Research article

Dual Toeplitz operators on the orthogonal complement of the harmonic Bergman space

  • Received: 26 June 2024 Revised: 14 August 2024 Accepted: 23 August 2024 Published: 30 August 2024
  • MSC : 47B35

  • This paper aimed to give some partial answers to the zero-product problem and commutativity problem concerning dual Toeplitz operators with nonharmonic symbols on the orthogonal complement of the harmonic Bergman space. Using the symbol map, we described the necessary condition for $ S_{\varphi_1}S_{\varphi_2}\cdots S_{\varphi_N} = 0 $ with radial symbols. Furthermore, we established the sufficient and necessary conditions for $ S_{\varphi}S_{ \psi} = S_{\psi}S_{\varphi} $ with $ \varphi(z) = az^{p_1}\overline{z}^{q_1}+bz^{p_2}\overline{z}^{q_2} $ and $ \psi(z) = z^{s}\overline{z}^{t} $.

    Citation: Lijun Liu. Dual Toeplitz operators on the orthogonal complement of the harmonic Bergman space[J]. AIMS Mathematics, 2024, 9(9): 25413-25437. doi: 10.3934/math.20241241

    Related Papers:

  • This paper aimed to give some partial answers to the zero-product problem and commutativity problem concerning dual Toeplitz operators with nonharmonic symbols on the orthogonal complement of the harmonic Bergman space. Using the symbol map, we described the necessary condition for $ S_{\varphi_1}S_{\varphi_2}\cdots S_{\varphi_N} = 0 $ with radial symbols. Furthermore, we established the sufficient and necessary conditions for $ S_{\varphi}S_{ \psi} = S_{\psi}S_{\varphi} $ with $ \varphi(z) = az^{p_1}\overline{z}^{q_1}+bz^{p_2}\overline{z}^{q_2} $ and $ \psi(z) = z^{s}\overline{z}^{t} $.



    加载中


    [1] K. Zhu, Operator theory in function spaces, 2 Eds., American Mathematical Society, 2007. https://doi.org/10.1090/surv/138
    [2] B. Choe, Y. Lee, Commuting Toeplitz operators on the harmonic Bergman space, Michigan Math. J., 46 (1999), 163–174. https://doi.org/10.1307/MMJ/1030132367 doi: 10.1307/MMJ/1030132367
    [3] K. Sttroethoff, D. Zheng, Algebraic and spectral properties of dual Toeplitz operators, Trans. Amer. Math. Soc., 354 (2002), 2495–2520. https://doi.org/10.1090/S0002-9947-02-02954-9 doi: 10.1090/S0002-9947-02-02954-9
    [4] K. Stroethoff, D. Zheng, Products of Hankel and Toeplitz operators on the Bergman space, J. Funct. Anal., 169 (1999), 289–313. https://doi.org/10.1006/jfan.1999.3489 doi: 10.1006/jfan.1999.3489
    [5] Y. Hu, Y. Lu, Y. Yang, Properties of dual Toeplitz operators on the orthogonal complement of the pluriharmonic Bergman space of the unit ball, Fac. Sci. Math., 36 (2022), 4265–4276. https://doi.org/10.2298/fil2212265h doi: 10.2298/fil2212265h
    [6] Y. Lu, Commuting dual Toeplitz operators with pluriharmonic symbols, J. Math. Anal. Appl., 302 (2005), 149–156. https://doi.org/10.1016/j.jmaa.2004.07.046 doi: 10.1016/j.jmaa.2004.07.046
    [7] Y. Lu, J. Yang, Commuting dual Toeplitz operators on weighted Bergman spaces of the unit ball, Acta Math. Sin. Engl. Ser., 27 (2011), 1725–1742. https://doi.org/10.1007/s10114-011-8577-1 doi: 10.1007/s10114-011-8577-1
    [8] Y. Lu, S. Shang, Commuting dual Toeplitz operators on the polydisk, Acta Math. Sin. Engl. Ser., 23 (2007), 857–868. https://doi.org/10.1007/s10114-005-0877-x doi: 10.1007/s10114-005-0877-x
    [9] T. Yu, S. Wu, Commuting dual Toeplitz operators on the orthogonal complement of the Dirichlet space, Acta Math. Sin., Engl. Ser., 25 (2009), 245–252. https://doi.org/10.1007/s10114-008-7109-0 doi: 10.1007/s10114-008-7109-0
    [10] T. Yu, Operators on the orthogonal complement of the Dirichlet space, J. Math. Anal. Appl., 357 (2009), 300–306. https://doi.org/10.1016/j.jmaa.2009.04.019 doi: 10.1016/j.jmaa.2009.04.019
    [11] T. Yu, Operators on the orthogonal complement of the Dirichlet space (II), Sci. China Math., 54 (2011), 2005–2012. https://doi.org/10.1007/s11425-011-4259-9 doi: 10.1007/s11425-011-4259-9
    [12] Y. Peng, X. Zhao, Dual Toeplitz operators on the orthogonal complement of the harmonic Bergman space, Acta Math. Sin. Engl. Ser., 37 (2021), 1143–1155. https://doi.org/10.1007/s10114-021-0315-8 doi: 10.1007/s10114-021-0315-8
    [13] J. Yang, Y. Lu, Commuting dual Toeplitz operators on the harminic Bergman space, Sci. China Math., 58 (2015), 1461–1472. https://doi.org/10.1007/s11425-014-4940-x doi: 10.1007/s11425-014-4940-x
    [14] Y. Chen, T. Yu, Y. Zhao, Dual Toeplitz operators on orthogonal complement of the harmonic Dirichlet space, Acta Math. Sin. Engl. Ser., 33 (2017), 383–402. https://doi.org/10.1007/s10114-016-5779-6 doi: 10.1007/s10114-016-5779-6
    [15] C. Wang, X. Zhao, Hyponormal dual Toeplitz operators on the orthogonal complement of the harmonic Bergman space, Acta. Math. Sin. Engl. Ser., 39 (2023), 846–862. https://doi.org/10.1007/s10114-023-1382-9 doi: 10.1007/s10114-023-1382-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(513) PDF downloads(49) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog