Research article Special Issues

Hilfer iterated-integro-differential equations and boundary conditions

  • Received: 26 January 2022 Revised: 11 April 2022 Accepted: 21 April 2022 Published: 26 May 2022
  • MSC : 34A08, 34B15

  • In this research, a new class of fractional boundary value problems is introduced and studied, which combine Hilfer fractional derivatives with iterated Riemann-Liouville and Hadamard fractional integrals boundary conditions. Existence and uniqueness results are obtained by using standard tools from fixed point theory. The obtained results are well illustrated by numerical examples.

    Citation: Sunisa Theswan, Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon. Hilfer iterated-integro-differential equations and boundary conditions[J]. AIMS Mathematics, 2022, 7(8): 13945-13962. doi: 10.3934/math.2022770

    Related Papers:

  • In this research, a new class of fractional boundary value problems is introduced and studied, which combine Hilfer fractional derivatives with iterated Riemann-Liouville and Hadamard fractional integrals boundary conditions. Existence and uniqueness results are obtained by using standard tools from fixed point theory. The obtained results are well illustrated by numerical examples.



    加载中


    [1] K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [3] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge: Cambridge Scientific Publishers, 2009.
    [4] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley & Sons, 1993.
    [5] I. Podlubny, Fractional differential equations, London: Academic Press, 1999.
    [6] B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Cham, Switzerland: Springer, 2017. https://doi.org/10.1007/978-3-319-52141-1
    [7] Y. Zhou, J. R. Wang, L. Zhang, Basic theory of fractional differential equations, Singapore: World Scientific, 2016. https://doi.org/10.1142/10238
    [8] B. Ahmad, S. K. Ntouyas, Nonlocal nonlinear fractional-order boundary value problems, Singapore: World Scientific, 2021. https://doi.org/10.1142/12102
    [9] C. S. Goodrich, Coercive nonlocal elements in fractional differential equations, Positivity, 21 (2017), 377–394. https://doi.org/10.1007/s11117-016-0427-z doi: 10.1007/s11117-016-0427-z
    [10] B. Ahmad, Y. Alruwaily, A. Alsaedi, J. J. Nieto, Fractional integro-differential equations with dual anti-periodic boundary conditions, Differ. Integral Equ., 33 (2020), 181–206.
    [11] B. Ahmad, M. Alghanmi, A. Alsaedi, Existence results for a nonlinear coupled system involving both Caputo and Riemann-Liouville generalized fractional derivatives and coupled integral boundary conditions, Rocky Mountain J. Math., 50 (2020), 1901–1922. https://doi.org/10.1216/rmj.2020.50.1901 doi: 10.1216/rmj.2020.50.1901
    [12] C. Kiataramkul, W. Yukunthorn, S. K. Ntouyas, J. Tariboon, Sequential Riemann-Liouville and Hadamard-Caputo fractional differential systems with nonlocal coupled fractional integral boundary conditions, Axioms, 10 (2021), 1–15. https://doi.org/10.3390/axioms10030174 doi: 10.3390/axioms10030174
    [13] A. Benkerrouche, D. Baleanu, M. S. Souid, A. Hakem, M. Inc, Boundary value problem for nonlinear fractional differential equations of variable order via Kuratowski MNC technique, Adv. Differ. Equ., 2021 (2021), 1–19. https://doi.org/10.1186/s13662-021-03520-8 doi: 10.1186/s13662-021-03520-8
    [14] M. Alam, A. Zada, I. L. Popa, A. Kheiryan, S. Rezapour, M. K. A. Kaabar, A fractional differential equation with multi-point strip boundary condition involving the Caputo fractional derivative and its Hyers-Ulam stability, Bound. Value Probl., 2021 (2021), 1–18. https://doi.org/10.1186/s13661-021-01549-y doi: 10.1186/s13661-021-01549-y
    [15] A. Alsaedi, S. K. Ntouyas, R. P. Agarwal, B. Ahmad, On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Adv. Differ. Equ., 2015 (2015), 1–12. https://doi.org/10.1186/s13662-015-0379-9 doi: 10.1186/s13662-015-0379-9
    [16] S. Asawasamrit, N. Phuangthong, S. K. Ntouyas, J. Tariboon, Nonlinear sequential Riemann-Liouville and Caputo fractional differential equations with nonlocal and integral boundary conditions, Int. J. Anal. Appl., 17 (2019), 47–63.
    [17] S. Asawasamrit, S. K. Ntouyas, J. Tariboon, W. Nithiarayaphaks, Coupled systems of sequential Caputo and Hadamard fractional differential equations with coupled separated boundary conditions, Symmetry, 10 (2018), 1–17. https://doi.org/10.3390/sym10120701 doi: 10.3390/sym10120701
    [18] B. Ahmad, A. F. Albideewi, S. K. Ntouyas, A. Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations, Cubo, 23 (2021), 225–237.
    [19] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [20] T. T. Soong, Random differential equations in science and engineering, New York: Academic Press, 1973.
    [21] K. Kavitha, V. Vijayakumar, R. Udhayakumar, K. S. Nisar, Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness, Math. Methods Appl. Sci., 44 (2021), 1438–1455. https://doi.org/10.1002/mma.6843 doi: 10.1002/mma.6843
    [22] R. Subashini, K. Jothimani, K. S. Nisar, C. Ravichandran, New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alex. Eng. J., 59 (2020), 2891–2899. https://doi.org/10.1016/j.aej.2020.01.055 doi: 10.1016/j.aej.2020.01.055
    [23] D. F. Luo, Q. X. Zhu, Z. G. Luo, A novel result on averaging principle of stochastic Hilfer-type fractional system involving non-Lipschitz coefficients, Appl. Math. Lett., 122 (2021), 107549. https://doi.org/10.1016/j.aml.2021.107549 doi: 10.1016/j.aml.2021.107549
    [24] K. Ding, Q. X. Zhu, Impulsive method to reliable sampled-data control for uncertain fractional-order memristive neural networks with stochastic sensor faults and its applications, Nonlinear Dyn., 100 (2020), 2595–2608. https://doi.org/10.1007/s11071-020-05670-y doi: 10.1007/s11071-020-05670-y
    [25] H. M. Ahmed, Q. X. Zhu, The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps, Appl. Math. Lett., 112 (2021), 106755. https://doi.org/10.1016/j.aml.2020.106755 doi: 10.1016/j.aml.2020.106755
    [26] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. https://doi.org/10.4134/BKMS.b170887 doi: 10.4134/BKMS.b170887
    [27] S. K. Ntouyas, S. Sitho, T. Khoployklang, J. Tariboon, Sequential Riemann-Liouville and Hadamard-Caputo fractional differential equation with iterated fractional integrals conditions, Axioms, 10 (2021), 1–16. https://doi.org/10.3390/axioms10040277 doi: 10.3390/axioms10040277
    [28] R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal., 12 (2009), 299–318.
    [29] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1574) PDF downloads(112) Cited by(1)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog