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1. Introduction

Throughout this paper, we use D to denote the open unit disk on the complex plane C. Let

dA(z) =
1
π

dxdy

be the Lebesgue area measure on D, normalized so that the measure of D is 1. It is well-known that
L2(D, dA) is the Hilbert space of square integrable functions with the inner product

⟨ f , g⟩ =
∫
D

f (z)g(z)dA(z). (1.1)

The Bergman space L2
a is the closed subspace of L2(D, dA) consisting of analytic functions onD, which

is a reproducing kernel Hilbert space and its reproducing kernel (at λ ∈ D) is given by

Kz(w) =
1

(1 − zw)2 , w ∈ D. (1.2)

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241241


25414

Letting P be the orthogonal projection from L2(D, dA) onto L2
a, we have

P f (z) = ⟨ f ,Kz⟩ (1.3)

for every f ∈ L2(D, dA) and z ∈ D. For more details about the function theory and operator theory on
the Bergman space, one can consult Zhu’s book [1].

The harmonic Bergman space L2
h is the closed subspace of L2(D, dA) consisting of all complex-

valued harmonic functions on D. Observe that L2
h can be decomposed as

L2
h = zL2

a ⊕ L2
a, (1.4)

where L2
a denotes the complex conjugate of L2

a. It is easy to check that the function

Rz(w) = Kz(w) + Kz(w) − 1, (w ∈ D) (1.5)

is the reproducing kernel (at λ ∈ D) for the harmonic Bergman space L2
h. Denoting the orthogonal

projection from L2(D, dA) onto L2
h by Q, then

Q f (z) = ⟨ f ,Rz⟩ (1.6)

for each f ∈ L2(D, dA) and z ∈ D. Using (1.5), we obtain that

Q f (z) = P f (z) + P( f )(z) − (P f )(0) (1.7)

for all f ∈ L2(D, dA) and z ∈ D. According to (1.7), routine calculations yield that

(I − Q)(znzm) =

znzm
− m−n+1

m+1 zm−n, m > n,

znzm
− n−m+1

n+1 zn−m, m ⩽ n.
(1.8)

Additionally, we refer to the paper [2] for more knowledge about the harmonic Bergman space.
The Toeplitz operator and the Hankel operator with symbol φ ∈ L∞(D, dA) (the collection of all

essentially bounded functions on the unit disk) on the harmonic Bergman space L2
h are defined by

Tφ f = Q(φ f ) (1.9)

and

Hφ f = (I − Q)(φ f ), (1.10)

respectively. Under the decomposition

L2(D, dA) = L2
h ⊕ (L2

h)⊥,

the multiplication operator Mφ with symbol φ can be represented as

Mφ =

(
Tφ H∗

φ

Hφ S φ

)
, (1.11)
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where the operator S φ is defined by

S φ f = (I − Q) f , f ∈ (L2
h)⊥. (1.12)

In fact, S φ is bounded and linear on (L2
h)⊥ when φ ∈ L∞(D, dA). The operator S φ is called the dual

Toeplitz operator with symbol φ. The following elementary properties of dual Toeplitz operators on
(L2

a)⊥ can be founded in [3]:
(1) ∥S φ∥ ⩽ ∥φ∥∞;
(2) S ∗φ = S φ;
(3) S αφ+βψ = αS φ + βS ψ for all φ, ψ ∈ L∞(D, dA) and all complex constants α, β;
one can easily verify that the above conclusions also hold for dual Toeplitz operators on (L2

h)⊥ using
the definition of S φ.

The concept of “dual Toeplitz operator” was first introduced and investigated by Stroethoff and
Zheng on the orthogonal complement of the Bergman space; see [3, 4]. Since then, researchers have
extended the spectral theory and algebraic properties of dual Toeplitz operators on (L2

a)⊥ established
in [3] to the setting of dual Toeplitz operators on the orthogonal complements of various function
spaces. For instance, the Bergman space over the unit ball ([5–7]), the Bergman space over the
polydisk ([8]), the Dirichlet space ([9–11]), the harmonic Bergman space ([12, 13]), and the harmonic
Dirichlet space ([14]).

Recently, the investigation concerning dual Toeplitz operators on the orthogonal complement of
the harmonic Bergman space (L2

h)⊥ has attracted the attention of many scholars. In 2015, Yang and
Lu [13] obtained a complete characterization for the commuting dual Toeplitz operators on (L2

h)⊥ with
bounded harmonic symbols. However, the corresponding commutativity problem for dual Toeplitz
operators with nonharmonic symbols is still open. In 2021, Peng and Zhao [12] characterized the
boundedness, compactness, spectral structure, and algebraic properties of dual Toeplitz operators on
(L2

h)⊥. In addition, Wang and Zhao [15] established a necessary and sufficient condition for dual
Toeplitz operators with nonharmonic symbols of the form

φ(z) = azn1zm1 + bzn2zm2

to be hypo-normal on (L2
h)⊥, where n1, n2,m1,m2 are nonnegative integers and a, b are complex

numbers.
Although many scholars have studied the properties of dual Toeplitz operators, there are few results

on dual Toeplitz operators with nonharmonic symbols. In this paper, we try to study when the product
of two dual Toeplitz operators with radial symbols equals zero and when two dual Toeplitz operators
with nonharmonic symbols commute on the orthogonal complement of the harmonic Bergman space.
As the function theory of (L2

h)⊥ is much more complicated than that of (L2
a)⊥, it is quite difficult to solve

the zero-product problem and the commutativity problem mentioned above in general cases. In order
to seek the breakthrough point of those two problems, in the present paper we consider some special
radial symbols and quasi-homogeneous symbols, and give certain partial answers.

The organization of this paper is as follows. In Section 2, we will show that there exists an index k
such that φk = 0 a.e. on D if

N∏
k=1

S φk = 0
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in the case of

φk(z) =
∞∑

m=0

ak,m|z|m, k = 1, 2, · · · ,N, (1.13)

where N is an arbitrary positive integer and each ak,m is a constant. Moreover, in Section 3 we give a
characterization for

S φS ψ = S ψS φ

on (L2
h)⊥ if

φ(z) = azp1zq1 + bzp2zq2

and
ψ(z) = zszt,

where a, b ∈ C such that a , b and p1, p2, q1, q2, s, t are all nonnegative integers.

2. The zero-product problem for dual Toeplitz operators

In this section, we investigate the zero-product problem concerning dual Toeplitz operators with
some special symbols on the orthogonal complement of the harmonic Bergman space (L2

h)⊥ via the
symbol map, which was established in Lemma 2.1 [12, Theorem 4.1]. For the sake of completeness,
we state the result on the symbol map of dual Toeplitz operators on (L2

h)⊥ as follows:

Lemma 2.1. There is a contractive C∗-homomorphism ρ from the dual Toeplitz algebra T(L∞(D, dA))
to L∞(D, dA) such that ρ(S φ) = φ for each φ ∈ L∞(D, dA).

Let us begin with dual Toepitz operators with bounded harmonic symbols.

Proposition 2.2. Suppose that φ1, φ2, · · · , φN are N bounded harmonic functions on the unit disk D. If

S φ1S φ2 · · · S φN = 0,

then there exists k ∈ {1, 2, · · · ,N} such that φk = 0.

Proof. By Lemma 2.1, we have that
φ1φ2 · · ·φN = 0

if
S φ1S φ2 · · · S φN = 0.

Then, applying the uniqueness theorem of harmonic functions, we deduce that there exist some
k ∈ {1, 2, · · · ,N} such that φk = 0. □

In the following proposition, we solve the zero-product problem for two dual Toeplitz operators

with symbols of the form
∞∑

n=0
cn|z|n, where each cn is a complex constant.

AIMS Mathematics Volume 9, Issue 9, 25413–25437.



25417

Proposition 2.3. Suppose that

φ(z) =
∞∑

n=0

an|z|n

and

ψ(z) =
∞∑

m=0

bm|z|m

are two bounded functions on the unit disk D. If S φS ψ = 0, then φ = 0 or ψ = 0.

Proof. If S φS ψ = 0, then we have by Lemma 2.1 that φψ = 0. Note that

φ(z)ψ(z) =
∞∑

k=0

ck|z|k, (2.1)

where

ck =

k∑
l=0

albk−l.

Thus, we have ck = 0 for all k ⩾ 0. In particular, c0 = a0b0 = 0. Then, we consider the following three
cases:

Case 1. a0 = 0, b0 , 0. In this case, we have that

0 = c1 = a1b0 + a0b1 =⇒ a1 = 0; (2.2)
0 = c2 = a2b0 + a1b1 + a0b2 =⇒ a2 = 0. (2.3)

Continuing this process, we obtain that

0 = akb0 + ak−1b1 + · · · + a1bk−1 + a0bk =⇒ ak = 0 (2.4)

for k = 1, 2, · · · . This yields that an = 0 for all n ⩾ 0.
Case 2. a0 , 0, b0 = 0. In this case, we get that

0 = c1 = a1b0 + a0b1 =⇒ b1 = 0; (2.5)
0 = c2 = a2b0 + a1b1 + a0b2 =⇒ b2 = 0. (2.6)

Using the same argument as the one used in Case 1, we conclude that

0 = akb0 + ak−1b1 + · · · + a1bk−1 + a0bk =⇒ bk = 0 (2.7)

for k = 1, 2, · · · . It follows that bm = 0 for all m ⩾ 0.
Case 3. a0 = 0 and b0 = 0. In this case, we have

φ(z) =
∞∑

n=1

an|z|n

and

ψ(z) =
∞∑

m=1

bm|z|m.

Then, repeating the arguments used in the proof of Cases 1 and 2, we can show that φ = 0 or ψ = 0.
This completes the proof of Proposition 2.3. □
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The next theorem shows that the previous proposition can be generalized to the case of the product
of arbitrary finitely many dual Toeplitz operators.

Theorem 2.4. Suppose that

φk(z) =
∞∑

m=0

ak,m|z|m, k = 1, 2, · · · ,N, (2.8)

which are N bounded functions on the unit disk D. If

S φ1S φ2 · · · S φN = 0,

then there exist some k ∈ {1, 2, · · · ,N} such that φk = 0.

Proof. Since
S φ1S φ2 · · · S φN = 0,

we again conclude by Lemma 2.1 that
φ1φ2 · · ·φN = 0

on the disk D. Observe that
φ1φ2 · · ·φN = φ1(φ2φ3 · · ·φN)

and φ2φ3 · · ·φN can be written as follows:

(φ2φ3 · · ·φN)(z) =
∞∑

l=0

cl|z|l. (2.9)

Applying the conclusion of Proposition 2.3, we obtain that

φ1 = 0 or φ2φ3 · · ·φN = 0.

If φ1 = 0, then we are done. Otherwise, we have that

0 = φ2φ3 · · ·φN = φ2(φ3 · · ·φN). (2.10)

By using the same method as the one used in the previous paragraph, we deduce that

φ2 = 0 or φ3φ4 · · ·φN = 0.

Then, repeating this process yields the desired result. □

3. The commutativity problem for dual Toeplitz operators

In this section, we mainly study the commuting dual Toeplitz operators with some special quasi-
homogeneous symbols on the orthogonal complement of the harmonic Bergman space (L2

h)⊥. To do
so, we need the following lemma, which can be proven by direct calculations.
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Lemma 3.1. For any positive integers s,m, n with m > n, we have

(1) Q(|z|sznzm) = 2(m−n+1)
s+2m+2 zm−n;

(2) Q(|z|szn) = 2(n+1)
s+2n+2zn;

(3) Q(|z|szn) = 2(n+1)
s+2n+2zn;

(4) Q(znzm) = m−n+1
m+1 zm−n;

(5) Q(zmzn) = m−n+1
m+1 zm−n.

To study the commuting problem for the dual Toeplitz operators on the orthogonal complement of
the harmonic Bergman space, we first consider the simplest radial symbol |z|n.

Proposition 3.2. Suppose that
φ(z) = |z|s and ψ(z) = |z|t,

where s, t are positive integers. Then,
S φS ψ = S ψS φ

if, and only if, φ = ψ.

Proof. The sufficiency is obvious, and we need only to prove the necessity. By (1.8) in Section 1, we
see that

(zz2
−

2
3

z) ∈ (L2
h)⊥.

Since
S φS ψ = S ψS φ,

we have

S φS ψ

(
zz2
−

2
3

z
)
= S ψS φ

(
zz2
−

2
3

z
)
. (3.1)

Elementary calculations give us that

S φ

(
zz2
−

2
3

z
)
= (I − Q)

(
|z|szz2

−
2
3
|z|sz

)
= |z|szz2

−
2
3
|z|sz −

( 4
s + 6

−
8

3s + 12

)
z

(3.2)

and

S ψS φ

(
zz2
−

2
3

z
)
= (I − Q)

[
|z|s+tzz2

−
2
3
|z|s+tz −

( 4
s + 6

−
8

3s + 12

)
|z|tz

]
= |z|s+tzz2

−
2
3
|z|s+tz −

( 4
s + 6

−
8

3s + 12

)
|z|tz −

4
s + t + 6

z

+
8

3(s + t + 4)
z +

( 4
s + 6

−
8

3s + 12

) 4
t + 4

z.

(3.3)
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Similarly, we have that

S φS ψ

(
zz2
−

2
3

z
)
= (I − Q)

[
|z|s+tzz2

−
2
3
|z|s+tz −

( 4
t + 6

−
8

3t + 12

)
|z|sz

]
= |z|s+tzz2

−
2
3
|z|s+tz −

( 4
t + 6

−
8

3t + 12

)
|z|sz −

4
s + t + 6

z

+
8

3(s + t + 4)
z +

( 4
t + 6

−
8

3t + 12

) 4
s + 4

z.

(3.4)

Combining (3.1), (3.3), and (3.4) gives

0 =
( 4

s + 6
−

8
3s + 12

)
|z|tz −

( 4
t + 6

−
8

3t + 12

)
|z|sz

−
[( 4

s + 6
−

8
3s + 12

) 4
t + 4

−
( 4
t + 6

−
8

3t + 12

) 4
s + 4

]
z.

(3.5)

If s , t, then the coefficients of |z|tz and |z|sz are zero. This implies that

4
s + 6

−
8

3s + 12
= 0 (3.6)

and

4
t + 6

−
8

3t + 12
= 0. (3.7)

It follows that s = t = 0, which is a contradiction, completing the proof. □

The next theorem shows that Proposition 3.2 can be extended to a general case.

Theorem 3.3. Let
φ(z) = zpzq and ψ(z) = zszt,

where p, q, s, t are all nonnegative integers. Then, S φS ψ = S ψS φ if, and only if, one of the following
conditions holds:

(1) φ = cψ for some constant c;
(2) φ and ψ are both analytic;
(3) φ and ψ are both co-analytic;
(4) Either φ or ψ is constant.

In order to simplify the proof of Theorem 3.3, we require the following lemma:

Lemma 3.4. Let

f (x) = a
x − s + t
x + t + 1

− a
x(x − s + t)

(x + 1)(x + t)
− b

x − p + q
x + q + 1

+ b
x(x − p + q)

(x + 1)(x + q)
, (3.8)

where s, t, p, q ⩾ 0, and a, b ∈ C. If there exist some M such that f (x) ≡ 0 when x > M, then at−bq = 0.
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Proof. Since

x − s + t
x + t + 1

−
x(x − s + t)

(x + 1)(x + t)
=

(x − s + t)t
(x + t + 1)(x + 1)(x + t)

(3.9)

and

x − p + q
x + q + 1

−
x(x − p + q)

(x + 1)(x + q)
=

(x − p + q)q
(x + q + 1)(x + 1)(x + q)

, (3.10)

we have

0 = a
(x − s + t)t

(x + t + 1)(x + 1)(x + t)
− b

(x − p + q)q
(x + q + 1)(x + 1)(x + q)

=
1

x + 1

[
a

(x − s + t)t
(x + t + 1)(x + t)

− b
(x − p + q)q

(x + q + 1)(x + q)

]
=

a(x − s + t)(x + q + 1)(x + q)t − b(x − p + q)(x + t + 1)(x + t)q
(x + 1)(x + t + 1)(x + t)(x + q + 1)(x + q)

, x > M.

(3.11)

Let

g(x) = a(x − s + t)(x + q + 1)(x + q)t − b(x − p + q)(x + t + 1)(x + t)q. (3.12)

Then, g is a polynomial and (3.11) implies that g has infinitely many zeros. Thus, g ≡ 0 and, hence,
the coefficient of x3 is zero, i.e., at − bq = 0. □

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. The sufficiency is obvious, so we only need to show the necessity. Since

S φS ψ = S ψS φ and zzm
−

m
m + 1

zm−1
∈ (L2

h)⊥,

we have

S φS ψ

(
zzm
−

m
m + 1

zm−1
)
= S ψS φ

(
zzm
−

m
m + 1

zm−1
)

(3.13)

for all integers m satisfying

(m − 1) > max{s − t, s − t + p − q, 0}.

Notice that

S zszt

(
zzm
−

m
m + 1

zm−1
)
= (I − Q)

(
zs+1zm+t

−
m

m + 1
zszm+t−1

)
= zs+1zm+t

−
m

m + 1
zszm+t−1

− Q(zs+1zm+t) + Q
( m
m + 1

zszm+t−1
)

= zs+1zm+t
−

m
m + 1

zszm+t−1
−

m − s + t
m + t + 1

zm−s+t−1
+

m(m − s + t)
(m + 1)(m + t)

zm−s+t−1

= zs+1zm+t
−

m
m + 1

zszm+t−1
−

[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]
zm−s+t−1,

(3.14)
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where the third equality follows from Lemma 3.1. Moreover, we have

S zpzqS zszt

(
zzm
−

m
m + 1

zm−1
)

= (I − Q)
{
zs+p+1zm+t+q

−
m

m + 1
zs+pzm+t+q−1

−
[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]
zpzm−s+t+q−1

}
= zs+p+1zm+t+q

−
m

m + 1
zs+pzm+t+q−1

−
[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]
zpzm−s+t+q−1

− Q(zs+p+1zm+t+q) +
m

m + 1
Q(zs+pzm+t+q−1) +

[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]
Q(zpzm−s+t+q−1)

= zs+p+1zm+t+q
−

m
m + 1

zs+pzm+t+q−1
−

[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]
zpzm−s+t+q−1

−
m − s + t − p + q

m + t + q + 1
zm−s+t−p+q−1

+
m(m − s + t − p + q)
(m + 1)(m + t + q)

zm−s+t−p+q−1

+
[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]m − s + t − p + q
m − s + t + q

zm−s+t−p+q−1.

(3.15)

On the other hand,

S zsztS zpzq

(
zzm
−

m
m + 1

zm−1
)

= (I − Q)
{
zs+p+1zm+t+q

−
m

m + 1
zs+pzm+t+q−1

−
[m − p + q
m + q + 1

−
m(m − p + q)

(m + 1)(m + q)

]
zszm−p+t+q−1

}
= zs+p+1zm+t+q

−
m

m + 1
zs+pzm+t+q−1

−
[m − p + q
m + q + 1

−
m(m − p + q)

(m + 1)(m + q)

]
zszm−p+t+q−1

−
m − s + t − p + q

m + t + q + 1
zm−s+t−p+q−1

+
m(m − s + t − p + q)
(m + 1)(m + t + q)

zm−s+t−p+q−1

+
[m − p + q
m + q + 1

−
m(m − p + q)

(m + 1)(m + q)

]m − s + t − p + q
m − p + t + q

zm−s+t−p+q−1.

(3.16)

It follows from (3.13) that

0 =(S zpzqS zszt − S zsztS zpzq)
(
zzm
−

m
m + 1

zm−1
)

=
[m − p + q
m + q + 1

−
m(m − p + q)

(m + 1)(m + q)

]
zszm−p+t+q−1

−
[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]
zpzm−s+t+q−1

+
[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]m − s + t − p + q
m − s + t + q

zm−s+t−p+q−1

−
[m − p + q
m + q + 1

−
m(m − p + q)

(m + 1)(m + q)

]m − s + t − p + q
m − p + t + q

zm−s+t−p+q−1

=
[m − p + q
m + q + 1

−
m(m − p + q)

(m + 1)(m + q)

]
|z|2szm−p+t+q−s−1

−
[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]
|z|2pzm−s+t+q−p−1

+
[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]m − s + t − p + q
m − s + t + q

zm−s+t−p+q−1

−
[m − p + q
m + q + 1

−
m(m − p + q)

(m + 1)(m + q)

]m − s + t − p + q
m − p + t + q

zm−s+t−p+q−1.

(3.17)

AIMS Mathematics Volume 9, Issue 9, 25413–25437.



25423

Next, we need to consider the following five cases:
Case 1. p , s, p , 0, and s , 0. Then, the coefficients of |z|2pzm−s+t+q−p−1 and |z|2szm−s+t+q−p−1 are

both zero, which implies that 
m−s+t
m+t+1 −

m(m−s+t)
(m+1)m+t = 0,

m−p+q
m+q+1 −

m(m−p+q)
(m+1)(m+q) = 0.

(3.18)

By Lemma 3.4, we obtain that t = q = 0. Hence, (2) holds.
Case 2. p = s, p , 0, and s , 0. In this case, we have

0 =(S zpzqS zszt − S zsztS zpzq)
(
zzm
−

m
m + 1

zm−1
)

=
[m − p + q
m + q + 1

−
m(m − p + q)

(m + 1)(m + q)
−

m − s + t
m + t + 1

+
m(m − s + t)

(m + 1)(m + t)

]
|z|2szm−p+t+q−s−1

+
[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]m − s + t − p + q
m − s + t + q

zm−s+t−p+q−1

−
[m − p + q
m + q + 1

−
m(m − p + q)

(m + 1)(m + q)

]m − s + t − p + q
m − p + t + q

zm−s+t−p+q−1.

(3.19)

This gives that the coefficient of |z|2szm−p+t+q−s−1 is zero, i.e.,

m − p + q
m + q + 1

−
m(m − p + q)

(m + 1)(m + q)
−

m − s + t
m + t + 1

+
m(m − s + t)

(m + 1)(m + t)
= 0. (3.20)

Using Lemma 3.4, we conclude that t = q. Hence, (1) holds.
Case 3. p , 0 and s = 0. Then, the coefficient of |z|2pzm−s+t+q−p−1 is zero. Hence, we have

m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)
= 0. (3.21)

Applying Lemma 3.4, we get t = 0, i.e., ψ is constant.
Case 4. s , 0 and p = 0. Then, the coefficients of |z|2szm−s+t+q−p−1 are zero, which is equivalent to

m − p + q
m + q + 1

−
m(m − p + q)

(m + 1)(m + q)
= 0. (3.22)

It follows from Lemma 3.4 that q = 0. This implies that φ is constant.
Case 5. s = p = 0. This case is trivial.
This completes the proof of Theorem 3.3. □

In the rest of this section, we will study the commutativity problem for dual Toeplitz operators with
symbols of the form azp1zq1 + bzp2zq2 and zszt, where p1, p2, q1, q2, s, and t are all nonnegative integers.
To this end, we still require a number of lemmas as follows:

Lemma 3.5. Let
φ(z) = azp1zq1 + bzp2zq2 , ψ(z) = zszt,
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where s, t, p1, p2, q1, q2 are nonnegative integers. For m ∈ N large enough, we have(
S φS ψ − S ψS φ

)(
zzm
−

m
m + 1

zm−1
)

= a
[m − p1 + q1

m + q1 + 1
−

m(m − p1 + q1)
(m + 1)(m + q1)

]
|z|2szm−s+t−p1+q1−1

− a
[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]
|z|2p1zm−s+t−p1+q1−1

+ a
[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]m + q1 − p1 − s + t
m + q1 − s + t

zm−s+t−p1+q1−1

− a
[m − p1 + q1

m + q1 + 1
−

m(m − p1 + q1)
(m + 1)(m + q1)

]m + q1 − p1 − s + t
m + q1 − p1 + t

zm−s+t−p1+q1−1

+ b
[m − p2 + q2

m + q2 + 1
−

m(m − p2 + q2)
(m + 1)(m + q2)

]
|z|2szm−s+t−p2+q2−1

− b
[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]
|z|2p2zm−s+t−p2+q2−1

+ b
[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]m + q2 − p2 − s + t
m + q2 − s + t

zm−s+t−p2+q2−1

− b
[m − p2 + q2

m + q2 + 1
−

m(m − p2 + q2)
(m + 1)(m + q2)

]m + q2 − p2 − s + t
m + q2 − p2 + t

zm−s+t−p2+q2−1.

(3.23)

Proof. This can be proven easily by elementary computations. □

Lemma 3.6. Let φ and ψ be the functions as in Lemma 3.5. For m ∈ N large enough, we have(
S φS ψ − S ψS φ

)(
zzm
−

m
m + 1

zm−1
)

= a
[m − q1 + p1

m + p1 + 1
−

m(m − q1 + p1)
(m + 1)(m + p1)

]
|z|2tzm−t+s−q1+p1−1

− a
[ m − t + s
m + s + 1

−
m(m − t + s)

(m + 1)(m + s)

]
|z|2q1zm−t+s−q1+p1−1

+ a
[ m − t + s
m + s + 1

−
m(m − t + s)

(m + 1)(m + s)

]m + p1 − q1 − t + s
m + p1 − t + s

zm−t+s−q1+p1−1

− a
[m − q1 + p1

m + p1 + 1
−

m(m − q1 + p1)
(m + 1)(m + p1)

]m + p1 − q1 − t + s
m + p1 − q1 + s

zm−t+s−q1+p1−1

+ b
[m − q2 + p2

m + p2 + 1
−

m(m − q2 + p2)
(m + 1)(m + p2)

]
|z|2tzm−t+s−q2+p2−1

− b
[ m − t + s
m + s + 1

−
m(m − t + s)

(m + 1)(m + s)

]
|z|2q2zm−t+s−q2+p2−1

+ b
[ m − t + s
m + s + 1

−
m(m − t + s)

(m + 1)(m + s)

]m + p2 − q2 − t + s
m + p2 − t + s

zm−t+s−q2+p2−1

− b
[m − q2 + p2

m + p2 + 1
−

m(m − q2 + p2)
(m + 1)(m + p2)

]m + p2 − q2 − t + s
m + p2 − q2 + s

zm−t+s−q2+p2−1.

(3.24)

Proof. This is a direct conclusion of Lemma 3.5. □
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In view of Lemma 3.5, we conclude that

0 = α1x2s+m−s+t−p1+q1−1 + α2x2p1+m−s+t−p1+q1−1 + α3xm−s+t−p1+q1−1

+ α4x2s+m−s+t−p2+q2−1 + α5x2p2+m−s+t−p2+q2−1 + α6xm−s+t−p2+q2−1

= xm−s+t−p1+q1−1(α1x2s + α2x2p1 + α3 + α4x2s+p1−q1−p2+q2

+ α5x2p2+p1−q1−p2+q2 + α6xp1−q1−p2+q2)

(3.25)

for all x ∈ (0, 1) if S φS ψ = S ψS φ, where the coefficients are given by:

α1 = a
m − p1 + q1

m + q1 + 1
− a

m(m − p1 + q1)
(m + 1)(m + q1)

, α2 = −a
m − s + t
m + t + 1

+ a
m(m − s + t)

(m + 1)(m + t)
,

α3 = a
[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]m + q1 − p1 − s + t
m + q1 − s + t

− a
[m − p1 + q1

m + q1 + 1
−

m(m − p1 + q1)
(m + 1)(m + q1)

]m + q1 − p1 − s + t
m + q1 − p1 + t

,

α4 = b
m − p2 + q2

m + q2 + 1
− b

m(m − p2 + q2)
(m + 1)(m + q2)

, α5 = −b
m − s + t
m + t + 1

+ b
m(m − s + t)

(m + 1)(m + t)
,

α6 = b
[m − s + t
m + t + 1

−
m(m − s + t)

(m + 1)(m + t)

]m + q2 − p2 − s + t
m + q2 − s + t

− b
[m − p2 + q2

m + q2 + 1
−

m(m − p2 + q2)
(m + 1)(m + q2)

]m + q2 − p2 − s + t
m + q2 − p2 + t

.

Notice that (3.25) is equivalent to

0 = α1x2s + α2x2p1 + α3 + α4x2s+p1−q1−p2+q2 + α5x2p2+p1−q1−p2+q2 + α6xp1−q1−p2+q2 . (3.26)

Similarly, we have by Lemma 3.6 that

0 = β1x2t+m−t+s−q1+p1−1 + β2x2q1+m−t+s−q1+p1−1 + β3xm−t+s−q1+p1−1

+ β4x2t+m−t+s−q2+p2−1 + β5x2q2+m−t+s−q2+p2−1 + β6xm−t+s−q2+p2−1

= xm−t+s−q1+p1−1(β1x2t + β2x2q1 + β3 + β4x2t−p1+q1+p2−q2

+ β5x2q2−p1+q1+p2−q2 + β6x−p1+q1+p2−q2)

(3.27)

for all x ∈ (0, 1) whenever
S φS ψ = S ψS φ,

where

β1 = a
m − q1 + p1

m + p1 + 1
− a

m(m − q1 + p1)
(m + 1)(m + p1)

, β2 = −a
m − t + s
m + s + 1

+ a
m(m − t + s)

(m + 1)(m + s)
,

β3 = a
[ m − t + s
m + s + 1

−
m(m − t + s)

(m + 1)(m + s)

]m + p1 − q1 − t + s
m + p1 − t + s

− a
[m − q1 + p1

m + p1 + 1
−

m(m − q1 + p1)
(m + 1)(m + p1)

]m + p1 − q1 − t + s
m + p1 − q1 + s

,

β4 = b
m − q2 + p2

m + p2 + 1
− b

m(m − q2 + p2)
(m + 1)(m + p2)

, β5 = −b
m − t + s
m + s + 1

+ b
m(m − t + s)

(m + 1)(m + s)
,
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β6 = b
[ m − t + s
m + s + 1

−
m(m − t + s)

(m + 1)(m + s)

]m + p2 − q2 − t + s
m + p2 − t + s

− b
[m − q2 + p2

m + p2 + 1
−

m(m − q2 + p2)
(m + 1)(m + p2)

]m + p2 − q2 − t + s
m + p2 − q2 + s

.

Clearly, (3.27) is equivalent to

0 = β1x2t + β2x2q1 + β3 + β4x2t−p1+q1+p2−q2 + β5x2q2−p1+q1+p2−q2 + β6x−p1+q1+p2−q2 . (3.28)

Using the same method as the one used in the proof of Lemma 3.4, we list without proof five lemmas
as follows:

Lemma 3.7. Let

f (x) =
[ x − s + t
x + t + 1

−
x(x − s + t)

(x + 1)(x + t)

] x + q2 − p2 − s + t
x + q2 − s + t

−
[ x − p2 + q2

x + q2 + 1
−

x(x − p2 + q2)
(x + 1)(x + q2)

] x + q2 − p2 − s + t
x + q2 − p2 + t

,

(3.29)

where s, t, p2, q2 are all nonnegative numbers. If there exist some M such that f (x) ≡ 0 when x > M,
then t = q2.

Lemma 3.8. Let

f (x) =a
[ x − s + t
x + t + 1

−
x(x − s + t)

(x + 1)(x + t)

] x + q1 − p1 − s + t
x + q1 − s + t

− a
[ x − p1 + q1

x + q1 + 1
−

x(x − p1 + q1)
(x + 1)(x + q1)

] x + q1 − p1 − s + t
x + q1 − p1 + t

+ b
[ x − s + t
x + t + 1

−
x(x − s + t)

(x + 1)(x + t)

] x + q2 − p2 − s + t
x + q2 − s + t

− b
[ x − p2 + q2

x + q2 + 1
−

x(x − p2 + q2)
(x + 1)(x + q2)

] x + q2 − p2 − s + t
x + q2 − p2 + t

,

(3.30)

where s, t, p1, p2, q1, q2 are all nonnegative numbers. If there exist some M such that f (x) ≡ 0 when
x > M, then

at − aq1 + bt − bq2 = 0.

Lemma 3.9. Let

f (x) =a
[ x − s + t
x + t + 1

−
x(x − s + t)

(x + 1)(x + t)

] x + q1 − p1 − s + t
x + q1 − s + t

− a
[ x − p1 + q1

x + q1 + 1
−

x(x − p1 + q1)
(x + 1)(x + q1)

] x + q1 − p1 − s + t
x + q1 − p1 + t

+ b
[ x − p2 + q2

x + q2 + 1
−

x(x − p2 + q2)
(x + 1)(x + q2)

]
,

(3.31)

where s, t, p1, p2, q1, q2 are all nonnegative numbers. If there exist some M such that f (x) ≡ 0 when
x > M, then

at − aq1 + bq2 = 0.

AIMS Mathematics Volume 9, Issue 9, 25413–25437.



25427

Lemma 3.10. Let

f (x) = − a
[ x − t + s
m + s + 1

−
x(x − t + s)

(x + 1)(x + s)

]
+ b

[ x − q2 + p2

x + p2 + 1
−

x(x − q2 + p2)
(x + 1)(x + p2)

]
− b

[ x − t + s
x + s + 1

−
x(x − t + s)

(x + 1)(x + s)

]
,

(3.32)

where s, t, p2, q2 are all nonnegative numbers. If there exist some M such that f (x) ≡ 0 when x > M,
then

as − bp2 + bs = 0.

Lemma 3.11. Let

f (x) = − a
[ x − s + t
x + t + 1

−
x(x − s + t)

(x + 1)(x + t)

]
+ a

[ x − s + t
x + t + 1

−
x(x − s + t)

(x + 1)(x + t)

] x + q1 − p1 − s + t
x + q1 − s + t

− a
[ x − p1 + q1

x + q1 + 1
−

x(x − p1 + q1)
(x + 1)(x + q1)

] x + q1 − p1 − s + t
x + q1 − p1 + t

+ b
[ x − s + t
x + t + 1

−
x(x − s + t)

(x + 1)(x + t)

] x + q2 − p2 − s + t
x + q2 − s + t

− b
[ x − p2 + q2

x + q2 + 1
−

x(x − p2 + q2)
(x + 1)(x + q2)

] x + q2 − p2 − s + t
x + q2 − p2 + t

,

(3.33)

where s, t, p1, p2, q1, q2 are all nonnegative numbers. If there exist some M such that f (x) ≡ 0 when
x > M, then

aq1 − bt + bq2 = 0.

We are now in the position to discuss the commutativity problem for dual Toeplitz operators with
symbols

φ(z) = azp1zq1 + bzp2zq2

and
ψ(z) = zszt.

Before giving a complete answer to such a problem, we need to analyze various situations for the
integers s, t, p j, and q j with j = 1, 2. Based on Theorem 3.3, we assume that a and b are both nonzero
in the following:

Proposition 3.12. Let
φ(z) = azp1zq1 + bzp2zq2

and
ψ(z) = zszt,

where a, b ∈ C, s, p1, p2 are positive and t, q1, q2 are nonnegative. In the case of s = p1 = p2, we have
that

S φS ψ = S ψS φ

if, and only if, φ = cψ for some constant c.
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Proof. Clearly, we only need to prove the necessity. Based on Lemma 3.5, we will consider the
following four cases:

Case 1. p1 − q1 − p2 + q2 = 0. Since p1 = p2, we have q1 = q2, which implies that

φ(z) = (a + b)zp1zq1 .

It follows from Theorem 3.3 that q1 = t.
Case 2. p1 − q1 − p2 + q2 = −2s. By (3.26), we have that α6 = 0 and α1 + α2 = 0. Now, combining

Lemmas 3.4 and 3.7 gives t = q1 = q2.

Case 3. p1 − q1 − p2 + q2 = 2s. Using (3.26) again, we deduce that α3 = 0 and α4 + α5 = 0. Thus,
we obtain by Lemmas 3.4 and 3.7 that t = q1 = q2.

Case 4. p1 − q1 − p2 + q2 is not equal to 0, not equal to −2s, and not equal to 2s. From (3.26), we
conclude that α3 = 0 and α6 = 0, which implies t = q1 = q2.

This finishes the proof of Proposition 3.12. □

Proposition 3.13. Let
φ(z) = azp1zq1 + bzp2zq2

and
ψ(z) = zszt,

where a, b ∈ C such that a , b, s, p1, p2 are positive and t, q1, q2 are nonnegative. If s = p1 , p2, then

S φS ψ = S ψS φ

if, and only if, t = q1 = q2 = 0.

Proof. In order to show the necessity, we need to consider the following five cases:
Case 1. p1 − q1 − p2 + q2 = 0. In this case, (3.26) can be rewritten as

0 = α1x2s + α2x2s + α3 + α4x2s + α5x2p2 + α6

= (α1 + α2 + α4)x2s + α5x2p2 + (α3 + α6).
(3.34)

Thus, α5 = 0 and α3 + α6 = 0. Applying Lemmas 3.4 and 3.8, we obtain t = 0 and

(a + b)t − aq1 − bq2 = 0. (3.35)

If q1 = 0 or q2 = 0, then t = q1 = q2 = 0 follows immediately.
Next, we consider the case that q1 , 0 and q2 , 0. Using

S φS ψ = S ψS φ

if, and only if,
S φS ψ = S ψS φ,

we have by (3.28) that

0 = β1x2t + β2x2q1 + β3 + β4x2t−p1+q1+p2−q2 + β5x2q2−p1+q1+p2−q2 + β6x−p1+q1+p2−q2

= β2x2q1 + β5x2q2 + (β1 + β3 + β4 + β6).
(3.36)
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Now we are going to analyze the following two sub-cases:

Sub-case 1.1. If q1 = q2, then p1 − q1 − p2 + q2 = 0 implies p1 = p2. This is a contradiction.

Sub-case 1.2. If q1 , q2, then β2 = β5 = 0. However, Lemma 3.4 tells us that s = 0, which is also a
contradiction.

Therefore, we obtain that t = q1 = q2 = 0 in Case 1.

Case 2. p1 − q1 − p2 + q2 = 2s. In this case, we have α3 = α4 = α5 = 0. It follows from Lemmas 3.4
and 3.7 that t = q1 = q2 = 0.

Case 3. p1 − q1 − p2 + q2 = −2s. In this case, α6 = 0 and α3 + α4 = 0. Thus, we have t = q2 and
at − aq1 + bq2 = 0 by Lemmas 3.7 and 3.9. Next, we are going to show that t = 0. Suppose not, we
assume that t > 0. Using (3.28), we have

0 = β1x2t + β2x2q1 + β3 + β4x2t−p1+q1+p2−q2 + β5x2q2−p1+q1+p2−q2 + β6x−p1+q1+p2−q2

= β1x2t + β2x2q1 + β3 + β4x2t+2s + β5x2t+2s + β6x2s.
(3.37)

Sub-case 3.1. If t + s , q1, then β4 + β5 = 0. However, Lemma 3.4 gives that s = p2, which
contradicts the assumption that s , p2.

Sub-case 3.2. If t + s = q1, then β2 + β4 + β5 = 0. It follows from Lemma 3.10 that

−as + bp2 − bs = 0. (3.38)

Substituting q1 = s + t, s = p1 and q2 = t into the equation p1 − q1 − p2 + q2 = −2s gives p2 = 2s.
Thus, (3.38) is reduced to (b − a)s = 0, but b − a , 0 yields s = 0, which contradicts that s > 0.

Consequently, we get t = 0 and q1 = q2 = 0 in Case 3.

Case 4. p1 − q1 − p2 + q2 = −2p2. By (3.26), we have

0 = (α1 + α2)x2s + α4x2s−2p2 + α6x−2p2 + (α3 + α5). (3.39)

It follows that α1+α2 = 0, α4 = 0, α6 = 0. Thus, we obtain by Lemmas 3.4 and 3.7 that t = q1 = q2 = 0.

Case 5. p1 − q1 − p2 + q2 is not equal to 0, 2s,−2s, or −2p2. In this case, we have that α3 = α4 =

α6 = 0. By Lemmas 3.4 and 3.7, we also obtain that t = q1 = q2 = 0.

This completes the proof of Proposition 3.13. □

Proposition 3.14. Let
φ(z) = azp1zq1 + bzp2zq2

and
ψ(z) = zszt,

where a, b ∈ C, s, p1, p2 are positive and t, q1, q2 are nonnegative. In the case of p1 = p2 , s, we have
that S φS ψ = S ψS φ if, and only if, t = q1 = q2 = 0.

Proof. Based on Lemma 3.5, we need to consider the following six cases:

Case 1. p1 − q1 − p2 + q2 = 0. Since p1 = p2, we have q1 = q2 and φ(z) = (a + b)zp1zq2 . It follows
from Theorem 3.3 that t = q1 = q2 = 0.
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Case 2. p1 − q1 − p2 + q2 = 2s. In this case, using (3.26) we obtain

0 = (α1 + α6)x2s + α2x2p1 + α3 + α4x4s + α5x2p1+2s. (3.40)

This implies that α1 + α6 = 0, α3 = 0, and α5 = 0. Applying Lemmas 3.4, 3.7, and 3.9, we obtain
t = 0, t = q1, and aq1 + bt − bq2 = 0. Hence, t = q1 = q2 = 0.

Case 3. p1 − q1 − p2 + q2 = 2p1. In this case, we have α3 = α4 = 0. By Lemmas 3.4 and 3.7, we
obtain that t = q1 and q2 = 0. If t > 0, then we have by (3.28) that

0 = (β1 + β2)x2t + β3 + β4x2t−2p1 + (β5 + β6)x−2p1 . (3.41)

Thus, β5 + β6 = 0. Using Lemma 3.9, we get p2 = 0, which is a contradiction. Hence, t = 0 and
q1 = q2 = 0.

Case 4. p1−q1− p2+q2 = −2s. By (3.26), we obtain that α2 = α6 = 0 and α3+α4 = 0. Combining
Lemmas 3.4, 3.7, and 3.9 gives t = 0, t = q2, and at − aq1 + bq2 = 0. This yields that t = q1 = q2 = 0.

Case 5. p1 − q1 − p2 + q2 = −2p1. Now we have α1 = α6 = 0. By Lemmas 3.4 and 3.7, we obtain
that q1 = 0 and t = q2. Next, we will show t = q2 = 0. If not, we obtain by (3.28) that β4 + β5 = 0, but
Lemma 3.4 gives that s = p2, which is a contradiction. Therefore, t = q1 = q2 = 0.

Case 6. p1 − q1 − p2 + q2 is not equal to 0, 2s,−2s, 2p1, or −2p1. In this case, we have α3 = α6 = 0.
Applying Lemma 3.4, we obtain q1 = t = q2, which means φ(z) = (a + b)zp1zt. It follows from
Theorem 3.3 again that t = q1 = q2 = 0.

This finishes the proof of Proposition 3.14. □

Proposition 3.15. Let
φ(z) = azp1zq1 + bzp2zq2

and
ψ(z) = zszt,

where a, b ∈ C, s, p1, p2 are positive and t, q1, q2 are nonnegative. If p1, p2, s are different from each
other, then

S φS ψ = S ψS φ

if, and only if, t = q1 = q2 = 0.

Proof. We first show that p1 − q1 − p2 + q2 , 0. If not, then we have by (3.26) that

0 = α1x2s + α2x2p1 + α3 + α4x2s+p1−q1−p2+q2 + α5x2p2+p1−q1−p2+q2 + α6xp1−q1−p2+q2

= (α1 + α4)x2s + α2x2p1 + α5x2p2 + (α3 + α6).
(3.42)

It follows that α2 = α1+α4 = 0. Combining this with Lemma 3.4, we obtain that t = 0 and aq1+bq2 = 0.
If q1 = q2, then p1 − q1 − p2 + q2 = 0 gives p1 = p2. This contradicts the hypothesis that p1 , p2. If
q1 , q2, then we have by (3.28) that β2 = 0. Then, it follows from Lemma 3.4 that s = 0, which is a
contradiction. Based on Lemma 3.5, we need only to consider the following five cases:

Case 1. p1 − q1 − p2 + q2 = 2s. In this case, we have α3 = α1 + α6 = 0. It follows from Lemmas 3.7
and 3.9 that t = q1 and aq1 + bt − bq2 = 0. If t > 0, then we obtain by (3.28) that

0 = β1x2t + β2x2q1 + β3 + β4x2t−p1+q1+p2−q2 + β5x2q2−p1+q1+p2−q2 + β6x−p1+q1+p2−q2

= (β1 + β2)x2t + β4x2t−2s + β5x2q2−2s + β6x−2s + β3.
(3.43)
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If q2 = 0, then β5 + β6 = 0. It follows from Lemma 3.9 that −bs + bs − bp2 = 0, i.e., p2 = 0. This
is a contradiction. If q2 , 0, then β6 = 0. By Lemma 3.7, we deduce that s = p2, which is also a
contradiction. Thus, t = 0. Moreover, t = q1 = q2 = 0.

Case 2. p1 − q1 − p2 + q2 = 2p1. In this case, we have α3 = α4 = 0. Using Lemmas 3.4 and 3.7,
we obtain that t = q1 and q2 = 0. Now we are going to show t = 0. Suppose that t > 0. It follows
from (3.28) that β5 + β6 = 0. Using Lemma 3.9, we conclude that p2 = 0, which is a contradiction. So,
we have t = q1 = q2 = 0.

Case 3. p1 − q1 − p2 + q2 = −2s. In this case, we have

0 = α1x2s + α2x2p1 + α3 + α4x2s+p1−q1−p2+q2 + α5x2p2+p1−q1−p2+q2 + α6xp1−q1−p2+q2

= α1x2s + α2x2p1 + α5x2p2−2s + α6x−2s + (α3 + α4),
(3.44)

which gives that α6 = α3 + α4 = 0.
Using Lemmas 3.7 and 3.9, we obtain that t = q2 and at − aq1 + bq2 = 0. If t = 0, then we deduce

that q1 = q2 = 0 immediately. If t > 0, then substituting t = q2 into (3.28), we get

0 = β1x2t + β2x2q1 + β3 + β4x2t−p1+q1+p2−q2 + β5x2q2−p1+q1+p2−q2 + β6x−p1+q1+p2−q2

= β1x2t + β2x2q1 + β3 + (β4 + β5)x2t+2s + β6x2s.
(3.45)

If q1 = 0, then β2 + β3 = 0. Lemma 3.9 implies that −as + as − ap1 = 0, i.e., p1 = 0, which is a
contradiction. If q1 , 0, then β3 = 0. It follows from Lemma 3.7 that s = p1, which contradicts that
s , p1. Therefore, we have t = q1 = q2 = 0.

Case 4. p1−q1− p2+q2 = −2p2. Using (3.26), we have that α1 = α6 = 0. Moreover, it follows from
Lemmas 3.4 and 3.7 that q1 = 0 and t = q2. If t = 0, then t = q1 = q2 = 0. If t > 0, then using (3.28),
we get that β4 + β5 = 0. However, Lemma 3.4 implies s = p2, which is a contradiction.

Case 5. p1 − q1 − p2 + q2 is not equal to 2s, 2p1, −2s, or −2p2. In this case, we have α3 = α6 = 0.
It follows from Lemma 3.7 that t = q1 = q2. If t , 0, then we have

0 = β1x2t + β2x2q1 + β3 + β4x2t−p1+q1+p2−q2 + β5x2q2−p1+q1+p2−q2 + β6x−p1+q1+p2−q2

= (β1 + β2)x2t + (β4 + β5)x2t−p1+q1+p2−q2 + β6x−p1+q1+p2−q2 + β3.
(3.46)

If −p1 + q1 + p2 − q2 = 2t, then β4 + β5 = 0. Applying Lemma 3.4, we have s = p2, which is a
contradiction. If −p1 + q1 + p2 − q2 , 2t, then β6 = 0. Using Lemma 3.7, we obtain that s = p2, which
contradicts that s , p2. Consequently, t = q1 = q2 = 0.

This finishes the proof of Proposition 3.15. □

Proposition 3.16. Let
φ(z) = azp1zq1 + bzp2zq2

and
ψ(z) = zszt,

where a, b ∈ C. If s = p1 = 0 and p2 ⩾ 1, then

S φS ψ = S ψS φ

if, and only if, ψ is constant.
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Proof. To show the necessity, we need to discuss the following two cases:
Case 1. p1 − q1 − p2 + q2 = −2p2. In this case, we have α4 + α6 = 0. By Lemma 3.9, we have that

t = 0 and ψ is a constant function.
Case 2. p1−q1−p2+q2 , −2p2. In this case, we have α5 = 0. Moreover, it follows from Lemma 3.4

that t = 0. This also implies that ψ is constant. □

Proposition 3.17. Let
φ(z) = azp1zq1 + bzp2zq2

and
ψ(z) = zszt,

where a, b ∈ C. If p1 = p2 = 0 and s ⩾ 1, then

S φS ψ = S ψS φ

if, and only if, φ is constant.

Proof. Based on Lemma 3.5, we need to analyze the following three cases:
Case 1. p1 − q1 − p2 + q2 = 0. Since p1 = p2 = 0, we have q1 = q2. By (3.26), we obtain that

0 = α1x2s + α2x2p1 + α3 + α4x2s+p1−q1−p2+q2 + α5x2p2+p1−q1−p2+q2 + α6xp1−q1−p2+q2

= (α1 + α4)x2s + (α2 + α3 + α5 + α6).
(3.47)

This yields that α1 + α4 = 0. Moreover, Lemma 3.4 implies that aq1 + bq2 = 0, i.e., (a + b)q1 = 0. If
a + b = 0, then

φ(z) = (a + b)zq1 = 0.

If q1 = 0, then
φ(z) = (a + b)zq1 = a + b.

Thus, φ is a constant function.
Case 2. p1 − q1 − p2 + q2 = 2s. In this case, we have

0 = α1x2s + α2x2p1 + α3 + α4x2s+p1−q1−p2+q2 + α5x2p2+p1−q1−p2+q2 + α6xp1−q1−p2+q2

= (α1 + α5 + α6)x2s + α4x4s + (α2 + α3).
(3.48)

It follows that α4 = α2 + α3 = 0. By Lemma 3.4, we get that q2 = 0. Furthermore, we obtain by
Lemma 3.9 that −at + at − aq1 = 0, which implies q1 = 0. Thus, φ is constant.

Case 3. p1−q1− p2+q2 is not equal to 2s and not equal to 0. In this case, we have α1 = α5+α6 = 0.
Now, Lemma 3.4 gives q1 = 0 and Lemma 3.9 implies that −bt + bt − bq2 = 0. This yields that q2 = 0,
so φ is a constant function. □

Proposition 3.18. Let
φ(z) = azp1zq1 + bzp2zq2

and
ψ(z) = zszt,
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where a, b ∈ C. If s = 0, p1 , 0, and p2 , 0, then

S φS ψ = S ψS φ

if, and only if, ψ is a constant function.

Proof. To complete the proof, we need only to show the necessity and discuss the following three
cases:

Case 1. p1 − q1 − p2 + q2 = 0. In this case, we have

0 = α1x2s + α2x2p1 + α3 + α4x2s+p1−q1−p2+q2 + α5x2p2+p1−q1−p2+q2 + α6xp1−q1−p2+q2

= α2x2p1 + α5x2p2 + (α1 + α3 + α4 + α6).
(3.49)

If p1 = p2, then p1 − q1 − p2 + q2 = 0 implies that q1 = q2. Thus,

φ(z) = (a + b)zp1zq1 .

By Theorem 3.3, we have t = 0. If p1 , p2, then α2 = α5 = 0. Lemma 3.4 implies that t = 0. Thus, ψ
is constant.

Case 2. p1 − q1 − p2 + q2 = 2p1. In this case, we have α5 = 0. It follows from Lemma 3.4 that t = 0,
which means that ψ is constant.

Case 3. p1 − q1 − p2 + q2 is not equal to 0 and not equal to 2p1. Under this assumption, we have
that α4 +α6 = 0. Using Lemma 3.9, we obtain that bq2 + bt− bq2 = 0, i.e., t = 0. So, ψ is constant. □

Proposition 3.19. Let
φ(z) = azp1zq1 + bzp2zq2

and
ψ(z) = zszt,

where a, b ∈ C. In the cases of p1 = 0, s , 0, and p2 , 0, we have that

S φS ψ = S ψS φ

if, and only if, q1 = 0 and one of the following conditions holds:

(1) s = p2 and t = q2;

(2) s , p2 and t = q2 = 0.

Proof. Based on Lemma 3.5, we need to consider the following four cases:
Case 1. p1 − q1 − p2 + q2 = 0. In this case, we obtain by (3.26) that

0 = α1x2s + α2x2p1 + α3 + α4x2s+p1−q1−p2+q2 + α5x2p2+p1−q1−p2+q2 + α6xp1−q1−p2+q2

= (α1 + α4)x2s + α5x2p2 + (α2 + α3 + α6).
(3.50)

This yields that α2 + α3 + α6 = 0. Using Lemma 3.11, we have that

aq1 + bq2 − bt = 0. (3.51)
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Let us show q1 = 0 first. If q1 > 0, then we observe that t and q2 cannot be equal to 0 at the same time.
Now we are going to discuss the following four sub-cases:

Sub-case 1.1. t = 0 and q2 , 0. Then, it follows from (3.28) that

0 = β1x2t + β2x2q1 + β3 + β4x2t−p1+q1+p2−q2 + β5x2q2−p1+q1+p2−q2 + β6x−p1+q1+p2−q2

= β2x2q1 + β5x2q2 + (β1 + β3 + β4 + β6).
(3.52)

If q1 = q2, then p1 − q1 − p2 + q2 = 0 implies that p1 = p2. This is a contradiction. If q1 , q2, then
β2 = 0. Applying Lemma 3.4 gives s = 0, which is also impossible.

Sub-case 1.2. t , 0 and q2 = 0. Substituting p1 = 0 and q2 = 0 into p1 − q1 − p2 + q2 = 0 yields
q1 + p2 = 0. This is impossible, since q1 ⩾ 0 and p2 ⩾ 1.

Sub-case 1.3. t = q2 and q2 , 0. Using (3.51), we deduce that q1 = 0. This is a contradiction.
Sub-case 1.4. t , q2, t , 0 and q2 , 0. It follows from (3.28) that

0 = β1x2t + β2x2q1 + β3 + β4x2t−p1+q1+p2−q2 + β5x2q2−p1+q1+p2−q2 + β6x−p1+q1+p2−q2

= (β1 + β4)x2t + β2x2q1 + β5x2q2 + (β3 + β6).
(3.53)

If t = q1, then β5 = 0. Applying Lemma 3.4 gives that s = 0. This contradicts the assumption that
s , 0. If t , q1, then β1 + β4 = 0. It follows from Lemma 3.4 that ap1 + bp2 = 0. Combining this with
p1 = 0 yields p2 = 0. This contradicts the assumption that p2 , 0.

From Sub-cases 1.1–1.4, we conclude that q1 = 0. Combining this with (3.51) implies that t = q2.
Furthermore, if s = p2, then we obtain (1); otherwise, if s , p2, then α5 = 0. It follows from
Lemma 3.4 that t = q2 = 0, which gives (2).

Case 2. p1 − q1 − p2 + q2 = −2s. In this case, we obtain by (3.26) that

0 = α1x2s + α2x2p1 + α3 + α4x2s+p1−q1−p2+q2 + α5x2p2+p1−q1−p2+q2 + α6xp1−q1−p2+q2

= α1x2s + α5x2p2−2s + α6x−2s + (α2 + α3 + α4).
(3.54)

Next, we will consider the following three sub-cases:
Sub-case 2.1. p2 = 2s. It follows that α1 + α5 = α6 = 0. From Lemma 3.4, we get that

t = q2 (3.55)

and

aq1 − bt = 0. (3.56)

If t = 0, then q1 must be zero, since a , 0. If t , 0, then q1 , 0. By (3.28), we obtain that β3 = 0.
Using Lemma 3.7, we obtain that s = p1, which is a contradiction. Hence, we have t = 0. Combining
this and (3.55) gives that t = q1 = q2 = 0.

Sub-case 2.2. p2 = s. In this case, we have that α1 = α6 = 0. Using Lemmas 3.4 and 3.7, we obtain
q1 = 0 and t = q2.

Subcase 2.3. p2 , 2s and p2 , s. In this case, we have α1 = α5 = α6 = 0. It follows from
Lemmas 3.4 and 3.7 that t = q1 = q2 = 0.
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Case 3. p1 − q1 − p2 + q2 = −2p2. It follows that α1 = 0. Using Lemma 3.4, we have q1 = 0. Then
we can deduce that (1) or (2) holds by using Theorem 3.3.

Case 4. p1 − q1 − p2 + q2 is not equal to 0, −2s, or −2p2. In this case, we obtain that α2 + α3 = 0.
Lemma 3.9 implies that −at + at − aq1 = 0 = −aq1, which yields q1 = 0. Finally, using Theorem 3.3
again, we get the desired results.

This completes the proof of Proposition 3.19. □

Now we are ready to state and prove the main result of this section.

Theorem 3.20. Let
φ(z) = azp1zq1 + bzp2zq2

and
ψ(z) = zszt,

where a, b ∈ C\{0} such that a , b, p j, q j, s, and t are nonnegative integers, j = 1, 2. Then,

S φS ψ = S ψS φ

if, and only if, one of the following conditions holds:

(i) ψ is a constant function;
(ii) Both φ and ψ are analytic;
(iii) Both φ and ψ are co-analytic;
(iv) There exist α, β ∈ C, not both zero, such that φ = αψ + β.

Proof. Obviously, it is sufficient to show the necessity. To do so, we divide the proof into nine steps as
follows:

(1) s = p1 = p2 (Proposition 3.12);
(2) s = p1 and p1 , p2 (Proposition 3.13);
(3) p1 = p2 and p2 , s (Proposition 3.14);
(4) s, p1, p2 are pairwise different (Proposition 3.15);
(5) s = p1 = 0 and p2 , 0 (Proposition 3.16);
(6) p1 = p2 = 0 and s , 0 (Proposition 3.17);
(7) s = 0, p1 , 0, and p2 , 0 (Proposition 3.18);
(8) p1 = 0, s , 0, and p2 , 0 (Proposition 3.19);
(9) s = p1 = p2 = 0 (this situation is trivial).

This finishes the proof of Theorem 3.20. □

4. Conclusions

In this research, we conduct a study of dual Toeplitz operators on the orthogonal complement of the
harmonic Bergman space and obtain that:
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(1) Suppose that

φk(z) =
∞∑

m=0

ak,m|z|m, (k = 1, 2, · · · ,N),

which are N bounded functions on the unit disk D. If

S φ1S φ2 · · · S φN = 0,

then there exist some k ∈ {1, 2, · · · ,N} such that φk = 0;
(2) Let

φ(z) = azp1zq1 + bzp2zq2

and
ψ(z) = zszt,

where a, b ∈ C\{0} such that a , b, p j, q j, s, and t are nonnegative integers, j = 1, 2. Then,

S φS ψ = S ψS φ

if, and only if, one of the following conditions holds:
(i) ψ is a constant function;
(ii) Both φ and ψ are analytic;
(iii) Both φ and ψ are co-analytic;
(iv) There exist α, β ∈ C, not both zero, such that φ = αψ + β.
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