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1. Introduction

Fractional calculus and fractional differential equations have been of great interest, because they
describe many real world processes from applied sciences (biology, physics, chemistry, economics,
ecology, control theory and so on) more accurately, as compared to classical order differential
equations. For the basic theory on the topic see the monographs as [1-8], Many researchers have
studied boundary value problems for fractional differential equations, see [9—18] and references cited
therein. In the literature there are several kinds of fractional derivatives, such as Riemann-Liouville,
Caputo, Erfely-Kober, Hadamard, Hilfer, Katugampola, to name a few. Hilfer fractional derivative [19]
extends both Riemann-Liouville and Caputo fractional derivatives. Many applications of Hilfer
fractional differential equations can be found in many fields of mathematics, physics, etc. (see [20-25]).
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The study of boundary value problems for Hilfer-fractional differential equations of order in (1, 2], and
nonlocal boundary conditions were initiated in [26] by studying the boundary value problem of the

form:
HADYPu(z) = h(z,u(z)), z€c,d], 1<a<2, 0<B<1,

u(c) =0, ud) =) &l®u&), ¢;>0, &R, &€ [e,d),
i=1
where D is the Hilfer fractional derivative of order «, and parameter 8, h : [c,d] X R — R is
a continuous function, m € Z*, ¢ > 0, and 1% is the Riemann-Liouville fractional integral of order
¢i, i =1,2,...,m. By using well known fixed point theorems, existence and uniqueness results were
proved.
Recently, in [27], the authors initiated the study of boundary value problems containing sequential
fractional derivatives of mixed Riemann-Liouville and Hadamard-Caputo type, subjected to iterated
fractional integral boundary conditions of the form:

FLpr (M€Dix) (1) = f(t. x(1)), 1€ [0,T],

(1.1)

HC pax(0) = 0, (1.2)
x(T) = /llié(a'n’ﬂnfl’---vﬁl»al)x(é‘:l)+/lzk\(ém»)’ma---afsl»)’l)x(é_‘z)’

where RLDP and 7€ D4 are respectively the fractional derivatives of Riemann-Liouville and Hadamard-
Caputo type of orders pand ¢, 0 < p, g < 1, f : [0,T] X R — R is a continuous function, m,n € Z",
the given constants 4;, 4, € R,

ﬁ(an ~~~~~ B 1,01)x(t) — RLI&n H]ﬂn—1 RLlan—l Hlﬁn—z . H]ﬁz RLIftz Hlﬁl Rlex(t)

and
ﬁ(ém ..... (51,71)x(t) — HIlSm RLIym H15m_| RL[ym_| . HI62 RLI)/Z HI(51 RLI)/| x(t)

are the iterated fractional integrals, where ¢ = & and t = &,, respectively, &;,&, € (0,T), ®L1¢ and 1Y
are the fractional integrals of Riemann-Liouville and Hadamard type of orders ¢,y > 0, respectively,
¢ € {lag), voh ¥ € {Be), ). Existence and uniqueness results are established by applying a variety of
fixed point theorems.

Our goal in this paper, inspired by the above-mentioned papers, is to enrich the new research
topic concerning boundary value problems for Hilfer fractional iterated-integro-differential equations,
subjected to iterated boundary conditions. Thus, in this paper, we investigate the qualitative theory of
existence to a nonlinear Hilfer iterated-integro-differential equation with iterated Riemann-Liouville
and Hadamard fractional integrals of the form:

D" x)(t) + ,("D* " x)(0) = f(t, x(1), ROV x(2)), t € [0, T],
(1.3)
x(0) = 0, x(T) = LR H) x(&), £e(0,7),

where 7 D% is the fractional derivative of Hilfer of ordera, 1 <@ <2,0<g <1,y =a+ 2 - a)B,
A, eR, f:]0,T] xR xR — R is anonlinear continuous function, m,n € N and

R(¢” ,,,,, ¢‘)x(t) —

Hdp [Po-1 H[$p-2 [P .. .H 4 [$3 H P2 [P1x(1), p is even,
[9 H 9 [ Hps . Hpos [ H o 0151 p s odd,
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is the iterated fractional integrals of mixed Riemann-Liouville and Hadamard type, ¢ € {o,u}, p €
{m,n}. 1?0, 1?0 are defined as fractional integrals of Riemann-Liouville and Hadamard type of order
&) > 0, respectively.

Liouville fractional integral when p = 1 as R“¢V(-) = I?(-) and to Hadamard integral integral when
p=2,¢ =0as R(zbz,O)(.) = H]¢2(.)_

In addition, we are now considering some special cases of the Hilfer iterated-integro-differential
equation that appeared in the first equation of problem (1.3). If we puta = 2,8 =0, f(u,v,w) = u+v+w
and the iterated integral term R©»90x = RV x then we have

1 t o1-1
F(dl)fo(t_s) x(s)ds,

which is a well known integro-differential equation. If the iterated integral term presents R 00 x =
R, then we obtain a new integro-differential equation with Hadamard integral as

xX'(t)+ X)) =t+ x(@) +

1 !
X'+ 4X0) =1+ x(t) + —— f (log, t —log, s)‘sz_1 x(s)ﬁ.
['(62) Jo s

By replacing the iterated integral term R 90 x = ROy, we get

X(t) + L, X (1) = t+ x(f) + m fo fo S (log, t —log, s)™ " (s — r)ﬁl-lx(r)drd—ss,

which is an integro-differential equation with a mixed kernel of logarithm and power functions.
Another one kernel can be interchanged by replacing R0 x = R©@3920) x a5

X)) + 4, X (1) = 1+ x(f) + m fo fo S(t - 9™ (log, s — log, r)™"' x(r)d—rrds-

Both of the double integrals in the above two equations can not be reduced to a single integral because
of differences of the kernels. These show some significance of studying the new iterated-integro-
differential equation in (1.3), which is a new novel in literature.

By using standard tools from fixed point theory we establish existence and uniqueness results for the
boundary value problem (1.3). More precisely, the existence is proved via Leray-Schauder nonlinear
alternative, while the existence of a unique solution is established by using Banach’s contraction
mapping principle.

The remaining part of this manuscript is organized as follows: Section 2 contain some basic
notations and definitions from fractional calculus. Section 3 presents the main results, while Section 4
contains illustrative examples. A brief conclusion closes the paper.

2. Preliminaries
In this section, we introduce some notations and definitions of fractional calculus in the sense
of Riemann-Liouville, Hadamard and also Hilfer differential operators. Moreover, we present some

lemmas that needed in main results later.
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Definition 2.1. [2] The Riemann-Liouville fractional integral of oreder a > 0 to a function f :
[0, 00) — R is defined by

1 t
(I f)) = @ fo (t—95)*"f(s)ds, 0<t< oo, (2.1

where T'(:) is the Euler Gamma function, provided that the right-hand side is point-wise defined on
(0, o).

Definition 2.2. [2] The Hadamard fractional integral of oreder a > 0 is defined as

Hpe ooy = L oo I\ g8 -
1 H0 = s fo (logs) f2, 0<r <o, 2.2)

where log(-) = log,(-), provided the integral exists.

Definition 2.3. [2] The Riemann-Liouville fractional derivative of order « for a function f on [0, co)
is defined as follows:

1 d_:f(t_s)n_a_lf(s)d& 0O<n-l<a<neN,
Cprpn =1 O
dr’ > a=n ,

provided that the right-hand side is point-wise defined on (0, o).

Definition 2.4. [2] The Caputo fractional derivative of order «a of the nth-derivatives function f is
given on [0, o) by

1 ! d"
fv(t—s)"_“_1 f(s)ds, 0<n—-1<a<neN,
0

c I'n-a) ds"
D)) =
dn
%f(t), a=neN,

provided that the right-hand side is point-wise defined on (0, o).

Definition 2.5. [19] The Hilfer fractional derivative of order a with parameter B for a function f on
[0, o0) is defined by

d

(HD(z,ﬁf)(t) — Iﬁ(n—(l) (E) I(l—ﬁ)(n—a)f(t), (23)

where0 <n—1<a<nand0<B<1 fort>N0.

The Hilfer fractional derivative can be reduced to Riemann-Liouville and Caputo operators
depending on the parameter 5 (0 < 8 < 1). If 8 = 0, (2.3) is reduced to the Riemann-Liouville
fractional derivative as

("D"°fF) () = D" )00, € [0, ), (24)
while if 8 = 1, (2.3) is reduced to the Caputo fractional derivative by
(HD(I,lf) (t) = (CDwf)(l,)’ t €0, ). (2.5)
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Lemma2.1. [28]Let f € L'(0,T),n-1 <a<nmneN, j=0,1,...,n-1,0<B8< 1,y =a+nB-apf,
179 € C*([0, T], R). Then

Fi=) d
lim —
—(n—7y)+ 1) >0 dit

n—1
(1 D™ f) (1) = f) - ) G (" £) (0. (2.6)
j=0

Lemma 2.2. [2] Let @ > 0 and m > 0 be given constants. Then the following fomula

Hpegm = mem 2.7)
holds.
Lemma 2.3. [27] Let m > -1, y; > 0,i = 1,2,--- ,n, be constants. Then the following equation
holds:
5] i —H2i
n [m + Z #2k—1)
i=1 I=1 13
R = T + 1) o P i K1, (2.8)
2
F(m +1+ Z,ng_l)
k=1

Form = 0in Eq (2.8), we get

tzkzl Hak=1 ] (2.9)

where [n], |n] are the ceiling and floor functions of n, respectively.

Now, we present some examples of our notations. The ceiling and floor functions of a number 2.4
are shown as [2.4] = 3 and |2.4] = 2, respectively. The odd and even iterations of Riemann-Liouville
and Hadamard fractional integrals of functions f(f) = > and f(¢) = 1, respectively, can be seen as

1\-1 1 3\-1 1 3 1y-1
RGo511303 = TG+ DB+ B3+ C+a+5+35)° X PrIiTEHS
FTG+1+5+3+1+73)
0.0116 x £

Q

and

3)-43 4 1)
sy o WG 3(4: 22 - x A~ 06574 x 115,
F(l + i + 5)

E RN

R(

Let f(#) = t be a given function. The iterations of Riemann-Liouville and Hadamard fractional
integrals and its consecutive iterations can be considered as follows: f(r) = (I NEN & s)(t) (RRR),
g(t) = (I3 13 B2 5)(r) (HHH), h(f) = (I3 715 2 5)(f) (RHR) and ¢(¢) = (15 I3 #I25)(f) (HRH). The
graphs of functions f(¢), g(¢), h(t) and g(¢) for ¢ € [0, 4] are shown in Figure 1.
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Figure 1. The graphs of functions f(¢), g(¢), h(t) and g(7).

The next lemma concerns a linear variant of the boundary value problem (1.3) and is useful to
transform the boundary value problem (1.3) into an integral equation.

Lemma24. letl <a<2,0<B<1l,y=a+ 2 —-a)b 41,4, €R, be constants and h : [0,T] - R
be a continuous function and

L2] i —H2i
7! A = 31
Q:= - n2 y-1+ Z,UZk—l X é’y_lJ'Zkil"”‘] # 0.
I'ty) kL i=1 k=1
F(?’ + Z ,UZk—l)
k=1
Then the Hilfer iterated boundary value problem
(D x)(@) + L, ("D x)(1) = h(r), 1€[0,T], 2.10)
x(0) =0, X(T) = ,R¥w =+ x(€), £<€(0,7), '
is equivalent the following integral equation:
x(t) = 1 [_ A A REn 1D (&) 4 Lo R ¥ O £
orey) 142 2
+,1'x(T) - I"h(T)] — 41" x() + I*h(p). (2.11)

Proof. Operating Riemann-Liouville fractional integral of order « to both sides of Eq (2.10), we have
1 ("D"x) () + L1 ("D*x) (1) = Ih(), (2.12)

from which, by using Lemma 2.1, we get

Cl 41 (&)

_ -2 1 _qa
F(y)t Gy - l)ty + A4 x(¢) = Ih(?),

x(t) —

AIMS Mathematics Volume 7, Issue 8, 13945-13962.
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where ¢; = (I'™7x)(0) and ¢, = (I>77x)(0). From the first boundary condition x(0) = 0, we have ¢, = 0.
Then we get

X(f) = r?y) ' — L I'x(1) + (). (2.13)

Next, by using Lemma 2.3, we obtain

A
LR H0) x(£) _a 2 RHn HDEYL QA REm D x(£) 4 Qo REm #F O &)

['(y)
L5] i —H2i 1
ol ﬂ [)/ -1+ Z'u”“l] y=1+ ) Mok-1
:F1 2 I'(y) i=1 ﬂk:l X & —
) 3]
Lly+ Z,Uzk—l
k=1

—/ll/lzR('u"""’”]H)x(f)+/12R(“"""’”]+a)h(§).

(6]

Applying the second boundary condition x(T) = A,R%» D x(&) with x(T) = o
Y

I1°h(T), we have

T — 4, I'x(T) +

L]

C] _ i=1 k=1
—T" 14, - X &

F(')/) Fﬂ
I [)’ + Z /lzk—l]
k=1

= = LR D x(E) + LR OpE) + 41 (T — I°W(T),

i —H2i n
51

(7 -1 Zﬂz;m] Y=+ ) fok-1
k=1

form which we get

1
¢l = 5[ — L L R¥ D (&) 4 L RUn OB E) + 1 I x(T) — I“h(T)].

Incerting the value of ¢; in (2.13), we obtain the solution (2.11). The converse of this lemma can be
proved by direct computation. The proof is finished. O

3. Main results

Let C = C([0,T],R) be a Banach space of all continuous function from [0, 7] to R endowed with
the supremum norm defined as

llxll = sup |x(2)].

t€[0,T]

In view of Lemma 2.4, we transform the problem (1.3) into a fixed point problem x = Ax, where
A : C — Cis defined by

AIMS Mathematics Volume 7, Issue 8, 13945-13962.
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-1
(Ax(D) = Qt;(y)[ = D ARY D X(E) 4 JpRUn 1D F(£ x(£), RO 0 x(£))
+ A ' X(T) = I f(T, x(T), RO ’5‘)x(T))]

—LI'x(8) + I7f(t, x(£), R® 2V x(1)). (3.1)

For computational convenience, we set

EI — 02
1 r
Ao 1+ E n (Z (52/{_1) X TZ":ZI 62k_1, (32)

41 2]
A =T 7+Zuzk_1 , Ay =T 1+0/+Zﬂ2k— ’
k=1 k=1
141 (3]
A3 = I'|1+ 62](—] , A4 =T2+ Z#Zk—l)a
k=1 k=1
7! T et
O = 27 X @+ 2 2y M2k-1
' arma, l_[( Z” e ‘) ¢
T7+a 1 Tfl
+ + , (3.3)
QL)@+ 1)  T(a+ 1)
AT P (S L
b, = ——M— 1+ > o X £ B po
2 QIT()As 1—1[( ; * ‘]
4T
N N (3.4)
Q2T (y)

Now we present our main results for the boundary value problem (1.3). Our existence result is
based on Leray-Schauder’s nonlinear alternative [29].

Theorem 3.1. Let f : [0,T] X R X R — R be a continuous function. Assume that ®, < 1 where ®, is
defined by (3.4). In addition, we suppose that:

(Hy) There exist a function p € C([0,T],R") and a continuous nondecreasing function ¥ : [0, c0) —
[0, 00) which is subhomogeneous (that is, Y(ux) < up(x), for all u > 1 and x € C), such that

Lf(t,u,v)| < p(OY(ul + |v]) foreach (t,u,v)e[0,T]X RZ:

(H) There exists a constant M > 0, such that

(1-d)M .
Il A (M)D,
where Ay and ®, are defined in (3.2) and (3.3) respectively.

(3.5)

Then there exists at least one solution of the boundary value problem (1.3) on [0, T].

AIMS Mathematics Volume 7, Issue 8, 13945-13962.
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Proof. Leray-Schauder’s nonlinear alternative will be used to prove that the operator A, defined
by (3.1), has a fixed point. Firstly, we shall show that A is continuous. Let {x,} be a sequence such that
X, — xas g — coin C. Then, for each ¢ € [0, T'],

IA

IA

IA

[(Axg)(®) = (Ax)(®)]

y—1
|Q|r<y)[
[ A R4 | £ x0, RO x V&) = £, x, RO 00 x)(6)|
+ |4 x, = X(T) + I°| £, x4, ROV x,)
= fCx, RO | + 1 |, = ()

+ 11 Cy x0 ROV x,) = £, x, RO )| (8)

Tr-1
1QIT(y)
I f (-, 2 RO x,) = (-, RO 3)|(T)|
+ 1%, x0 ROV x) = £, x, RO PVx)|(T)

77!
+ A [, [RWawt1+ D Ll T
|Q|F<y>[' . g = (@) + Ll |x, = ()|

+l 1 x, = x|(T)

Ty+w—l
QI (@ + 1)

|f(.’ xq’ R(‘Sm’”"él)xq) _ f(., x’ R((Sm"" s61)x)| (
L5 i —H2i
T T 1 Ry
+ + + _ X EXT L=t H2k-1
Ta+1)  [QT(y)A; BICEDIEE g

i=1 k=1

5] i —H2i
T il T gl
+lx —x||[ AT+ 2020 T N | x g Bl |

o Qre) T T It A, rll ; 2!

Since f is a continuous function, it implies that

||qu — Ax” - 0, q — oo. (3.6)

Next, we show that A maps bounded sets into bounded set in C. For any r > 0, let B, := {x € C :
l|lx|| < r}. For convenience, putting f(¢) := f(t, x(t), R®»*Vx(t)) and using (H,), we have that

A

AL < 1Ipl[w (@)l + ROV x(0))]

< lpll[w (Il + 1R 20 (1)) |
= IIpll [y (lxllAo)]
< llpliAqw(lxlD,

where A is defined by (3.2).
Therefore, we obtain

AIMS Mathematics Volume 7, Issue 8, 13945-13962.
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y-1 5
(A0 < orG) [I/hll/lle(“"""’”‘“)IXI(f) + [ ¥ 4D 1) + |4 [ el (T)
+ IR | + 111 1) + 11 £l
|/12|Ty_l (U 1 +@) T)/—l (1 (o1
< ||P||A0l//(||x||)( oy B )@ + st T + 1>(T))
Ml”/lZlTyil (s 1 +1) |/7~1|Ty71 1 1
IIXII(W(R D@ + e )I (IXT) + |l (1)(T))
|7 R
< ||P||Aol/’(||x||)[ a+Zu2k | oxgermee

QT (Y)A2

Trv+a= 1 T(y
+ +
QIr(I(e+1) T(a+1)

L5] i )
T AT G
+ ”x”[ + 4T+ ——m 1+ j X & +2421 H2k-1
|QIC(y) : |QIC(y)A4 1_[ kz; Zk-1

i=1
= [IplAlIxIDD; + |lx]|D,,

and consequently
lAX]] < [IpllAy(r)@y + r®d,,

which means that the set (AB,) is uniformly bounded.
Next, we show that the operator A maps bounded sets into equicontinuous sets of C. Let #1,#, €
[0,7] with t; < t, and x € B,. Then we get

(A0() — (A0
(-9 -9 s + [ -9 s

g7 -
+|Al||11x<rz>—11x(m|+W(www ----- MEOI(E) + IANT) + (AR £](€))
|l

Tlarg)

IA

1 1 x(ty) — £ 1 x(1)

IA

1
o T P20 = )" + 1 - t‘f|] e - 1)

—H2i
Tlar )(”W iy Rl PN ]‘[[1 N Z . 1] « guz,[zimkl)

L]

2
e T

% a+3,2 ) Hok-1 + )

[ Z”2k 1) & F(a+1))

As t; — t; — 0, the right hand side of the above inequality tends to zero, independently of x, which
implies that the set (AB,) is an equicontinuous set. Hence, we can conclude that (AB,) is relatively
compact. By application of Arzeld-Ascoli theorem, the operator A is completely continuous.

@ -

1Q(y)

Pl AW (r )(A—2

i=

AIMS Mathematics Volume 7, Issue 8, 13945-13962.
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The result will follow from the Leray-Schauder’s nonlinear alternative once we have proved the
boundedness of the set of all solutions to the equations x = 6Ax for 6 € (0, 1).

Let x be a solution of (1.3). Then, for ¢ € [0, T], and following calculations similar to the second
step above, we obtain

|x(2)] [0AX(1)] < |Ax(®)]

Pl AU (IIXINDy + [Ix]| D2,

IA

which lends to
[lxl] < ([Pl A (llx[NDy + ||x]| D2,

or

(1 = Dy)ll|
IPlAo(lxlDDy

In view of (H,), there exists a constant M > 0 such that ||x|| # M. Let us set

K ={xeC:|x|l < M}

We see that the operator A : K — C is continuous and completely continuous. From the choice of K,
there is no x € dK such that x = §Ax for some 6 € (0, 1). Consequently, by the nonlinear alternative of
Leray-Schauder type, we deduce that the operator A has a fixed point x € K, which is a solution of the
problem (1.3). The proof is completed. O

Corollary 3.1. If the function  in (H,) is replaced by the following three special cases, then we obtain
some interesting results.

(@) If ¥(x) = Q, where Q > 0, then the problem (1.3) has at least one solution with

_ IplAcQ®:

M
1-®,

3.7
(i) If y(x) = Gx+ Q, where G, Q are positive constants and if ©, +||p||Ao® G < 1, then the boundary
value problem (1.3) has at least one solution provided that

1Pl A0 QP

M > .
(I = D, - [|pllA®@:G)

(3.8)

4GOlpIPAZD?

i) If y(x) = Gx* + Q, where G, Q > 0 and if L < 1, then the problem (1.3) has at least one

(1-0,)?
solution with
_4GQIpIPAZ®? _4GQlIpIPAZ®?
(1-D,)? (1-D,)? (3 9)
2 (Ilplll\oGd)l ) ’ 9 (HP”AOGCDI ) '
-0, -0,

Now we prove an existence and uniqueness result via Banach’s contraction mapping principle.

Theorem 3.2. Assume that the nonlinear function f : [0,T] X R X R — R satisfies the following
condition:

AIMS Mathematics Volume 7, Issue 8, 13945-13962.
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(H3) There exists a constant L > 0 such that

|, x1,x2) = f(&, 31, )| < Llxy = yil + %2 = yal),
foreachte[0,T] and x;,y; € R, i=1,2.
Then the boundary value problem (1.3) has a unique solution on [0, T'], provided that
LAyD, + D, < 1, (3.10)

where Ny, © and ©, are defined by (3.2), (3.3) and (3.4), respectively.

Proof. By using the benefit of Banach contraction mapping principle, we will show that the operator A,
defined by (3.1), has a unique fixed point, which is the unique solution of the problem (1.3).
Let N be a constant as N = sup,q 71 |f(#, 0, 0)|. Next, we give B, := {x € C : ||x]| < r} with r satisfies

NO,
1 — (LA¢®; + @y)

(3.11)

Observe that B, is a bounded, closed, and convex subset of C. The proof is divided into two steps:
Step I. We show that (AB,) C B,.
From |f.(?)| := | f(¢, x(¢), ROV x(1))| and (H3), we obtain

A

L0 < 170 = o] + |fo@)]
L(lIxdI(1 + RO20(1))) + N
LAo|lxl| + N.

IA

For x € B,, we have
I(Ax)(®)]
y—1
QI (y)

+ I"Ifxl(T)] + I xI() + 117 ()

|| 77! !
LA N)| == (R¥»#1*1
(E ol + )( aro) | )+ aire)

| 44| Ao T g tl |47
||x||(—(R(ﬂm w1yE) +
QIr) O+ ary

IA

[I/hll/lzIR(“" HEDIE) + [IRY | FIE) + 1 xI(T)

IA

(I*1)(T) + (1“1)(T))

I'(IT) + I/hlll(l)(T))

—H2i

| 2| T 1 +Zr%1 Tr+a 1 T
- X EMT st Hkt +
QT (A, 1_[ Z“ e I QT+ 1) T+ 1)

L5] i Hai
4T |41 T 7! a5l 3]
+ 4T + o —— | | 1+ E X £ B okt
* i ”[lQlF( ) IQIT(y) Ay Hae-1 &

i=1
(LAgr + N)D; +rd, <1,

IA

(LAo|IX| + N)| 5=

IA

which implies that ||Ax|| < r. This confirms (AB,) C B,.

AIMS Mathematics Volume 7, Issue 8, 13945-13962.



13957

Step I1. We show that A : C — C is a contraction operator.
For any x, y € C and for each ¢ € [0, T], we have

(Ax)(D) = (Ay)(D)|
y—1
Qro)”
+ AR H1FD | £(, x, RO 00 x) = £(,y, RO OVy)| (&)
+ 1441 = YI(T) + [ £, x, RO ) )
= FC 3, ROV + |l x = I(2)
+1°)f (-, x, RO 00 x) = (-, y, RO 2Vy)|(1)
7!
oro)”
+1°1£C, x, RO x) — f(-,y, RO~ ’61>y>|(T>]
+1°f(, x, ROV x) — f(-,y, RO Vy)(T)

IA
§
D
=X
F
z
x
?
&
—
N
N

IA
=
"’_
?
z
+
&
g
/.\
><
=
§”
&
kv
N—
\n
A
-
>
?’
9
=
~
—
N
N—

y—1
+ A ||, | Rt +1) NYRIC T
oMl [ = YIE) + L1 x = ¥I(T)]
+ A |x = YI(T)
Ty+a—l T
< LAollx =yl ¥
QT +1) T(a+1)
L%J i —H2i

N |/12|T7_1 1_[ [a/ + Zﬂ ) X é:(”Z,rEl]#zk—l]
T T/ ~ A 2k—1 -
oA, LT 2

1 L5

—H2i
LT ||| T 153l
+ T + | | 1+ ) u X ETEucy Hake
Qry) T QINy)A, Z 2t

i=1
= (LAy®; + Dy)|lx — yll.

+[lx =yl

Thus, we obtain the relation that
lAx — Ayll < (LAo®@; + Do)l|x — yll.

Since LAy®; + @, < 1, the operator A is a contraction. Therefore, by applying Banach contraction
mapping principle, the operator A has a fixed point, which implies that the boundary problem (1.3) has
a unique solution on [0, T']. The proof is completed. O

4. Examples

Example 4.1. Consider the following boundary value problem containing Hilfer fractional derivative
and iterated integrals as

D0 + 5 DH0 = iexo. R0, reo. 2.

x(0) = 0, x(14_3) = iRd,i’ésH)x(g)_

4.1)
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Here, = 3/2, T = 13/4,8 = 1/2, 44 = 1/9,m = 4, 6, = 7/3, 6, = 3/5, 03 = 2/7, 64 = 9/8,
/12 = l/lsaé:: 6/5?n: 57/"1 = 1/3’ﬂ2 = 1/2,/.13 = 1/65/*t4 :5/4’ﬂ5 :7/4’ and

R&T39x(r) = "ISI I x(0),
Rdzg;px@ - zi”lil“’f“éx(g)'

From the given data, we find Q ~ 2.6192, Ay = 1.4925, ®; = 0.0034 and ®, ~ 0.0021.
(i) Let the function f(z,-, ) in (4.1) be given by

27
. o |RGHED
‘ﬂL&R@wﬁQﬁ:___l___E:(_fi_)+i: %8 534 1l 42)
(t+ V2002 | 2 \X®+2) 2|4, (R(%’%’%’%)x)z()
By direct computation, we have
e’ 1
t’ s L—|= + +1
Lf(t,u,v)l + V50, [2 (lual + V1)

= pOY (lul + D,

e—l
(t + V20)

a constant M > 0.9 that satisfies (H,). By Theorem 3.1, the boundary value problem (4.1), with f

defined by (4.2), has at least one solution on [O, 113] .
(1) If f: [0,13/4] x R X R — R is defined by

Y

which yields that (H,) is satisfied when p(¢) = and ¥(y) = 5 + 1. Therefore, there exists

F(t, x, RO x) = 2‘(:?1—2%) [2 (x+ R(%’%%’%)x)z + 1] : (4.3)
then we have !
1wVl < 52 [20u+v)? +1].
We choose p(f) = m and Y(y) = 2y* + 1. Then ||p|| = 1/140, G = 2 and Q = 1. Hence,
4GQlIpIPAZ®}

the inequality —7—5—— ~ 0.9494 < 1 holds. Therefore, by Corollary 3.1 (iii), the boundary value

problem (4.1), with f defined by (4.3), has at least one solution on [0, 14—3] .
(ii1) Assume the function f : [0, 13/4] Xx R X R — R is defined by

- 2
2x" + x| 9237 1
t, ,R((Sm’ 9 x) = ¢ +R(8’7’5’3) + —.
Jx D= r | T2 *1*3
It is obvious that
e
L, x1,x2) — f&, y1, < — = yil + [x = 4.4
|f (5, x1, x2) = f(£, 91, ¥2)] (1 +25) (ler =1l + %2 = y2) (4.4)
1
< 635 (Ix1 = yil + lx2 = y2l) . 4.5)
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Thus, (H3) is satisfied with L = 625 By the given data we can compute that LAy®; + @, = 0.7475 < 1.
Therefore, by Theorem 3.2, the boundary value problem (4.1), with f defined by (4.4), has a unique
13

solution on [O, T] .

t 4
Example 4.2. The functions y(7) = (6) ,t€[0,4] and x(r) = £, t € [0, 3], are analytic solutions of the

following boundary value problems with iterated fractional integral (RHR) of the form:

i),  tel0,4],

-Mu'

1
("D>2y)(t) = % R&2Y)

6" (4.6)
y(0) =0, y(4) = 1050371217y (2),
and (HRH):
18
H D2 x)(1) = —R<zmzo>x3(r) t€[0,3],
V20
4.7)
4 (35 3
0)=0, x3)=— Hps sHs
cor-a o0 (i)
respectively.

Indeed, by direct computations, we have

o 1
©) 5 _ Lpdddyd

Hpl.g _ )
CDZNO = r7 e’ = 36

and
I'4) 3 _ 18 &

Hpy33 - 3 RG
P00 = 155" = e

which satisfy the first equation of (4.6) and (4.7), respectively. Clearly, the conditions y(0) = 0 and
x(0) = 0 are satisfied. Finally,

Vx5 (1),

105073512 I3y (2) = %1050(25/4)-”227 =4*=y(4),

and
4 1 3 1
ﬁr(ﬁ)”lslé”lu(%) =27 = x(3).

Therefore, the analytic solutions of problems (4.6) and (4.7) are claimed.

5. Conclusions

In this paper we studied a fractional boundary value problem, in which a differential equation
with Hilfer fractional derivative is combined with iterated fractional integral boundary conditions of
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Riemann-Liouville and Hadamard type. As far as we know, this combination appears in the literature
for the first time. Firstly, we transformed the given nonlinear fractional boundary value problem
into a fixed point problem. Then, by applying Banach’s contraction mapping principle and Leray-
Schauder nonlinear alternative, we established our main existence and uniqueness results. Furthermore,
some numerical examples are illustrated to support the theoretical results. Our results are new in
the given configuration and enrich the literature on the new topic of boundary value problems for
fractional differential equations of Hilfer type with iterated boundary conditions of Riemann-Liouville
and Hadamard type.
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