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1. Introduction

Fractional calculus and fractional differential equations have been of great interest, because they
describe many real world processes from applied sciences (biology, physics, chemistry, economics,
ecology, control theory and so on) more accurately, as compared to classical order differential
equations. For the basic theory on the topic see the monographs as [1–8], Many researchers have
studied boundary value problems for fractional differential equations, see [9–18] and references cited
therein. In the literature there are several kinds of fractional derivatives, such as Riemann-Liouville,
Caputo, Erfely-Kober, Hadamard, Hilfer, Katugampola, to name a few. Hilfer fractional derivative [19]
extends both Riemann-Liouville and Caputo fractional derivatives. Many applications of Hilfer
fractional differential equations can be found in many fields of mathematics, physics, etc. (see [20–25]).
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The study of boundary value problems for Hilfer-fractional differential equations of order in (1, 2], and
nonlocal boundary conditions were initiated in [26] by studying the boundary value problem of the
form: 

HDα,βu(z) = h(z, u(z)), z ∈ [c, d], 1 < α ≤ 2, 0 ≤ β ≤ 1,

u(c) = 0, u(d) =

m∑
i=1

εiIφiu(ξi), φi > 0, εi ∈ R, ξi ∈ [c, d],
(1.1)

where HDα,β is the Hilfer fractional derivative of order α, and parameter β, h : [c, d] × R → R is
a continuous function, m ∈ Z+, c ≥ 0, and Iφi is the Riemann-Liouville fractional integral of order
φi, i = 1, 2, . . . ,m. By using well known fixed point theorems, existence and uniqueness results were
proved.

Recently, in [27], the authors initiated the study of boundary value problems containing sequential
fractional derivatives of mixed Riemann-Liouville and Hadamard-Caputo type, subjected to iterated
fractional integral boundary conditions of the form:

RLDp
(

HCDqx
)

(t) = f (t, x(t)), t ∈ [0,T ],

HCDqx(0) = 0,

x(T ) = λ1R̃(αn,βn−1,...,β1,α1)x(ξ1) + λ2R̂(δm,γm,...,δ1,γ1)x(ξ2),

(1.2)

where RLDp and HCDq are respectively the fractional derivatives of Riemann-Liouville and Hadamard-
Caputo type of orders p and q, 0 < p, q < 1, f : [0,T ] × R → R is a continuous function, m, n ∈ Z+,
the given constants λ1, λ2 ∈ R,

R̃(αn,...,β1,α1)x(t) = RLIαn HIβn−1 RLIαn−1 HIβn−2 · · · HIβ2 RLIα2 HIβ1 RLIα1 x(t)

and
R̂(δm,...,δ1,γ1)x(t) = HIδm RLIγm HIδm−1 RLIγm−1 · · · HIδ2 RLIγ2 HIδ1 RLIγ1 x(t)

are the iterated fractional integrals, where t = ξ1 and t = ξ2, respectively, ξ1, ξ2 ∈ (0,T ), RLIφ and HIψ

are the fractional integrals of Riemann-Liouville and Hadamard type of orders φ, ψ > 0, respectively,
φ ∈ {α(·), γ(·)}, ψ ∈ {β(·), δ(·)}. Existence and uniqueness results are established by applying a variety of
fixed point theorems.

Our goal in this paper, inspired by the above-mentioned papers, is to enrich the new research
topic concerning boundary value problems for Hilfer fractional iterated-integro-differential equations,
subjected to iterated boundary conditions. Thus, in this paper, we investigate the qualitative theory of
existence to a nonlinear Hilfer iterated-integro-differential equation with iterated Riemann-Liouville
and Hadamard fractional integrals of the form:

(HDα,βx)(t) + λ1(HDα−1,βx)(t) = f (t, x(t),R(δm,··· ,δ1)x(t)), t ∈ [0,T ],

x(0) = 0, x(T ) = λ2R(µn,··· ,µ1)x(ξ), ξ ∈ (0,T ),
(1.3)

where HDα,β is the fractional derivative of Hilfer of order α, 1 < α < 2, 0 < β < 1, γ = α + (2 − α)β,
λ1, λ2 ∈ R, f : [0,T ] × R × R→ R is a nonlinear continuous function, m, n ∈ N and

R(φρ,...,φ1)x(t) =

HIφρ Iφρ−1 HIφρ−2 Iφρ−3 · · · HIφ4 Iφ3 HIφ2 Iφ1 x(t), ρ is even,
Iφρ HIφρ−1 Iφρ−2 HIφρ−3 · · · HIφ4 Iφ3 HIφ2 Iφ1 x(t), ρ is odd,
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is the iterated fractional integrals of mixed Riemann-Liouville and Hadamard type, φ ∈ {δ, µ}, ρ ∈
{m, n}. Iφ(·) , HIφ(·) are defined as fractional integrals of Riemann-Liouville and Hadamard type of order
φ(·) > 0, respectively.

Notice that: The iterated fractional integrals, R(φρ,...,φ1)(·), can be reduced to a single Riemann-
Liouville fractional integral when ρ = 1 as R(φ1)(·) = Iφ1(·) and to Hadamard integral integral when
ρ = 2, φ1 = 0 as R(φ2,0)(·) = HIφ2(·).

In addition, we are now considering some special cases of the Hilfer iterated-integro-differential
equation that appeared in the first equation of problem (1.3). If we put α = 2, β = 0, f (u, v,w) = u+v+w
and the iterated integral term R(δm,··· ,δ1)x = R(δ1)x, then we have

x′′(t) + λ1x′(t) = t + x(t) +
1

Γ(δ1)

∫ t

0
(t − s)δ1−1x(s)ds,

which is a well known integro-differential equation. If the iterated integral term presents R(δm,··· ,δ1)x =

R(δ2,0)x, then we obtain a new integro-differential equation with Hadamard integral as

x′′(t) + λ1x′(t) = t + x(t) +
1

Γ(δ2)

∫ t

0

(
loge t − loge s

)δ2−1 x(s)
ds
s
.

By replacing the iterated integral term R(δm,··· ,δ1)x = R(δ2,δ1)x, we get

x′′(t) + λ1x′(t) = t + x(t) +
1

Γ(δ1)Γ(δ2)

∫ t

0

∫ s

0

(
loge t − loge s

)δ2−1 (s − r)δ1−1x(r)dr
ds
s
,

which is an integro-differential equation with a mixed kernel of logarithm and power functions.
Another one kernel can be interchanged by replacing R(δm,··· ,δ1)x = R(δ3,δ2,0)x as

x′′(t) + λ1x′(t) = t + x(t) +
1

Γ(δ2)Γ(δ3)

∫ t

0

∫ s

0
(t − s)δ3−1 (

loge s − loge r
)δ2−1 x(r)

dr
r

ds.

Both of the double integrals in the above two equations can not be reduced to a single integral because
of differences of the kernels. These show some significance of studying the new iterated-integro-
differential equation in (1.3), which is a new novel in literature.

By using standard tools from fixed point theory we establish existence and uniqueness results for the
boundary value problem (1.3). More precisely, the existence is proved via Leray-Schauder nonlinear
alternative, while the existence of a unique solution is established by using Banach’s contraction
mapping principle.

The remaining part of this manuscript is organized as follows: Section 2 contain some basic
notations and definitions from fractional calculus. Section 3 presents the main results, while Section 4
contains illustrative examples. A brief conclusion closes the paper.

2. Preliminaries

In this section, we introduce some notations and definitions of fractional calculus in the sense
of Riemann-Liouville, Hadamard and also Hilfer differential operators. Moreover, we present some
lemmas that needed in main results later.
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Definition 2.1. [2] The Riemann-Liouville fractional integral of oreder α > 0 to a function f :
[0,∞)→ R is defined by

(Iα f )(t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, 0 < t < ∞, (2.1)

where Γ(·) is the Euler Gamma function, provided that the right-hand side is point-wise defined on
(0,∞).

Definition 2.2. [2] The Hadamard fractional integral of oreder α > 0 is defined as

(HIα f )(t) =
1

Γ(α)

∫ t

0

(
log

t
s

)α−1
f (s)

ds
s
, 0 < t < ∞, (2.2)

where log(·) = loge(·), provided the integral exists.

Definition 2.3. [2] The Riemann-Liouville fractional derivative of order α for a function f on [0,∞)
is defined as follows:

(RDα f )(t) =


1

Γ(n − α)
dn

dtn

∫ t

0
(t − s)n−α−1 f (s)ds, 0 ≤ n − 1 < α < n ∈ N,

dn

dtn f (t), α = n ∈ N,

provided that the right-hand side is point-wise defined on (0,∞).

Definition 2.4. [2] The Caputo fractional derivative of order α of the nth-derivatives function f is
given on [0,∞) by

(CDα f )(t) =


1

Γ(n − α)

∫ t

0
(t − s)n−α−1 dn

dsn f (s)ds, 0 ≤ n − 1 < α < n ∈ N,

dn

dtn f (t), α = n ∈ N,

provided that the right-hand side is point-wise defined on (0,∞).

Definition 2.5. [19] The Hilfer fractional derivative of order α with parameter β for a function f on
[0,∞) is defined by

(HDα,β f )(t) = Iβ(n−α)
(

d
dt

)n

I(1−β)(n−α) f (t), (2.3)

where 0 ≤ n − 1 < α < n, and 0 ≤ β ≤ 1 for t > 0.

The Hilfer fractional derivative can be reduced to Riemann-Liouville and Caputo operators
depending on the parameter β (0 ≤ β ≤ 1). If β = 0, (2.3) is reduced to the Riemann-Liouville
fractional derivative as (

HDα,0 f
)

(t) = (RDα f )(t), t ∈ [0,∞), (2.4)

while if β = 1, (2.3) is reduced to the Caputo fractional derivative by(
HDα,1 f

)
(t) = (CDα f )(t), t ∈ [0,∞). (2.5)
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Lemma 2.1. [28] Let f ∈ L1(0,T ), n−1 < α ≤ n, n ∈ N, j = 0, 1, . . . , n − 1, 0 ≤ β ≤ 1, γ = α+nβ−αβ,
I(n−γ) ∈ Cn([0,T ],R). Then

(
Iα HDα,β f

)
(t) = f (t) −

n−1∑
j=0

t j−(n−γ)

Γ( j − (n − γ) + 1)
lim
t→0+

dk

dtk

(
In−γ f

)
(t). (2.6)

Lemma 2.2. [2] Let α > 0 and m > 0 be given constants. Then the following fomula

HIαtm = m−αtm (2.7)

holds.

Lemma 2.3. [27] Let m > −1, µi > 0, i = 1, 2, · · · , n, be constants. Then the following equation
holds:

R(µn,...,µ1)tm = Γ(m + 1)

b n
2 c∏

i=1

m +

i∑
k=1

µ2k−1

−µ2i

Γ

m + 1 +

d n
2 e∑

k=1

µ2k−1


tm+

∑d n
2 e

k=1 µ2k−1 . (2.8)

For m = 0 in Eq (2.8), we get

R(µn,...,µ1)1 =

b n
2 c∏

i=1

 i∑
k=1

µ2k−1

−µ2i

Γ

1 +

d n
2 e∑

k=1

µ2k−1


t
∑d n

2 e
k=1 µ2k−1 , (2.9)

where dne, bnc are the ceiling and floor functions of n, respectively.

Now, we present some examples of our notations. The ceiling and floor functions of a number 2.4
are shown as d2.4e = 3 and b2.4c = 2, respectively. The odd and even iterations of Riemann-Liouville
and Hadamard fractional integrals of functions f (t) = t3 and f (t) = 1, respectively, can be seen as

R( 4
5 ,

1
6 ,

1
5 ,

1
4 ,

3
4 ,

1
3 ,

1
2 )t3 =

Γ(3 + 1)(3 + 1
2 )−

1
3 (3 + 1

2 + 3
4 )−

1
4 (3 + 1

2 + 3
4 + 1

5 )−
1
6

Γ(3 + 1 + 1
2 + 3

4 + 1
5 + 4

5 )
× t3+ 1

2 + 3
4 + 1

5 + 4
5

≈ 0.0116 × t5.25

and

R( 7
4 ,

1
2 ,

1
3 ,

3
4 )1 =

( 3
4 )−

1
3 ( 3

4 + 1
2 )−

7
4

Γ(1 + 3
4 + 1

2 )
× t

3
4 + 1

2 ≈ 0.6574 × t1.25.

Let f (t) = t be a given function. The iterations of Riemann-Liouville and Hadamard fractional
integrals and its consecutive iterations can be considered as follows: f (t) = (I

1
4 I

1
3 I

1
2 s)(t) (RRR),

g(t) = (HI
1
4 HI

1
3 HI

1
2 s)(t) (HHH), h(t) = (I

1
4 HI

1
3 I

1
2 s)(t) (RHR) and q(t) = (HI

1
4 I

1
3 HI

1
2 s)(t) (HRH). The

graphs of functions f (t), g(t), h(t) and q(t) for t ∈ [0, 4] are shown in Figure 1.
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Figure 1. The graphs of functions f (t), g(t), h(t) and q(t).

The next lemma concerns a linear variant of the boundary value problem (1.3) and is useful to
transform the boundary value problem (1.3) into an integral equation.

Lemma 2.4. Let 1 < α < 2, 0 < β < 1, γ = α + (2 − α)β, λ1, λ2 ∈ R, be constants and h : [0,T ] → R
be a continuous function and

Ω :=
T γ−1

Γ(γ)
−

λ2

Γ

(
γ +

d n
2 e∑

k=1

µ2k−1

) b
n
2 c∏

i=1

γ − 1 +

i∑
k=1

µ2k−1

−µ2i

× ξγ−1+
∑d n

2 e
k=1 µ2k−1 , 0.

Then the Hilfer iterated boundary value problem(HDα,βx)(t) + λ1(HDα−1,βx)(t) = h(t), t ∈ [0,T ],
x(0) = 0, x(T ) = λ2R(µn,··· ,µ1)x(ξ), ξ ∈ (0,T ),

(2.10)

is equivalent the following integral equation:

x(t) =
tγ−1

ΩΓ(γ)

[
− λ1λ2R(µn,··· ,µ1+1)x(ξ) + λ2R(µn,··· ,µ1+α)h(ξ)

+λ1I1x(T ) − Iαh(T )
]
− λ1I1x(t) + Iαh(t). (2.11)

Proof. Operating Riemann-Liouville fractional integral of order α to both sides of Eq (2.10), we have

Iα
(

HDα,βx
)

(t) + λ1Iα
(

HDα−1,βx
)

(t) = Iαh(t), (2.12)

from which, by using Lemma 2.1, we get

x(t) −
c1

Γ(γ)
tγ−1 −

c2

Γ(γ − 1)
tγ−2 + λ1I1x(t) = Iαh(t),
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where c1 = (I1−γx)(0) and c2 = (I2−γx)(0). From the first boundary condition x(0) = 0, we have c2 = 0.
Then we get

x(t) =
c1

Γ(γ)
tγ−1 − λ1I1x(t) + Iαh(t). (2.13)

Next, by using Lemma 2.3, we obtain

λ2R(µn,··· ,µ1)x(ξ) =
c1λ2

Γ(γ)
R(µn,··· ,µ1)ξγ−1 − λ1λ2R(µn,··· ,µ1+1)x(ξ) + λ2R(µn,··· ,µ1+α)h(ξ)

=
c1λ2

Γ(γ)


Γ(γ)

b n
2 c∏

i=1

γ − 1 +

i∑
k=1

µ2k−1

−µ2i

Γ

γ +

d n
2 e∑

k=1

µ2k−1


× ξ

γ−1+

d n
2 e∑

k=1

µ2k−1


− λ1λ2R(µn,··· ,µ1+1)x(ξ) + λ2R(µn,··· ,µ1+α)h(ξ).

Applying the second boundary condition x(T ) = λ2R(µn,··· ,µ1)x(ξ) with x(T ) =
c1

Γ(γ)
T γ−1 − λ1I1x(T ) +

Iαh(T ), we have

c1

Γ(γ)
T γ−1 − c1λ2



b n
2 c∏

i=1

γ − 1 +

i∑
k=1

µ2k−1

−µ2i

Γ

γ +

d n
2 e∑

k=1

µ2k−1


× ξ

γ−1+

d n
2 e∑

k=1

µ2k−1


= − λ1λ2R(µn,··· ,µ1+1)x(ξ) + λ2R(µn,··· ,µ1+α)h(ξ) + λ1I1x(T ) − Iαh(T ),

form which we get

c1 =
1
Ω

[
− λ1λ2R(µn,··· ,µ1+1)x(ξ) + λ2R(µn,··· ,µ1+α)h(ξ) + λ1I1x(T ) − Iαh(T )

]
.

Incerting the value of c1 in (2.13), we obtain the solution (2.11). The converse of this lemma can be
proved by direct computation. The proof is finished. �

3. Main results

Let C = C([0,T ],R) be a Banach space of all continuous function from [0,T ] to R endowed with
the supremum norm defined as

‖x‖ = sup
t∈[0,T ]

|x(t)|.

In view of Lemma 2.4, we transform the problem (1.3) into a fixed point problem x = Ax, where
A : C → C is defined by
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(Ax)(t) =
tγ−1

ΩΓ(γ)

[
− λ1λ2R(µn,··· ,µ1+1)x(ξ) + λ2R(µn,··· ,µ1+α) f (ξ, x(ξ),R(δm,··· ,δ1)x(ξ))

+λ1I1x(T ) − Iα f (T, x(T ),R(δm,··· ,δ1)x(T ))
]

−λ1I1x(t) + Iα f (t, x(t),R(δm,··· ,δ1)x(t)). (3.1)

For computational convenience, we set

Λ0 := 1 +
1

Λ3

bm
2 c∏

i=1

 i∑
k=1

δ2k−1

−δ2i

× T
∑dm

2 e
k=1 δ2k−1 , (3.2)

Λ1 := Γ

γ +

d n
2 e∑

k=1

µ2k−1

 , Λ2 := Γ

1 + α +

d n
2 e∑

k=1

µ2k−1

 ,
Λ3 := Γ

1 +

dm
2 e∑

k=1

δ2k−1

 , Λ4 := Γ

2 +

d n
2 e∑

k=1

µ2k−1

 ,
Φ1 :=

|λ2|T γ−1

|Ω|Γ(γ)Λ2

b n
2 c∏

i=1

α +

i∑
k=1

µ2k−1

−µ2i

× ξα+
∑d n

2 e
k=1 µ2k−1

+
T γ+α−1

|Ω|Γ(γ)Γ(α + 1)
+

Tα

Γ(α + 1)
, (3.3)

Φ2 :=
|λ1||λ2|T γ−1

|Ω|Γ(γ)Λ4

b n
2 c∏

i=1

1 +

i∑
k=1

µ2k−1

−µ2i

× ξ1+
∑d n

2 e
k=1 µ2k−1

+
|λ1|T γ

|Ω|Γ(γ)
+ λ1T. (3.4)

Now we present our main results for the boundary value problem (1.3). Our existence result is
based on Leray-Schauder’s nonlinear alternative [29].

Theorem 3.1. Let f : [0,T ] × R × R → R be a continuous function. Assume that Φ2 < 1 where Φ2 is
defined by (3.4). In addition, we suppose that:

(H1) There exist a function p ∈ C([0,T ],R+) and a continuous nondecreasing function ψ : [0,∞) →
[0,∞) which is subhomogeneous (that is, ψ(µx) ≤ µψ(x), for all µ ≥ 1 and x ∈ C), such that

| f (t, u, v)| ≤ p(t)ψ(|u| + |v|) for each (t, u, v) ∈ [0,T ] × R2;

(H2) There exists a constant M > 0, such that

(1 − Φ2)M
‖p‖Λ0ψ(M)Φ1

> 1, (3.5)

where Λ0 and Φ1 are defined in (3.2) and (3.3) respectively.

Then there exists at least one solution of the boundary value problem (1.3) on [0,T ].
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Proof. Leray-Schauder’s nonlinear alternative will be used to prove that the operator A, defined
by (3.1), has a fixed point. Firstly, we shall show that A is continuous. Let {xq} be a sequence such that
xq → x as q→ ∞ in C. Then, for each t ∈ [0,T ],

|(Axq)(t) − (Ax)(t)|

≤
T γ−1

|Ω|Γ(γ)

[
|λ1||λ2|R(µn,...,µ1+1)|xq − x|(ξ)

+ |λ2|R(µn,...,µ1+α)
∣∣∣ f (·, xq,R(δm,··· ,δ1)xq)(ξ) − f (·, x,R(δm,··· ,δ1)x)(ξ)

∣∣∣
+ |λ1|I1|xq − x|(T ) + Iα| f (·, xq,R(δm,··· ,δ1)xq)

− f (·, x,R(δm,··· ,δ1)x)|(T )
]

+ |λ1|I1|xq − x|(t)

+ Iα| f (·, xq,R(δm,··· ,δ1)xq) − f (·, x,R(δm,··· ,δ1)x)|(t)

≤
T γ−1

|Ω|Γ(γ)

[
|λ2|R(µn,...,µ1+α)

∣∣∣ f (·, xq,R(δm,··· ,δ1)xq) − f (·, x,R(δm,··· ,δ1)x)
∣∣∣ (ξ)

+ Iα| f (·, xq,R(δm,··· ,δ1)xq) − f (·, x,R(δm,··· ,δ1)x)|(T )
]

+ Iα| f (·, xq,R(δm,··· ,δ1)xq) − f (·, x,R(δm,··· ,δ1)x)|(T )

+
T γ−1

|Ω|Γ(γ)

[
|λ1||λ2|R(µn,...,µ1+1)|xq − x|(ξ) + |λ1|I1|xq − x|(T )

]
+ |λ1|I1|xq − x|(T )

≤
∣∣∣ f (·, xq,R(δm,··· ,δ1)xq) − f (·, x,R(δm,··· ,δ1)x)

∣∣∣ ( T γ+α−1

|Ω|Γ(γ)Γ(α + 1)

+
Tα

Γ(α + 1)
+
|λ2|T γ−1

|Ω|Γ(γ)Λ2

b n
2 c∏

i=1

α +

i∑
k=1

µ2k−1

−µ2i

× ξα+
∑d n

2 e
k=1 µ2k−1

)

+ ‖xq − x‖
[
|λ1|T γ

|Ω|Γ(γ)
+ λ1T +

|λ1||λ2|T γ−1

|Ω|Γ(γ)Λ4

b n
2 c∏

i=1

1 +

i∑
k=1

µ2k−1

−µ2i

× ξ1+
∑d n

2 e
k=1 µ2k−1

]
.

Since f is a continuous function, it implies that∥∥∥Axq − Ax
∥∥∥→ 0, q→ ∞. (3.6)

Next, we show that A maps bounded sets into bounded set in C. For any r > 0, let Br := {x ∈ C :
‖x‖ ≤ r}. For convenience, putting f̃x(t) := f (t, x(t),R(δm,··· ,δ1)x(t)) and using (H1), we have that

| f̃x(t)| ≤ ‖p‖
[
ψ

(
|x(t)| + |R(δm,··· ,δ1)x(t)|

)]
≤ ‖p‖

[
ψ

(
‖x‖ + ‖x‖R(δm,··· ,δ1)(1)

)]
= ‖p‖

[
ψ(‖x‖Λ0)

]
≤ ‖p‖Λ0ψ(‖x‖),

where Λ0 is defined by (3.2).
Therefore, we obtain
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|(Ax)(t)| ≤
tγ−1

|Ω|Γ(γ)

[
|λ1||λ2|R(µn,··· ,µ1+1)|x|(ξ) + |λ2|R(µn,··· ,µ1+α)| f̃x|(ξ) + |λ1|I1|x|(T )

+ Iα| f̃x|(T )
]

+ |λ1|I1|x|(t) + Iα| f̃x|(t)

≤ ‖p‖Λ0ψ(‖x‖)
(
|λ2|T γ−1

|Ω|Γ(γ)

(
R(µn,··· ,µ1+α)1

)
(ξ) +

T γ−1

|Ω|Γ(γ)
(Iα1)(T ) + (Iα1)(T )

)
+ ‖x‖

(
|λ1||λ2|T γ−1

|Ω|Γ(γ)
(R(µn,··· ,µ1+1)1)(ξ) +

|λ1|T γ−1

|Ω|Γ(γ)
I1(1)(T ) + |λ1|I1(1)(T )

)

≤ ‖p‖Λ0ψ(‖x‖)
[
|λ2|T γ−1

|Ω|Γ(γ)Λ2

b n
2 c∏

i=1

α +

i∑
k=1

µ2k−1

−µ2i

× ξα+
∑d n

2 e
k=1 µ2k−1

+
T γ+α−1

|Ω|Γ(γ)Γ(α + 1)
+

Tα

Γ(α + 1)

]

+ ‖x‖
[
|λ1|T γ

|Ω|Γ(γ)
+ λ1T +

|λ1||λ2|T γ−1

|Ω|Γ(γ)Λ4

b n
2 c∏

i=1

1 +

i∑
k=1

µ2k−1

−µ2i

× ξ1+
∑d n

2 e
k=1 µ2k−1

]
= ‖p‖Λ0ψ(‖x‖)Φ1 + ‖x‖Φ2,

and consequently
‖Ax‖ ≤ ‖p‖Λ0ψ(r)Φ1 + rΦ2,

which means that the set (ABr) is uniformly bounded.
Next, we show that the operator A maps bounded sets into equicontinuous sets of C. Let t1, t2 ∈

[0,T ] with t1 < t2 and x ∈ Br. Then we get

|(Ax)(t2) − (Ax)(t1)|

≤
1

Γ(α)

∣∣∣∣∣∣
∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
f̃x(s)ds +

∫ t2

t1
(t2 − s)α−1 f̃x(s)ds

∣∣∣∣∣∣
+ |λ1||I1x(t2) − I1x(t1)| +

(tγ−1
2 − tγ−1

1 )|
|Ω|Γ(γ)

(
|λ1||λ2|R(µn,...,µ1+1)|x|(ξ) + Iα| f̃x|(T ) + |λ2|R(µn,...,µ1+α)| f̃x|(ξ)

)
+
|λ1|

|Ω|Γ(γ)
|tγ−1

2 I1x(t2) − tγ−1
1 I1x(t1)|

≤
1

Γ(α + 1)
‖p‖Λ0ψ(r)

[
2(t2 − t1)α + |tα2 − tα1 |

]
+ |λ1|r(t2 − t1)

+
r

|Ω|Γ(γ)

(
|λ1|(t

γ
2 − tγ1) +

(tγ−1
2 − tγ−1

1 )
Λ2

|λ1||λ2|

b n
2 c∏

i=1

1 +

i∑
k=1

µ2k−1

−µ2i

× ξ1+
∑d n

2 e
k=1 µ2k−1

)

+
(tγ−1

2 − tγ−1
1 )

|Ω|Γ(γ)
‖p‖Λ0ψ(r)

(
|λ2|

Λ2

b n
2 c∏

i=1

α +

i∑
k=1

µ2k−1

−µ2i

× ξα+
∑d n

2 e
k=1 µ2k−1 +

Tα

Γ(α + 1)

)
.

As t2 − t1 → 0, the right hand side of the above inequality tends to zero, independently of x, which
implies that the set (ABr) is an equicontinuous set. Hence, we can conclude that (ABr) is relatively
compact. By application of Arzelá-Ascoli theorem, the operator A is completely continuous.
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The result will follow from the Leray-Schauder’s nonlinear alternative once we have proved the
boundedness of the set of all solutions to the equations x = θAx for θ ∈ (0, 1).

Let x be a solution of (1.3). Then, for t ∈ [0,T ], and following calculations similar to the second
step above, we obtain

|x(t)| = |θAx(t)| ≤ |Ax(t)|
≤ ‖p‖Λ0ψ(‖x‖)Φ1 + ‖x‖Φ2,

which lends to
‖x‖ ≤ ‖p‖Λ0ψ(‖x‖)Φ1 + ‖x‖Φ2,

or

(1 − Φ2)‖x‖
‖p‖Λ0ψ(‖x‖)Φ1

≤ 1.

In view of (H2), there exists a constant M > 0 such that ‖x‖ , M. Let us set

K := {x ∈ C : ‖x‖ < M}.

We see that the operator A : K → C is continuous and completely continuous. From the choice of K,
there is no x ∈ ∂K such that x = θAx for some θ ∈ (0, 1). Consequently, by the nonlinear alternative of
Leray-Schauder type, we deduce that the operator A has a fixed point x ∈ K, which is a solution of the
problem (1.3). The proof is completed. �

Corollary 3.1. If the function ψ in (H1) is replaced by the following three special cases, then we obtain
some interesting results.

(i) If ψ(x) = Q, where Q > 0, then the problem (1.3) has at least one solution with

M >
‖p‖Λ0QΦ1

1 − Φ2
. (3.7)

(ii) If ψ(x) = Gx+Q, where G,Q are positive constants and if Φ2 +‖p‖Λ0Φ1G < 1, then the boundary
value problem (1.3) has at least one solution provided that

M >
‖p‖Λ0QΦ1

(1 − Φ2 − ‖p‖Λ0Φ1G)
. (3.8)

(iii) If ψ(x) = Gx2 + Q, where G,Q > 0 and if 4GQ‖p‖2Λ2
0Φ2

1
(1−Φ2)2 < 1, then the problem (1.3) has at least one

solution with

M ∈

1 −
√

1 − 4GQ‖p‖2Λ2
0Φ2

1
(1−Φ2)2

2
(
‖p‖Λ0GΦ1

1−Φ2

) ,
1 +

√
1 − 4GQ‖p‖2Λ2

0Φ2
1

(1−Φ2)2

2
(
‖p‖Λ0GΦ1

1−Φ2

)
 . (3.9)

Now we prove an existence and uniqueness result via Banach’s contraction mapping principle.

Theorem 3.2. Assume that the nonlinear function f : [0,T ] × R × R → R satisfies the following
condition:
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(H3) There exists a constant L > 0 such that

| f (t, x1, x2) − f (t, y1, y2)| ≤ L(|x1 − y1| + |x2 − y2|),

for each t ∈ [0,T ] and xi, yi ∈ R, i = 1, 2.

Then the boundary value problem (1.3) has a unique solution on [0,T ], provided that

LΛ0Φ1 + Φ2 < 1, (3.10)

where Λ0, Φ1 and Φ2 are defined by (3.2), (3.3) and (3.4), respectively.

Proof. By using the benefit of Banach contraction mapping principle, we will show that the operator A,
defined by (3.1), has a unique fixed point, which is the unique solution of the problem (1.3).

Let N be a constant as N = supt∈[0,T ] | f (t, 0, 0)|. Next, we give Br := {x ∈ C : ‖x‖ ≤ r} with r satisfies

r ≥
NΦ1

1 − (LΛ0Φ1 + Φ2)
. (3.11)

Observe that Br is a bounded, closed, and convex subset of C. The proof is divided into two steps:
Step I. We show that (ABr) ⊂ Br.
From | f̃x(t)| := | f (t, x(t),R(δm,··· ,δ1)x(t))| and (H3), we obtain

| f̃x(t)| ≤ | f̃x(t) − f̃0(t)| + | f̃0(t)|
≤ L

(
‖x‖

(
1 + R(δm,··· ,δ1)(1)

))
+ N

= LΛ0‖x‖ + N.

For x ∈ Br, we have

|(Ax)(t)|

≤
T γ−1

|Ω|Γ(γ)

[
|λ1||λ2|R(µn,··· ,µ1+1)|x|(ξ) + |λ2|R(µn,··· ,µ1+α)| f̃x|(ξ) + |λ1|I1|x|(T )

+ Iα| f̃x|(T )
]

+ |λ1|I1|x|(t) + Iα| f̃x|(t)

≤ (LΛ0‖x‖ + N)
(
|λ2|T γ−1

|Ω|Γ(γ)

(
R(µn,··· ,µ1+α)1

)
(ξ) +

T γ−1

|Ω|Γ(γ)
(Iα1)(T ) + (Iα1)(T )

)
+ ‖x‖

(
|λ1||λ2|T γ−1

|Ω|Γ(γ)
(R(µn,··· ,µ1+1)1)(ξ) +

|λ1|T γ−1

|Ω|Γ(γ)
I1(1)(T ) + |λ1|I1(1)(T )

)

≤ (LΛ0‖x‖ + N)
[
|λ2|T γ−1

|Ω|Γ(γ)Λ2

b n
2 c∏

i=1

α +

i∑
k=1

µ2k−1

−µ2i

× ξα+
∑d n

2 e
k=1 µ2k−1 +

T γ+α−1

|Ω|Γ(γ)Γ(α + 1)
+

Tα

Γ(α + 1)

]

+ ‖x‖
[
|λ1|T γ

|Ω|Γ(γ)
+ λ1T +

|λ1||λ2|T γ−1

|Ω|Γ(γ)Λ4

b n
2 c∏

i=1

1 +

i∑
k=1

µ2k−1

−µ2i

× ξ1+
∑d n

2 e
k=1 µ2k−1

]
≤ (LΛ0r + N)Φ1 + rΦ2 ≤ r,

which implies that ‖Ax‖ ≤ r. This confirms (ABr) ⊂ Br.
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Step II. We show that A : C → C is a contraction operator.
For any x, y ∈ C and for each t ∈ [0,T ], we have

|(Ax)(t) − (Ay)(t)|

≤
T γ−1

|Ω|Γ(γ)

[
|λ1||λ2|R(µn,...,µ1+1)|x − y|(ξ)

+ |λ2|R(µn,...,µ1+α)
∣∣∣ f (·, x,R(δm,··· ,δ1)x) − f (·, y,R(δm,··· ,δ1)y)

∣∣∣ (ξ)
+ |λ1|I1|x − y|(T ) + Iα| f (·, x,R(δm,··· ,δ1)x)
− f (·, y,R(δm,··· ,δ1)y)|(T )

]
+ |λ1|I1|x − y|(t)

+ Iα| f (·, x,R(δm,··· ,δ1)x) − f (·, y,R(δm,··· ,δ1)y)|(t)

≤
T γ−1

|Ω|Γ(γ)

[
|λ2|R(µn,...,µ1+α)

∣∣∣ f (·, x,R(δm,··· ,δ1)x) − f (·, y,R(δm,··· ,δ1)y)
∣∣∣ (ξ)

+ Iα| f (·, x,R(δm,··· ,δ1)x) − f (·, y,R(δm,··· ,δ1)y)|(T )
]

+ Iα| f (·, x,R(δm,··· ,δ1)x) − f (·, y,R(δm,··· ,δ1)y)|(T )

+
T γ−1

|Ω|Γ(γ)

[
|λ1||λ2|R(µn,...,µ1+1)|x − y|(ξ) + |λ1|I1|x − y|(T )

]
+ |λ1|I1|x − y|(T )

≤ LΛ0‖x − y‖
[

T γ+α−1

|Ω|Γ(γ)Γ(α + 1)
+

Tα

Γ(α + 1)

+
|λ2|T γ−1

|Ω|Γ(γ)Λ2

b n
2 c∏

i=1

α +

i∑
k=1

µ2k−1

−µ2i

× ξα+
∑d n

2 e
k=1 µ2k−1

]

+ ‖x − y‖
[
|λ1|T γ

|Ω|Γ(γ)
+ λ1T +

|λ1||λ2|T γ−1

|Ω|Γ(γ)Λ4

b n
2 c∏

i=1

1 +

i∑
k=1

µ2k−1

−µ2i

× ξ1+
∑d n

2 e
k=1 µ2k−1

]
= (LΛ0Φ1 + Φ2)‖x − y‖.

Thus, we obtain the relation that

‖Ax − Ay‖ ≤ (LΛ0Φ1 + Φ2)‖x − y‖.

Since LΛ0Φ1 + Φ2 < 1, the operator A is a contraction. Therefore, by applying Banach contraction
mapping principle, the operator A has a fixed point, which implies that the boundary problem (1.3) has
a unique solution on [0,T ]. The proof is completed. �

4. Examples

Example 4.1. Consider the following boundary value problem containing Hilfer fractional derivative
and iterated integrals as

(HD
3
2 ,

1
2 x)(t) +

1
9

(HD
1
2 ,

1
2 x)(t) = f (t, x(t), (R( 9

8 ,
2
7 ,

3
5 ,

7
3 )x)(t)), t ∈

[
0,

13
4

]
,

x (0) = 0, x
(
13
4

)
=

1
15

R( 7
4 ,

5
4 ,

1
6 ,

1
2 ,

1
3 )x

(
6
5

)
.

(4.1)
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Here, α = 3/2, T = 13/4, β = 1/2, λ1 = 1/9, m = 4, δ1 = 7/3, δ2 = 3/5, δ3 = 2/7, δ4 = 9/8,
λ2 = 1/15, ξ = 6/5, n = 5, µ1 = 1/3, µ2 = 1/2, µ3 = 1/6, µ4 = 5/4, µ5 = 7/4, and

R( 9
8 ,

2
7 ,

3
5 ,

7
3 )x(t) = HI

9
8 I

2
7 HI

3
5 I

7
3 x(t),

R( 7
4 ,

5
4 ,

1
6 ,

1
2 ,

1
3 )x

(
6
5

)
= I

7
4 HI

5
4 I

1
6 HI

1
2 I

1
3 x

(
6
5

)
.

From the given data, we find Ω ≈ 2.6192, Λ0 ≈ 1.4925, Φ1 ≈ 0.0034 and Φ2 ≈ 0.0021.
(i) Let the function f (t, ·, ·) in (4.1) be given by

f (t, x,R(δm,··· ,δ1)x) =
1

(t +
√

20)2

e−t

2

(
x30

|x|29 + 2

)
+

e−t

2


∣∣∣∣R( 9

8 ,
2
7 ,

3
5 ,

7
3 )x

∣∣∣∣27

1 +
(
R( 9

8 ,
2
7 ,

3
5 ,

7
3 )x

)26

 + 1

 . (4.2)

By direct computation, we have

| f (t, u, v)| ≤
e−t

(t +
√

20)2

[
1
2

(|u| + |v|) + 1
]

:= p(t)ψ (|u| + |v|) ,

which yields that (H1) is satisfied when p(t) =
e−t

(t +
√

20)2
and ψ(y) =

y
2

+ 1. Therefore, there exists

a constant M > 0.9 that satisfies (H2). By Theorem 3.1, the boundary value problem (4.1), with f
defined by (4.2), has at least one solution on

[
0, 13

4

]
.

(ii) If f : [0, 13/4] × R × R→ R is defined by

f (t, x,R(δm,··· ,δ1)x) =
cos2 πt

2(t + 70)

[
2
(
x + R( 9

8 ,
2
7 ,

3
5 ,

7
3 )x

)2
+ 1

]
, (4.3)

then we have
| f (t, u, v)| ≤

1
2(t + 70)

[
2(u + v)2 + 1

]
.

We choose p(t) =
1

2(t + 70)
and ψ(y) = 2y2 + 1. Then ‖p‖ = 1/140, G = 2 and Q = 1. Hence,

the inequality 4GQ‖p‖2Λ2
0Φ2

1
(1−Φ2)2 ≈ 0.9494 < 1 holds. Therefore, by Corollary 3.1 (iii), the boundary value

problem (4.1), with f defined by (4.3), has at least one solution on
[
0, 13

4

]
.

(iii) Assume the function f : [0, 13/4] × R × R→ R is defined by

f (t, x,R(δm,··· ,δ1)x) =
e−t2

(t + 25)2

[
2 x2 + |x|
1 + 2|x|

+ R( 9
8 ,

2
7 ,

3
5 ,

7
3 )x

]
+

1
4
.

It is obvious that

| f (t, x1, x2) − f (t, y1, y2)| ≤
e−t2

(t + 25)2
(|x1 − y1| + |x2 − y2|) (4.4)

≤
1

625
(|x1 − y1| + |x2 − y2|) . (4.5)
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Thus, (H3) is satisfied with L = 1
625 . By the given data we can compute that LΛ0Φ1 + Φ2 ≈ 0.7475 < 1.

Therefore, by Theorem 3.2, the boundary value problem (4.1), with f defined by (4.4), has a unique
solution on

[
0, 13

4

]
.

Example 4.2. The functions y(t) =

( t
6

)4
, t ∈ [0, 4] and x(t) = t3, t ∈ [0, 3], are analytic solutions of the

following boundary value problems with iterated fractional integral (RHR) of the form:
(HD

3
2 ,

1
2 y)(t) =

1
36

R( 1
4 ,

1
2 ,

5
4 )y

1
4 (t), t ∈ [0, 4] ,

y (0) = 0, y (4) = 1050I
3
4 HI

1
2 I

9
4 y (2) ,

(4.6)

and (HRH): 
(HD

3
2 ,

1
2 x)(t) =

18
3√20

R( 3
20 ,

1
3 ,

7
20 )x

1
3 (t), t ∈ [0, 3],

x (0) = 0, x (3) =
4
√

3
Γ

(
35
8

)
HI

1
8 I

3
8 HI

1
2 x

(
3
2

)
,

(4.7)

respectively.

Indeed, by direct computations, we have

(HD
3
2 ,

1
2 y)(t) =

Γ(5)
Γ(7/2)64 t

5
2 =

1
36

R( 1
4 ,

1
2 ,

5
4 )y

1
4 (t)

and

(HD
3
2 ,

1
2 x)(t) =

Γ(4)
Γ(5/2)

t
3
2 =

18
3√20

R( 3
20 ,

1
3 ,

7
20 )x

1
3 (t),

which satisfy the first equation of (4.6) and (4.7), respectively. Clearly, the conditions y(0) = 0 and
x(0) = 0 are satisfied. Finally,

1050I
3
4 HI

1
2 I

9
4 y (2) =

Γ(5)
Γ(8)

1050(25/4)−1/227 = 44 = y (4) ,

and

4
√

3
Γ

(
35
8

)
HI

1
8 I

3
8 HI

1
2 x

(
3
2

)
= 27 = x(3).

Therefore, the analytic solutions of problems (4.6) and (4.7) are claimed.

5. Conclusions

In this paper we studied a fractional boundary value problem, in which a differential equation
with Hilfer fractional derivative is combined with iterated fractional integral boundary conditions of
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Riemann-Liouville and Hadamard type. As far as we know, this combination appears in the literature
for the first time. Firstly, we transformed the given nonlinear fractional boundary value problem
into a fixed point problem. Then, by applying Banach’s contraction mapping principle and Leray-
Schauder nonlinear alternative, we established our main existence and uniqueness results. Furthermore,
some numerical examples are illustrated to support the theoretical results. Our results are new in
the given configuration and enrich the literature on the new topic of boundary value problems for
fractional differential equations of Hilfer type with iterated boundary conditions of Riemann-Liouville
and Hadamard type.
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