb{C}$. Then, B_φ^* is contractive; then,*

$$\frac{s}{(s+1)^2} |a_1|^2 + \frac{1}{s+2} |b_1|^2 \leq \frac{1}{s+1},$$

for any $s \in \mathbb{N}$.

4. Conclusions

We characterized the necessary or sufficient conditions for the contractive and expansive H-Toeplitz operators B_φ with various symbols φ on the Bergman space $L_a^2(\mathbb{D})$. By these results, we expect to provide the properties of these operators on the Bergman space.

Acknowledgments

The first author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), as funded by the Ministry of Education (No. 2020R1I1A1A01053085). The second author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C1008713)

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. S. C. Arora, S. Paliwal, On H-Toeplitz operators, *Bull. Pure Appl. Math.*, **1** (2007), 141–154.
2. S. Axler, J. B. Conway, G. McDonald, Toeplitz operators on Bergman spaces, *Canadian J. Math.*, **34** (1982), 466–483. <https://doi.org/10.4153/CJM-1982-031-1>
3. S. W. Brown, B. Chevreau, B. Pearcy, On the structure of contraction operators. II, *J. Funct. Anal.*, **76** (1988), 30–55. [https://doi.org/10.1016/0022-1236\(88\)90047-X](https://doi.org/10.1016/0022-1236(88)90047-X)
4. B. Chevreau, G. Exner, B. Pearcy, On the structure of contraction operators. III, *Michigan Math. J.*, **36** (1989), 29–62. <https://doi.org/10.1307/mmj/1029003881>
5. B. Chevreau, B. Pearcy, On the structure of contraction operators with applications to invariant subspaces, *J. Funct. Anal.*, **67** (1986), 360–379. [https://doi.org/10.1016/0022-1236\(86\)90031-5](https://doi.org/10.1016/0022-1236(86)90031-5)
6. B. Chevreau, B. Pearcy, On the structure of contraction operators, *J. Funct. Anal.*, **76** (1988), 1–29. [https://doi.org/10.1016/0022-1236\(88\)90046-8](https://doi.org/10.1016/0022-1236(88)90046-8)
7. C. Cowen, Hyponormality of Toeplitz operators, *Proc. Amer. Math. Soc.*, **103** (1988), 809–812. <https://doi.org/10.1090/S0002-9939-1988-0947663-4>
8. R. E. Curto, W. Y. Lee, Joint hyponormality of Toeplitz pairs, *Mem. Amer. Math. Soc.*, **150** (2001), 1–65.
9. J. Eschmeier, Invariant subspaces for spherical contractions, *Proc. London. Math. Soc.*, **75** (1997), 157–176. <https://doi.org/10.1112/S0024611597000300>
10. A. Gupta, S. K. Singh, H-Toeplitz operators on the Bergman space, *Bull. Korean Math. Soc.*, **58** (2021), 327–347. <https://doi.org/10.4134/BKMS.b200260>
11. H. Hedenmalm, B. Korenblum, K. Zhu, *Theory of Bergman spaces*, New York, Springer-verlag, 2000.
12. I. S. Hwang, I. H. Kim, W. Y. Lee, Hyponormality of Toeplitz operators with polynomial symbol, *Math. Ann.*, **313** (1999), 247–261. <https://doi.org/10.1007/s002080050260>
13. I. S. Hwang, J. Lee, Hyponormal Toeplitz operators on the weighted Bergman spaces, *Math. Inequal. Appl.*, **15** (2012), 323–330. <http://dx.doi.org/10.7153/mia-15-26>
14. I. S. Hwang, W. Y. Lee, Hyponormality of trigonometric Toeplitz operators, *Trans. Amer. Math. Soc.*, **354** (2002), 2461–2474. <https://www.jstor.org/stable/2693894>
15. I. S. Hwang, Hyponormal Toeplitz operators on the Bergman spaces, *J. Korean Math. Soc.*, **42** (2005), 387–403. <https://doi.org/10.4134/JKMS.2005.42.2.387>
16. I. S. Hwang, Hyponormality of Toeplitz operators on the Bergman space, *J. Korean Math. Soc.*, **45** (2008), 1027–1041. <https://doi.org/10.4134/JKMS.2008.45.4.1027>
17. J. Kim, W. Y. Lee, Invariant subspaces for operators whose spectra are Carathéodory regions, *J. Math. Anal. Appl.*, **371** (2010), 184–189. <http://dx.doi.org/10.1016/j.jmaa.2012.07.002>

18. Y. Lu, Y. Shi, Hyponormal Toeplitz operators on the weighted Bergman space, *Int. Eq. Op. Th.*, **65** (2009), 115–129. <https://doi.org/10.1007/s00020-009-1712-z>
19. G. McDonald, C. Sundberg, Toeplitz operators on the disc, *Indiana Univ. Math. J.*, **28** (1979), 595–611. <https://www.jstor.org/stable/24892252>
20. T. Nakazi, K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, *Trans. Amer. Math. Soc.*, **338** (1993), 759–769. <https://doi.org/10.2307/2154427>
21. H. Sadraoui, M. Guediri, Hyponormal Toeplitz operators on the Bergman space, *Oper. Matrices*, **11** (2017), 669–677. <https://doi.org/10.1007/s40065-017-0170-8>

AIMS Press

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>)