Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

The green finance dilemma: No impact without risk – a multiple case study on renewable energy investments

  • Recently, European regulation on sustainability preferences has made green finance a mainstream topic for retail investors. On the contrary, green innovation is largely discussed as bearing risks, and renewable energy projects are sometimes referred to as related to high risk. Our article aimed to shed light on retail investors' risk exposure in green finance. In the literature review, we rarely found the retail investor's risk perspective reflected, and green finance risk in terms of major capital loss was not explicitly stated as a research topic. We aimed to close this gap in the literature and apply a multiple case study approach with cases from the renewable energy sector to analyze the components that nurture green finance risk. For case description, we leveraged publicly available online information such as press articles, financial reporting, mandatory disclosure from the represented company, and pre-contractual information of the financial instruments marketed. Our findings suggest that green finance risk (GFR) is nurtured by risk components from the categories of financial instrument risk (FIR), investee company risk (ICR), and operational risk (OR) of renewable energy projects. The cross-case analysis identified red flags that might alert future investors. Additionally, we suggested measures to mitigate green finance risk and propose regulatory improvements. Our research marks a starting point for future quantitative and qualitative research.

    Citation: Laura Grumann, Mara Madaleno, Elisabete Vieira. The green finance dilemma: No impact without risk – a multiple case study on renewable energy investments[J]. Green Finance, 2024, 6(3): 457-483. doi: 10.3934/GF.2024018

    Related Papers:

    [1] Sami Ul Haq, Saeed Ullah Jan, Syed Inayat Ali Shah, Ilyas Khan, Jagdev Singh . Heat and mass transfer of fractional second grade fluid with slippage and ramped wall temperature using Caputo-Fabrizio fractional derivative approach. AIMS Mathematics, 2020, 5(4): 3056-3088. doi: 10.3934/math.2020198
    [2] Kehong Zheng, Fuzhang Wang, Muhammad Kamran, Rewayat Khan, Ali Sikandar Khan, Sadique Rehman, Aamir Farooq . On rate type fluid flow induced by rectified sine pulses. AIMS Mathematics, 2022, 7(2): 1615-1627. doi: 10.3934/math.2022094
    [3] J. Kayalvizhi, A. G. Vijaya Kumar, Ndolane Sene, Ali Akgül, Mustafa Inc, Hanaa Abu-Zinadah, S. Abdel-Khalek . An exact solution of heat and mass transfer analysis on hydrodynamic magneto nanofluid over an infinite inclined plate using Caputo fractional derivative model. AIMS Mathematics, 2023, 8(2): 3542-3560. doi: 10.3934/math.2023180
    [4] Muhammad Imran Asjad, Muhammad Haris Butt, Muhammad Armaghan Sadiq, Muhammad Danish Ikram, Fahd Jarad . Unsteady Casson fluid flow over a vertical surface with fractional bioconvection. AIMS Mathematics, 2022, 7(5): 8112-8126. doi: 10.3934/math.2022451
    [5] Asifa, Poom Kumam, Talha Anwar, Zahir Shah, Wiboonsak Watthayu . Analysis and modeling of fractional electro-osmotic ramped flow of chemically reactive and heat absorptive/generative Walters'B fluid with ramped heat and mass transfer rates. AIMS Mathematics, 2021, 6(6): 5942-5976. doi: 10.3934/math.2021352
    [6] Ritu Agarwal, Mahaveer Prasad Yadav, Dumitru Baleanu, S. D. Purohit . Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative. AIMS Mathematics, 2020, 5(2): 1062-1073. doi: 10.3934/math.2020074
    [7] Álvaro Abucide, Koldo Portal, Unai Fernandez-Gamiz, Ekaitz Zulueta, Iker Azurmendi . Unsteady-state turbulent flow field predictions with a convolutional autoencoder architecture. AIMS Mathematics, 2023, 8(12): 29734-29758. doi: 10.3934/math.20231522
    [8] Geetika Saini, B. N. Hanumagowda, S. V. K. Varma, Jasgurpreet Singh Chohan, Nehad Ali Shah, Yongseok Jeon . Impact of couple stress and variable viscosity on heat transfer and flow between two parallel plates in conducting field. AIMS Mathematics, 2023, 8(7): 16773-16789. doi: 10.3934/math.2023858
    [9] M. Hamid, T. Zubair, M. Usman, R. U. Haq . Numerical investigation of fractional-order unsteady natural convective radiating flow of nanofluid in a vertical channel. AIMS Mathematics, 2019, 4(5): 1416-1429. doi: 10.3934/math.2019.5.1416
    [10] Shabiha Naz, Tamizharasi Renganathan . An exact asymptotic solution for a non-Newtonian fluid in a generalized Couette flow subject to an inclined magnetic field and a first-order chemical reaction. AIMS Mathematics, 2024, 9(8): 20245-20270. doi: 10.3934/math.2024986
  • Recently, European regulation on sustainability preferences has made green finance a mainstream topic for retail investors. On the contrary, green innovation is largely discussed as bearing risks, and renewable energy projects are sometimes referred to as related to high risk. Our article aimed to shed light on retail investors' risk exposure in green finance. In the literature review, we rarely found the retail investor's risk perspective reflected, and green finance risk in terms of major capital loss was not explicitly stated as a research topic. We aimed to close this gap in the literature and apply a multiple case study approach with cases from the renewable energy sector to analyze the components that nurture green finance risk. For case description, we leveraged publicly available online information such as press articles, financial reporting, mandatory disclosure from the represented company, and pre-contractual information of the financial instruments marketed. Our findings suggest that green finance risk (GFR) is nurtured by risk components from the categories of financial instrument risk (FIR), investee company risk (ICR), and operational risk (OR) of renewable energy projects. The cross-case analysis identified red flags that might alert future investors. Additionally, we suggested measures to mitigate green finance risk and propose regulatory improvements. Our research marks a starting point for future quantitative and qualitative research.



    Non-linear partial differential equations are extensively used in science and engineering to model real-world phenomena [1,2,3,4]. Using fractional operators like the Riemann-Liouville (RL) and the Caputo operators which have local and singular kernels, it is difficult to express many non-local dynamics systems. Thus to describe complex physical problems, fractional operators with non-local and non-singular kernels [5,6] were defined. The Atangana-Baleanu (AB) fractional derivative operator is one of these type of fractional operators which is introduced by Atangana and Baleanu[7].

    The time fractional Kolmogorov equations (TF-KEs) are defined as

    ABDγtg(s,t)=ϑ1(s)Dsg(s,t)+ϑ2(s)Dssg(s,t)+ω(s,t),0<γ1, (1.1)

    with the initial and boundary conditions

    g(s,0)=d0(s),g(0,t)=d1(t),g(1,t)=d2(t),

    where (s,t)[0,1]×[0,1], ABDγt denotes the Atangana-Baleanu (AB) derivative operator, Dsg(s,t)=sg(s,t) and Dssg(s,t)=2s2g(s,t). If ϑ1(s) and ϑ2(s) are constants, then Eq (1.1) is presenting the time fractional advection-diffusion equations (TF-ADEs).

    Many researchers are developing methods to find the solution of partial differential equations of fractional order. Analytical solutions or formal solutions of such type of equations are difficult; therefore, numerical simulations of these equations inspire a large amount of attentions. High accuracy methods can illustrate the anomalous diffusion phenomenon more precisely. Some of the efficient techniques are Adomian decomposition [8,9], a two-grid temporal second-order scheme [10], the Galerkin finite element method [11], finite difference [12], a differential transform [13], the orthogonal spline collocation method [14], the optimal homotopy asymptotic method [15], an operational matrix (OM) [16,17,18,19,20,21,22,23,24], etc.

    The OM is one of the numerical tools to find the solution of a variety of differential equations. OMs of fractional derivatives and integration were derived using polynomials like the Chebyshev [16], Legendre [17,18], Bernstein [19], clique [20], Genocchi [21], Bernoulli [22], etc. In this work, with the help of the Hosoya polynomial (HS) of simple paths and OMs, we reduce problem (1.1) to the solution of a system of nonlinear algebraic equations, which greatly simplifies the problem under study.

    The sections are arranged as follows. In Section 2, we review some basic preliminaries in fractional calculus and interesting properties of the HP. Section 3 presents a new technique to solve the TF-KEs. The efficiency and simplicity of the proposed method using examples are discussed in Section 5. In Section 6, the conclusion is given.

    In this section we discuss some basic preliminaries of fractional calculus and the main properties of the HP. We also compute an error bound for the numerical solution.

    Definition 2.1. (See [25]) Let 0<γ1. The RL integral of order γ is defined as

    RLIγsg(s)=1Γ(γ)s0(sξ)γ1g(ξ) dξ.

    One of the properties of the fractional order of RL integral is

    RLIγssυ=Γ(υ+1)Γ(υ+1+γ)sυ+γ,υ0.

    Definition 2.2. (See [7]) Let 0<γ1, gH1(0,1) and Φ(γ) be a normalization function such that Φ(0)=Φ(1)=1 and Φ(γ)=1γ+γΓ(γ). Then, the following holds

    1) The AB derivative is defined as

    ABDγsg(s)=Φ(γ)1γs0Eγ(γ1γ(sξ)γ)g(ξ) dξ,0<γ<1,ABDγsg(s)=g(s),γ=1,

    where Eγ(s)=j=0sjΓ(γj+1) is the Mittag-Leffler function.

    2) The AB integral is given as

    ABIγsg(s)=1γΦ(γ)g(s)+γΦ(γ)Γ(γ)s0(sξ)γ1g(ξ)dξ. (2.1)

    Let vγ=1γΦ(γ) and wγ=1Φ(γ)Γ(γ); then, we can rewrite (2.1) as

    ABIγsg(s)=vγg(s)+wγΓ(γ+1)RLIγsg(s).

    The AB integral satisfies the following property [26]:

    ABIγs(ABDγsg(s))=g(s)g(0).

    In 1988, Haruo Hosoya introduced the concept of the HP [27,28]. This polynomial is used to calculate distance between vertices of a graph [29]. In [30,31], the HP of path graphs is obtained. The HP of the path graphs is described as

    ˜H(G,s)=l0d(G,l)sl,

    where d(G,l) denotes the distance between vertex pairs in the path graph [32,33]. Here we consider path graph with vertices n where nN. Based on n vertex values the Hosoya polynomials are calculated [34]. Let us consider the path Pn with n vertices; then the HP of the Pi,i=1,2,,n are computed as

    ˜H(P1,s)=l0d(P1,l)sl=1,˜H(P2,s)=1l=0d(P2,l)sl=s+2,˜H(P3,s)=2l=0d(P3,l)sl=s2+2s+3,˜H(Pn,s)=n+(n1)s+(n2)s2++(n(n2))sn2+(n(n1))sn1.

    Consider any function g(s) in L2(0,1); we can approximate it using the HP as follows:

    g(s)˜g(s)=N+1i=1hi ˜H(Pi,s)=hTH(s), (2.2)

    where

    h=[h1,h2,,hN+1]T,

    and

    H(s)=[˜H(P1,s),˜H(P2,s),,˜H(PN+1,s)]T. (2.3)

    From (2.2), we have

    h=Q1g(s),H(s),

    where Q=H(s),H(s) and , denotes the inner product of two arbitrary functions.

    Now, consider the function g(s,t)L2([0,1]×[0,1]); then, it can be expanded in terms of the HP by using the infinite series,

    g(s,t)=i=1j=1hij˜H(Pi,s)˜H(Pj,t). (2.4)

    If we consider the first (N+1)2 terms in (2.4), an approximation of the function g(s,t) is obtained as

    g(s,t)N+1i=1N+1j=1hij˜H(Pi,s)˜H(Pj,t)=HT(s)˜hH(t), (2.5)

    where

    ˜h=Q1H(s),g(s,t),H(t)Q1.

    Theorem 2.1. The integral of the vector H(s) given by (2.3) can be approximated as

    s0H(ξ)dξRH(s), (2.6)

    where R is called the OM of integration for the HP.

    Proof. Firstly, we express the basis vector of the HP, H(s), in terms of the Taylor basis functions,

    H(s)=AˆS(s), (2.7)

    where

    ˆS(s)=[1,s,,sN]T,

    and

    A=[aq,r],q,r=1,2,,N+1,

    with

    aq,r={q(r1),qr,0,q<r.

    Now, we can write

    s0H(ξ)dξ=As0ˆS(ξ)dξ=ABS(s),

    where B=[bq,r],q,r=1,2,,N+1 is an (N+1)×(N+1) matrix with the following elements

    bq,r={1q,q=r,0,qr,

    and

    S(s)=[s,s2,,sN+1]T.

    Now, by approximating sk,k=1,2,,N+1 in terms of the HP and by (2.7), we have

    {sk=A1k+1H(s),k=1,2,,N,sN+1=LTH(s),

    where A1r, r=2,3,,N+1 is the r-th row of the matrix A1 and L=Q1sN+1,H(s). Then, we get

    S(s)=EH(s),

    where E=[A12,A13,,A1N+1,LT]T. Therefore, by taking R=ABE, the proof is completed.

    Theorem 2.2. The OM of the product based on the HP is given by (2.3) can be approximated as

    CTH(s)HT(s)HT(s)ˆC,

    where ˆC is called the OM of product for the HP.

    Proof. Multiplying the vector C=[c1,c2,,cN+1]T by H(s) and HT(s) gives

    CTH(s)HT(s)=CTH(s)(ˆST(s)AT)=[CTH(s),s(CTH(s)),,sN(CTH(s))]AT=[N+1i=1ci˜H(Pi,s),N+1i=1cis˜H(Pi,s),,N+1i=1cisN˜H(Pi,s)]AT. (2.8)

    Taking ek,i=[e1k,i,e2k,i,,eN+1k,i]T and expanding sk1˜H(Pi,s)eTk,iH(s),i,k=1,2,,N+1 using the HP, we can write

    ek,i=Q110sk1˜H(Pi,s)H(s)ds=Q1[10sk1˜H(Pi,s)˜H(P1,s)ds,10sk1˜H(Pi,s)˜H(P2,s)ds,,10sk1˜H(Pi,s)˜H(PN+1,s)ds]T.

    Therefore,

    N+1i=1cisk1˜H(Pi,s)N+1i=1ci(N+1j=1ejk,i˜H(Pj,s))=N+1j=1˜H(Pj,s)(N+1i=1ciejk,i)=HT(s)[N+1i=1cie1k,i,N+1i=1cie2k,i,,N+1i=1cieN+1k,i]T=HT(s)[ek,1,ek,2,,ek,N+1]C=HT(s)EkC, (2.9)

    where Ek is an (N+1)×(N+1) matrix and the vectors ek,i for k=1,2,,N+1 are the columns of Ek. Let ¯Ek=EkC,k=1,2,,N+1. Setting ¯C=[¯E1,¯E2,,¯EN+1] as an (N+1)×(N+1) matrix and using (2.8) and (2.9), we have

    CTH(s)HT(s)=[N+1i=1ci˜H(Pi,s),N+1i=1cis˜H(Pi,s),,N+1i=1cisN˜H(Pi,s)]ATHT(s)ˆC,

    where by taking ˆC=¯CAT, the proof is completed.

    Theorem 2.3. Consider the given vector H(s) in (2.3); the fractional RL integral of this vector is approximated as

    RLIγsH(s)PγH(s),

    where Pγ is named the OM based on the HP which is given by

    Pγ=[σ1,1,1σ1,2,1σ1,N+1,12k=1σ2,1,k2k=1σ2,2,k2k=1σ2,N+1,kN+1k=1σN+1,1,kN+1k=1σN+1,2,kN+1k=1σN+1,N+1,k],

    with

    σi,j,k=(i(k1))Γ(k)ek,jΓ(k+γ).

    Proof. First, we rewrite ˜H(Pi,s) in the following form:

    ˜H(Pi,s)=ik=1(i(k1))sk1.

    Let us apply, the RL integral operator, RLIγs, on ˜H(Pi,s),i=1,,N+1; this yields

    RLIγs˜H(Pi,s)=RLIγs(ik=1(i(k1))sk1)=ik=1(i(k1))(RLIγssk1)=ik=1(i(k1))Γ(k)Γ(k+γ)sk+γ1. (2.10)

    Now, using the HP, the function sk+γ1 is approximated as:

    sk+γ1N+1j=1ek,j˜H(Pj,s). (2.11)

    By substituting (2.11) into (2.10), we have,

    RLIγs˜H(Pi,s)=ik=1(i(k1))Γ(k)Γ(k+γ)(N+1j=1ek,j˜H(Pj,s))=N+1j=1(ik=1(i(k1))Γ(k)ek,jΓ(k+γ))˜H(Pj,s)=N+1j=1(ik=1σi,j,k)˜H(Pj,s).

    Theorem 2.4. Suppose that 0<γ1 and ˜H(Pi,x) is the HP vector; then,

    ABIγtH(s)IγH(s),

    where Iγ=vγI+wγΓ(γ+1)Pγ is called the OM of the AB-integral based on the HP and I is an (N+1)×(N+1) identity matrix.

    Proof. Applying the AB integral operator, ABIγs, on H(s) yields

    ABIγsH(s)=vγH(s)+wγΓ(γ+1)RLIγsH(s).

    According to Theorem 2.3, we have that RLIγsH(s)PγH(s). Therefore

    ABIγsH(s)=vγH(s)+wγΓ(γ+1)PγH(s)=(vγI+wγΓ(γ+1)Pγ)H(s).

    Setting Iγ=vγI+wγΓ(γ+1)Pγ, the proof is complete.

    The main aim of this section is to introduce a technique based on the HP of simple paths to find the solution of the TF-KEs. To do this, we first expand Dssg(s,t) as

    Dss g(s,t)N+1i=1N+1j=1hij˜H(Pi,s)˜H(Pj,t)=HT(s)˜hH(t). (3.1)

    Integrating (3.1) with respect to s gives

    Dsg(s,t)Dsg(0,t)+HT(s)RT˜hH(t). (3.2)

    Again integrating the above equation with respect to s gives

    g(s,t)d1(t)+sDsg(0,t)+HT(s)(R2)T˜hH(t). (3.3)

    By putting s=1 into (3.3), we have

    Dsg(0,t)=d2(t)d1(t)HT(1)(R2)T˜hH(t). (3.4)

    By substituting (3.4) into (3.3), we get

    g(s,t)d1(t)+s(d2(t)d1(t)HT(1)(R2)T˜hH(t))+HT(s)(R2)T˜hH(t). (3.5)

    Now, we approximate that d1(t)=ST0H(t),d2(t)=ST1H(t) and s=HT(s)S and putting in (3.5), we get

    g(s,t)ST0H(t)+HT(s)S(ST1H(t)ST0H(t)HT(1)(R2)T˜hH(t))+HT(s)(R2)T˜hH(t).

    The above relation can be written as

    g(s,t)1×ST0H(t)+HT(s)S(ST1H(t)ST0H(t)HT(1)(R2)T˜hH(t))+HT(s)(R2)T˜hH(t).

    Approximating 1=ˆSTH(s)=HT(s)ˆS, the above relation is rewritten as

    g(s,t)HT(s)ˆSST0H(t)+HT(s)S(ST1H(t)ST0H(t)HT(1)(R2)T˜hH(t))+HT(x)(R2)T˜hH(t)=HT(s)(ˆSST0+SST1SST0SHT(1)(R2)T˜h+(R2)T˜h)H(t). (3.6)

    Setting ρ1=ˆSST0+SST1SST0SHT(1)(R2)T˜h+(R2)T˜h, we have

    g(s,t)HT(s)ρ1H(t). (3.7)

    According to (1.1), we need to obtain Ds g(s,t). Putting the approximations d1(t),d2(t) and the relation (3.4) into (3.2) yields

    Dsg(s,t)ST1H(t)ST0H(t)HT(1)(R2)T˜hH(t)+HT(s)RT˜hH(t). (3.8)

    The above relation can be written as

    Dsg(s,t)1×ST1H(t)1×ST0H(t)1×HT(1)(R2)T˜hH(t)+HT(s)RT˜hH(t). (3.9)

    Putting 1=HT(s)ˆS into the above relation, we get

    Dsg(s,t)HT(s)ˆSST1H(t)HT(s)ˆSST0H(t)HT(s)ˆSHT(1)(R2)T˜hH(t)+HT(s)RT˜hH(t)=HT(s)(ˆSST1ˆSST0ˆSHT(1)(R2)T˜h+RT˜h)H(t). (3.10)

    Setting ρ2=ˆSST1ˆSST0ˆSHT(1)(R2)T˜h+RT˜h, we have

    Dsg(s,t)HT(s)ρ2H(t). (3.11)

    Applying ABIγt to (1.1), putting g(s,t)HT(s)ρ1H(t),Dsg(s,t)HT(s)ρ2H(t), Dss g(s,t)HT(s)˜hH(t) and approximating ω(s,t)HT(s)ρ3H(t) in (1.1) yields

    HT(s)ρ1H(t)=d0(s)+ϑ1(s)HT(s)ρ2(ABIγtH(t))+ϑ2(s)HT(s)˜h(ABIγtH(t))+HT(s)ρ3(ABIγtH(t)). (3.12)

    Now approximating d0(s)HT(s)S2,ϑ1(s)ST3H(s),ϑ2(s)ST4H(s) and using Theorem 2.4, the above relation can be rewritten as

    HT(s)ρ1H(t)=HT(s)S2+ST3H(s)HT(s)ρ2IγH(t)+ST4H(s)HT(s)˜hIγH(t)+HT(s)ρ3IγH(t). (3.13)

    By Theorem 2.2, the above relation can be written as

    HT(s)ρ1H(t)=HT(s)S2×1+ST3H(s)HT(s)HT(s)^S3ρ2IγH(t)+ST4H(s)HT(s)HT(s)^S4˜hIγH(t)+HT(s)ρ3IγH(t). (3.14)

    Now approximating 1=ˆSTH(t), we have

    HT(s)ρ1H(t)=HT(s)S2ˆSTH(t)+HT(s)^S3ρ2IγH(t)+HT(s)^S4˜hIγH(t)+HT(s)ρ3IγH(t). (3.15)

    We can write the above relation as

    HT(s)(ρ1S2ˆST^S3ρ2Iγ^S4˜hIγρ3Iγ)H(t)=0. (3.16)

    Therefore we have

    ρ1S2ˆST^S3ρ2Iγ^S4˜hIγρ3Iγ=0. (3.17)

    By solving the obtained system, we find hij, i,j=1,2,,N+1. Consequently, g(s,t) can be calculated by using (3.7).

    Set I=(a,b)n,n=2,3 in Rn. The Sobolev norm is given as

    gHϵ(I)=(ϵk=0nl=0D(k)lg2L2(I))12,ϵ1,

    where D(k)lu and Hϵ(I) are the k-th derivative of g and Sobolev space, respectively. The notation |g|Hϵ;N is given as [35]

    |g|Hϵ;N(I)=(k=min

    Theorem 4.1 (See [36]). Let g(s, t)\in H^{\epsilon}(I) with \epsilon\geq 1 . Considering P_{N}g(s, t) = \sum\limits_{r = 1}^{N+1} \sum\limits_{n = 1}^{N+1}a_{r, n}P_{r}(s) P_{n}(t) as the best approximation of g(s, t) , we have

    \begin{equation*} \|g-P_{N}g\|_{L^2(I)}\leq CN^{1-\epsilon}|g|_{H^{\epsilon;N}(I)}, \end{equation*}

    and if 1\leq \iota\leq \epsilon , then

    \begin{equation*} \|g-P_{N}g\|_{H^{\iota}(I)}\leq CN^{\vartheta(\iota)-\epsilon}|g|_{H^{\epsilon;N}(I)}, \end{equation*}

    with

    \begin{equation*} \vartheta(\iota) = \left\{ \begin{array}{ll} 0, &\iota = 0, \\ 2\iota-\frac{1}{2}, &\iota > 0. \end{array} \right. \end{equation*}

    Lemma 4.1. The AB derivative can be written by using the fractional order RL integral as follows:

    \begin{equation*} {^{AB}\! D}_{t}^{\gamma}g(t) = \dfrac{\Phi(\gamma)}{1-\gamma}\sum\limits_{l = 0}^{\infty}\varpi^{l}\, {^{R\!L}\!I^{l\gamma+1}_t }g'(t), \; \; \; \; \varpi = -\frac{\gamma}{1-\gamma}. \end{equation*}

    Proof. According to the definitions of the AB derivative and the RL integral, the proof is complete.

    Theorem 4.2. Suppose that 0 < \gamma\leq 1, \, \left|\vartheta_{1}(s)\right|\leq \tau_{1}, \, \left|\vartheta_{2}(s)\right|\leq \tau_{2} and g(s, t)\in H^{\epsilon}(I) with \epsilon\geq 1 . If E(s, t) is the residual error by approximating g(s, t) , then E(s, t) can be evaluated as

    \begin{equation*} \|E(s, t)\|_{L^{2}(I)}\leq \varrho_{1}\left(|g|^*_{H^{\epsilon;N}(I)}+|\partial_{s}g|^*_{H^{\epsilon;N}(I)}\right), \end{equation*}

    where 1\leq \iota\leq \epsilon and \varrho_{1} is a constant number.

    Proof. According to (1.1),

    \begin{equation} {^{AB}\! D}_{t}^{\gamma}\ g(s, t) = \vartheta_{1}(s)D_{s}\ g(s, t)+\vartheta_{2}(s)D_{ss}\ g(s, t)+\omega\left(s, t\right), \end{equation} (4.1)

    and

    \begin{equation} {^{AB}\! D}_{t}^{\gamma}\ g_{N}(s, t) = \vartheta_{1}(s)D_{s}\ g_{N}(s, t)+\vartheta_{2}(s)D_{ss}\ g_{N}(s, t)+\omega\left(s, t\right). \end{equation} (4.2)

    Substituting Eqs (4.1) and (4.2) in E(s, t) yields

    \begin{equation*} E(s, t) = {^{AB}\! D}_{t}^{\gamma}(g(s, t)-g_{N}(s, t))+\vartheta_{1}(s) D_{s}(g_{N}(s, t)-g(s, t))+\vartheta_{2}(s) D_{ss}(g_{N}(s, t)-g(s, t)). \end{equation*}

    and then

    \begin{equation} \begin{split} \|E(s, t)\|^{2}_{L^{2}(I)}\leq&\|{^{AB}\! D}_{t}^{\gamma}(g(s, t)-g_{N}(s, t))\|^{2}_{L^{2}(I)}\\ &+\tau_{1}\, \| D_{s}(g(s, t)-g_{N}(s, t))\|^{2}_{L^{2}(I)}\\ &+\tau_{2} \, \|D_{ss}(g(s, t)-g_{N}(s, t))\|^{2}_{L^{2}(I)}.\\ \end{split} \end{equation} (4.3)

    Now, we must find a bound for \|{^{AB}\! D}_{t}^{\gamma}(g(s, t)-g_{N}(s, t))\|_{L^{2}(I)} . In view of [26], and by using Lemma 4.1, in a similar way, we write

    \begin{equation*} \begin{array}{ll} \|{^{AB}\! D}_{t}^{\gamma}(g(s, t)-g_{N}(s, t))\|^{2}_{L^{2}(I)}& = \|\frac{\Phi(\gamma)}{1-\gamma} \sum\limits_{l = 0}^{\infty}\varpi^{l}\, {^{R\!L}\!I^{l\gamma+1}_t }(D_{t}g(s, t)-D_{t}g_{N}(s, t))\|^{2}_{L^{2}(I)}\\ &\leq\left(\frac{\Phi(\gamma)}{1-\gamma} \sum\limits_{l = 0}^{\infty}\frac{\varpi^{l}}{\Gamma(l \gamma+2)}\right)^{2}\|D_{t}g(s, t)-D_{t}g_{N}(s, t)\|^{2}_{L^{2}(I)}\\ &\leq \left(\frac{\Phi(\gamma)}{1-\gamma}E_{\gamma, 2}(\varpi)\right)^{2}\|g(s, t)-g_{N}(s, t)\|^{2}_{H^{\iota}(I)}. \end{array} \end{equation*}

    Therefore,

    \begin{equation} \|{^{AB}\! D}_{t}^{\gamma}(g(s, t)-g_{N}(s, t))\|_{L^{2}(I)}\leq \delta_{1} CN^{\vartheta(\iota)-\epsilon}|g|_{H^{\epsilon;N}(I)}, \end{equation} (4.4)

    where \frac{\Phi(\gamma)}{1-\gamma}E_{\gamma, 2}(\varpi)\leq \delta_{1} . Thus, from (4.4), we can write

    \begin{equation} \|{^{AB}\! D}_{t}^{\gamma}(g(s, t)-g_{N}(s, t))\|^{2}_{L^{2}(I)}\leq \delta_{1}|g|^*_{H^{\epsilon;N}(I)}, \end{equation} (4.5)

    where |g|^*_{H^{\epsilon; N}(I)} = C N^{\vartheta(\iota)-\epsilon}|g|_{H^{\epsilon; N}(I)} . By Theorem 4.1,

    \begin{equation} \| D_{s}(g(s, t)-g_N(s, t))\|_{L^{2}(I)}\leq CN^{\vartheta(\iota)-\epsilon}|g|_{H^{\epsilon;N}(I)} = |g|^*_{H^{\epsilon;N}(I)}, \end{equation} (4.6)

    and

    \begin{equation} \begin{array}{ll} \|D_{ss}(g(s, t)-g_{N}(s, t))\|_{L^{2}(I)} & = \|D_{s}\left(D_{s}(g(s, t)- g_{N}(s, t))\right)\|_{L^{2}(I)}\\ & \leq\|D_{s}g(s, t)-D_{s}g_{N}(s, t)\|_{H^{\iota}(I)}\\ &\leq |D_{s}g|^*_{H^{\epsilon;N}(I)}, \end{array} \end{equation} (4.7)

    where |D_{s}g|^*_{H^{\epsilon; N}(I)} = C N^{\vartheta(\iota)-\epsilon}|D_{s}g|_{H^{\epsilon; N}(I)} . Taking \varrho_{1} = \max\{\delta_{1}+ \tau_{1}, \tau_{2}\} and substituting (4.5)–(4.7) into (4.3); then, the desired result is obtained.

    In this section, the proposed technique which is described in Section 3 is shown to be tested using some numerical examples. The codes are written in Mathematica software.

    Example 5.1. Consider (1.1) with \vartheta_{1}(s) = -1, \vartheta_{2}(s) = 0.1 and \omega\left(s, t\right) = 0 . The initial and boundary conditions can be extracted from the analytical solution g(s, t) = \tau_{0}e^{\tau_{1}t-\tau_{2}s} when \gamma = 1 . Setting \tau_{0} = 1, \tau_{1} = 0.2, \tau_{2} = \dfrac{\vartheta_{1}(s)+\sqrt{\vartheta_{1}^{2}(s)+4\vartheta_{2}(s)\tau_1}}{2\vartheta_{2}(s)} , considering N = 3 and using the proposed technique, the numerical results of the TF-ADE are reported in Tables 1 and 2, and in Figures 13.

    Table 1.  (Example 5.1) Numerical results of the absolute error when \gamma = 0.99, N = 3 , t = 1 .
    s Method of [21] The presented method
    0.1 1.05799e-2 3.86477e-4
    0.2 1.21467e-2 1.33870e-4
    0.3 4.94776e-3 4.08507e-5
    0.4 2.35280e-4 1.48842e-4
    0.5 2.36604e-3 2.01089e-4
    0.6 1.08676e-2 2.08410e-4
    0.7 2.18851e-2 1.81459e-4
    0.8 2.91950e-2 1.30730e-4
    0.9 2.49148e-2 6.65580e-5

     | Show Table
    DownLoad: CSV
    Table 2.  (Example 5.1) Numerical results of the absolute error when \gamma = 0.99, N = 3 , s = 0.75 .
    t Method of [19] The presented method
    0.1 1.13874e-3 2.15272e-3
    0.2 1.41664e-3 2.32350e-3
    0.3 1.62234e-3 2.30934e-3
    0.4 1.76917e-3 2.14768e-3
    0.5 1.87045e-3 1.87583e-3
    0.6 1.93953e-3 1.53092e-3
    0.7 1.98971e-3 1.14997e-3
    0.8 2.03434e-3 7.69801e-4
    0.9 2.08671e-3 4.27112e-4

     | Show Table
    DownLoad: CSV
    Figure 1.  (Example 5.1) The absolute error at some selected points when (a) \gamma = 0.8 , (b) \gamma = 0.9 , (c) \gamma = 0.99 , (d) \gamma = 1 .
    Figure 2.  (Example 5.1) Error contour plots when (a) \gamma = 0.99 , (b) \gamma = 1 , (c) \gamma = 0.8 , (d) \gamma = 0.9 .
    Figure 3.  (Example 5.1) The absolute error at some selected points when (a) \gamma = 0.8 , (b) \gamma = 0.9 , (c) \gamma = 0.99 , (d) \gamma = 1 .

    Example 5.2. Consider (1.1) with \vartheta_{1}(s) = s, \vartheta_{2}(s) = \dfrac{s^{2}}{2} and \omega\left(s, t\right) = 0 . The initial and boundary conditions can be extracted from the analytical solution g(s, t) = s E_{\alpha}(t^{\alpha}) . By setting N = 5 and using the proposed technique, the numerical results of the TF–KE are as reported in Figures 46.

    Figure 4.  (Example 5.2) The absolute error at some selected points when (a) \gamma = 0.7 , (b) \gamma = 0.8 , (c) \gamma = 0.9 , (d) \gamma = 1 .
    Figure 5.  (Example 5.2) Error contour plots when (a) \gamma = 0.7 , (b) \gamma = 0.8 , (c) \gamma = 0.9 , (d) \gamma = 1 .
    Figure 6.  (Example 5.2) The absolute error at some selected points when (a) \gamma = 0.7 , (b) \gamma = 0.8 , (c) \gamma = 0.9 , (d) \gamma = 1 .

    Time fractional Kolmogorov equations and time fractional advection-diffusion equations have been used to model many problems in mathematical physics and many scientific applications. Developing efficient methods for solving such equations plays an important role. In this paper, a proposed technique is used to solve TF-ADEs and TF-KEs. This technique reduces the problems under study to a set of algebraic equations. Then, solving the system of equations will give the numerical solution. An error estimate is provided. This method was tested on a few examples of TF-ADEs and TF-KEs to check the accuracy and applicability. This method might be applied for system of fractional order integro-differential equations and partial differential equations as well.

    The authors declare that they have not used artificial intelligence tools in the creation of this article.

    The authors would like to thank for the support from Scientific Research Fund Project of Yunnan Provincial Department of Education, No. 2022J0949. The authors also would like to thank the anonymous reviewers for their valuable and constructive comments to improve our paper.

    The authors declare there is no conflicts of interest.



    [1] 10 Jahre Solarparks von Green City - Auf in die nächste Phase der Energiewende. (2013) Available from: https://www.pressebox.de/pressemitteilung/green-city-energy-ag/10-Jahre-Solarparks-von-Green-City-Auf-in-die-naechste-Phase-der-Energiewende/boxid/631572 (accessed on 08.08.2023)
    [2] Abriss nach Windrad-Havarie - Suche nach Ursache geht weiter. (2021) Proplanta GmbH & Co. KG. Available from: https://www.proplanta.de/agrar-nachrichten/energie/abriss-nach-windrad-havarie-suche-nach-ursache-geht-weiter_article1633485787.html. (accessed on 05.02.2024)
    [3] Ad hoc: Siemens Energy kommentiert Medienberichte. (2023) Available from: https://www.siemens-energy.com/de/de/home/pressemitteilungen/ad-hoc--siemens-energy-kommentiert-medienberichte.html. (accessed on 05.11.2023)
    [4] Afridi FEA, Jan S, Ayaz B, et al. (2021) Green finance incentives: An empirical study of the Pakistan banking sector. Revista Amazonia Investiga 10: 169–176. https://doi.org/10.34069/ai/2021.41.05.17 doi: 10.34069/ai/2021.41.05.17
    [5] Aghion P, Boneva L, Breckenfelder J, et al. (2022) Financial Markets and Green Innovation. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4173682 doi: 10.2139/ssrn.4173682
    [6] Agliardi R (2022) Green securitisation. J Sustain Financ Inv 12: 1330–1345. https://doi.org/10.1080/20430795.2021.1874214 doi: 10.1080/20430795.2021.1874214
    [7] Ahima T (2010) Warnung vor grünen Geldanlagen: Risikogeschäfte bei Windparks. taz Verlags u. Vertriebs GmbH. Available from: https://taz.de/Warnung-vor-gruenen-Geldanlagen/!5147325/. (accessed on 10.08.2023)
    [8] Akomea-Frimpong I, Adeabah D, Ofosu D, et al. (2022) A review of studies on green finance of banks, research gaps and future directions. J Sustain Financ Inv 12: 1241–1264. https://doi.org/10.1080/20430795.2020.1870202 doi: 10.1080/20430795.2020.1870202
    [9] Amann C (2023) Welche Probleme hat Siemens Gamesa mit seinen Windturbinen? Reuters. Available from: https://www.onvista.de/news/2023/06-23-welche-probleme-hat-siemens-gamesa-mit-seinen-windturbinen-20-26147733. (accessed on 05.02.2024)
    [10] Andersen LB, Häger D, Maberg S, et al. (2012) The financial crisis in an operational risk management context-A review of causes and influencing factors. Reliab Eng Syst Safe 105: 3–12. https://doi.org/10.1016/j.ress.2011.09.005 doi: 10.1016/j.ress.2011.09.005
    [11] Anleihebedingungen 2016 - 2030. PROKON Regenerative Energien eG. Available from: https://www.prokon.net/ueber-uns/investor-relations/prokon-anleihe-2016–2030. (accessed on 30.08.2023)
    [12] Bachner G, Mayer J, Steininger KW (2019) Costs or benefits? Assessing the economy-wide effects of the electricity sector's low carbon transition - The role of capital costs, divergent risk perceptions and premiums. Energy Strateg Rev 26: 100373. https://doi.org/10.1016/j.esr.2019.100373 doi: 10.1016/j.esr.2019.100373
    [13] Bergermann M, Jens B, Christian K (20122) Lücken in der Ökobilanz. Capital. Available from: https://download.djp.de/downloadarticle.php?p1 = 2980 & p2 = 1341943224 & p3 = save. (accessed on 03.11.2023)
    [14] Beschluss Bestätigung Genossenschaftsinsolvenzplan (2015) PROKON Abgeltungsgläubiger SPV GmbH. Available from: https://prokon-spv.insolvenz-solution.de/download/Beschluss_gerichtliche_Bestaetigung_eG-Insolvenzplan_PROKON.pdf. (accessed on 20.08.2023)
    [15] Bock M, Tichy J (2016) FAILURE OF THE CONTROL MECHANISMS IN US BANKS DURING THE CRISIS AND SPREAD OF THE FINANCIAL CRISIS INTO THE WORLD THROUGH STRUCTURED PRODUCTS. Ad Alta-Journal of Interdisciplinary Research 6: 79–81.
    [16] Bourcet C, Bovari E (2020) Exploring citizens' decision to crowdfund renewable energy projects: Quantitative evidence from France. Energ Econ 88: 104754. https://doi.org/10.1016/j.eneco.2020.104754 doi: 10.1016/j.eneco.2020.104754
    [17] Campiglio E, Daumas L, Monnin P, et al. (2023) Climate‐related risks in financial assets. J Econ Surv 37: 950–992. https://doi.org/10.1111/joes.12525 doi: 10.1111/joes.12525
    [18] Chabot M, Bertrand JL (2023) Climate risks and financial stability: Evidence from the European financial system. J Financ Stabil 69: 101190. https://doi.org/10.1016/j.jfs.2023.101190 doi: 10.1016/j.jfs.2023.101190
    [19] Chen HX, Shi Y, Zhao X (2022) Investment in renewable energy resources, sustainable financial inclusion and energy efficiency: A case of US economy. Resour Policy 77: 102680. https://doi.org/10.1016/j.resourpol.2022.102680 doi: 10.1016/j.resourpol.2022.102680
    [20] Chen L (2024) Unraveling the drivers of greenwashing in China's new energy sector: A PLS‐SEM and fsQCA analysis. Manag Decis Econ 45: 1528–1546. https://doi.org/10.1002/mde.4089 doi: 10.1002/mde.4089
    [21] COMMISSION DELEGATED REGULATION (EU) 2023/2486, (2023). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri = CELEX: 32023R2486.
    [22] Consolidated Non-Financial Statement 2022 (2023) S. G. R. E. S.A. Available from: https://www.siemensgamesa.com/en-int/-/media/siemensgamesa/downloads/en/sustainability/siemens-gamesa-consolidated-non-financial-statement-2022-en.pdf. (accessed on 03.02.2024)
    [23] Curcio D, Gianfrancesco I, Vioto D (2023) Climate change and financial systemic risk: Evidence from US banks and insurers. J Financ Stabil 66: 101132. https://doi.org/10.1016/j.jfs.2023.101132 doi: 10.1016/j.jfs.2023.101132
    [24] D'Orazio P (2021) Towards a post-pandemic policy framework to manage climate-related financial risks and resilience. Clim Policy 21: 1368–1382. https://doi.org/10.1080/14693062.2021.1975623 doi: 10.1080/14693062.2021.1975623
    [25] Debrah C, Darko A, Chan APC (2023) A bibliometric-qualitative literature review of green finance gap and future research directions. Clim Dev 15: 432–455. https://doi.org/10.1080/17565529.2022.2095331 doi: 10.1080/17565529.2022.2095331
    [26] Delegated Regulation (EU) 2021/1235 amending Delegated Regulation (EU) 2017/565 as regards the integration of sustainability factors, risks and preferences into certain organisational requirements and operating conditions for investment firms. (2021) Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri = CELEX%3A32021R1253.
    [27] Desalegn G, Tangl A (2022) Enhancing Green Finance for Inclusive Green Growth: A Systematic Approach. Sustainability 14: 7416. https://doi.org/10.3390/su14127416 doi: 10.3390/su14127416
    [28] Deschryver P, De Mariz F (2020) What Future for the Green Bond Market? How Can Policymakers, Companies, and Investors Unlock the Potential of the Green Bond Market? J Risk Financ Manag 13: 61. https://doi.org/10.3390/jrfm13030061 doi: 10.3390/jrfm13030061
    [29] Die Freunde Prokons e.V. Available from: https://fvp-ev.de/verein/Entstehung. (accessed on 31.08.2023)
    [30] Die zehn größten Kursstürze im Dax (2023) manager magazin new media GmbH & Co. KG. Available from: https://www.manager-magazin.de/finanzen/aktien-crash-von-siemens-energy-und-co-die-zehn-groessten-kursstuerze-im-dax-a-b5816971-b21d-4300-826b-25d061889ae7. (accessed on 05.11.2023)
    [31] Diekmann F (2014) Insolventer Ökokonzern Mitarbeiter feiern Prokon-Chef. DER SPIEGEL GmbH & Co. KG. Available from: https://www.spiegel.de/wirtschaft/unternehmen/prokon-pk-rodbertus-beklagt-medienkampagne-a-945141.html. (accessed on 01.09.2023)
    [32] Drygala T (2014) Prokon - Kein Genuss ohne Folgen. Wolters Kluwer Deutschland GmbH. Available from: https://www.lto.de/recht/hintergruende/h/prokon-genussrechte-liquiditaet-insolvenz-kapitalmarkt/2/. (accessed on 02.02.2024)
    [33] Fichtner J, Jaspert R, Petry J (2024) Mind the < scp > ESG < /scp > capital allocation gap: The role of index providers, standard‐setting, and "green" indices for the creation of sustainability impact. Regul Gov 18: 479–498. https://doi.org/10.1111/rego.12530 doi: 10.1111/rego.12530
    [34] Frydrych S (2021) Green bonds as an instrument for financing in Europe. Ekonomia i Prawo 20: 239–255. https://doi.org/10.12775/eip.2021.014 doi: 10.12775/eip.2021.014
    [35] Giglio S, Maggiori M, Stroebel J, et al. (2023) Four Facts About ESG Beliefs and Investor Portfolios. National Bureau of Economic Research.
    [36] Green City AG - Informationen für Anleger*inne. GLS Gemeinschaftsbank eG. Available from: https://www.gls.de/privatkunden/anlegen-sparen/green-city-energy/. (accessed on 02.09.2023)
    [37] Green City AG Konzernabschluss 2017. Available from: https://www.bundesanzeiger.de/pub/de/suchergebnis?6. (accessed on 30.01.2024)
    [38] Green City AG stellt Insolvenzantrag. (2022) Available from: https://gc-ag.org/docs/Pressemitteilung-Green-City-AG-stellt-Insolvenzantrag.pdf. (accessed on 03.08.2023)
    [39] Green City AG: Der Jahresabschluss 2018 und die Perspektiven für 2020 (2020) ECOreporter GmbH. Available from: https://www.ecoreporter.de/artikel/green-city-ag-der-jahresabschluss-2018-und-die-perspektiven-fur-2020/. (accessed on 04.09.2023)
    [40] Green City Anleihen (2023) Finanzen.net. Available from: https://www.finanzen.net/anleihen/green-city-anleihen. (accessed on 30.01.2024)
    [41] Green City Energy - Unseriöse Werbung für alternative Energien (2015) Stiftung Warentest. Available from: https://www.test.de/Green-City-Energy-Unserioese-Werbung-fuer-alternative-Energien-4848835-0/. (accessed on 05.02.2024)
    [42] Green City Energy: Darum können die Anleihen derzeit nicht gehandelt werden (2021) ECOreporter GmbH. Available from: https://www.ecoreporter.de/artikel/green-city-energy-darum-k%C3%B6nnen-die-anleihen-derzeit-nicht-gehandelt-werden/. (accessed on 04.09.2023)
    [43] Green City Refinanzierungsvehikel forcieren Bond Delisting (2022) BondGuide Media GmbH. Available from: https://www.bondguide.de/topnews/green-city-refinanzierungsvehikel-forcieren-bond-delisting/. (accessed on 03.09.2023)
    [44] Green City: Verdacht auf zweckentfremdete Gelder (2022) pv magazine group GmbH & Co. KG. Available from: https://www.pv-magazine.de/2022/04/13/green-city-verdacht-auf-zweckentfremdete-gelder/. (accessed on 04.09.2023)
    [45] Grumann L, Madaleno M, Vieira E (2024) Gender Differences in Knowledge, Experience, and Preference of Sustainable Investments. J Financ Couns Plan 35: 58–71. https://doi.org/10.1891/JFCP-2022-0050 doi: 10.1891/JFCP-2022-0050
    [46] He F, Yan Y, Hao J, et al. (2022) Retail investor attention and corporate green innovation: Evidence from China. Energ Econ 115: 106308. https://doi.org/https://doi.org/10.1016/j.eneco.2022.106308 doi: 10.1016/j.eneco.2022.106308
    [47] He JM, Iqbal W, Su FL (2023) Nexus between renewable energy investment, green finance, and sustainable development: Role of industrial structure and technical innovations. Renew Energ 210: 715–724. https://doi.org/10.1016/j.renene.2023.04.010 doi: 10.1016/j.renene.2023.04.010
    [48] Horn M (2024) The European green deal, retail investors and sustainable investments: A perspective article covering economic, behavioral, and regulatory insights. Available from: https://www.sciencedirect.com/science/article/pii/S266604902400001X?via%3Dihub. (accessed on 21.07.2024)
    [49] Hsu PH, Tian X, Xu Y (2014) Financial development and innovation: Cross-country evidence. J Financ Econ 112: 116–135. https://doi.org/10.1016/j.jfineco.2013.12.002 doi: 10.1016/j.jfineco.2013.12.002
    [50] Ibrahim RL, Huang Y, Mohammed A, et al. (2023) Natural resources-sustainable environment conflicts amidst COP26 resolutions: investigating the role of renewable energy, technology innovations, green finance, and structural change. Int J Sust Dev World Ecology 30: 445–457. https://doi.org/10.1080/13504509.2022.2162147 doi: 10.1080/13504509.2022.2162147
    [51] Informationen für Anleihegläubiger der Green City-Gruppe (2023) Available from: https://www.dentonsgmbh.com/de/about-dentons-gmbh/information-for-green-city-group-bondholders. (accessed on 13.02.2024)
    [52] Inhaberschuldverschreibungen Kraftwerkspark Ⅲ Wertpapierprospekt (2016) Green City Energy Kraftwerkspark Ⅲ GmbH & Co. KG. Available from: https://www.vcd-service.de/fileadmin/user_upload/redaktion/beteiligung/2017/pdf/green_city/Verkaufsunterlagen_KWPIII_Wertpapierprospekt_Nachtrag1_03_2017.pdf. (accessed on 03.09.2023)
    [53] Islam SM (2023) Impact Risk Management in Impact Investing: How Impact Investing Organizations Adopt Control Mechanisms to Manage Their Impact Risk. J Manag Account Res 35: 115–139. https://doi.org/10.2308/jmar-2021-041 doi: 10.2308/jmar-2021-041
    [54] Jahresabschluss per 31.12.2022 (2023)[Financial Reporting]. Available from: https://www.prokon.net/files/Prokon-eG_Jahresabschluss-2022_gez.pdf. (accessed on 29.01.2024)
    [55] Jahresabschluss zum 31. Dezember 2012. P. R. E. GmbH. Available from: https://www.bundesanzeiger.de/pub/de/suchergebnis?9. (accessed on 29.01.2024)
    [56] Janzing B (2014) Anleger nach der Prokon-Pleite - In den Wind geschossen. taz Verlags u. Vertriebs GmbH. Available from: from https://taz.de/Anleger-nach-der-Prokon-Pleite/!5050135/. (accessed on 15.08.2023)
    [57] Jones R, Baker T, Huet K, et al. (2020) Treating ecological deficit with debt: The practical and political concerns with green bonds. Geoforum 114: 49–58.
    [58] Kirchner C (2013) Umstrittenes Ökounternehmen - So riskant ist Prokon als Geldanlage. DER SPIEGEL GmbH & Co. KG. Available from: https://www.spiegel.de/wirtschaft/service/prokon-anlage-in-oekounternehmen-ist-riskant-a-929892.html. (accessed on 31.08.2023)
    [59] Kompetenzprofil Green City AG. Bayern Innovativ - Bayerische Gesellschaft für Innovation und Wissenstransfer mbH. Available from: https://www.bayern-innovativ.de/de/kompetenzprofil/green-city-ag. (accessed on 03.09.2023)
    [60] Konzernobergesellschaft stellt Insolvenzantrag (2022) Available from: https://gc-ag.org/docs/Kraftwerkspark-II-DGAP-Meldung-24.1.2022.pdf. (accessed on 25.02.2024)
    [61] Kouwenberg R, Zheng C (2023) A Review of the Global Climate Finance Literature. Sustainability 15: 1255. https://doi.org/10.3390/su15021255 doi: 10.3390/su15021255
    [62] Koval V, Khaustova V, Lippolis S, et al. (2023) Fundamental Shifts in the EU's Electric Power Sector Development: LMDI Decomposition Analysis. Energies 16: 5478. https://doi.org/10.3390/en16145478 doi: 10.3390/en16145478
    [63] La Monaca S, Assereto M, Byrne J (2018) Clean energy investing in public capital markets: Portfolio benefits of yieldcos. Energ Policy 121: 383–393. https://doi.org/10.1016/j.enpol.2018.06.028 doi: 10.1016/j.enpol.2018.06.028
    [64] Ma F, Cao J, Wang Y, et al. (2023) Dissecting climate change risk and financial market instability: Implications for ecological risk management. Risk Anal. https://doi.org/10.1111/risa.14265 doi: 10.1111/risa.14265
    [65] Matviienko H, Pylypenko O, Putintsev A, et al. (2022) European Union policy on financing eco-innovations in the transition to a green economy. Cuest Políticas 40: 28–48. https://doi.org/10.46398/cuestpol.4075.01 doi: 10.46398/cuestpol.4075.01
    [66] Meo M, Abd Karim M (2022) The role of green finance in reducing CO2 emissions: An empirical analysis. Borsa Istanb Rev 22: 169–178.
    [67] Mzoughi H, Urom C, Guesmi K (2022) Downside and upside risk spillovers between green finance and energy markets. Financ Res Lett 47: 102612. https://doi.org/10.1016/j.frl.2021.102612 doi: 10.1016/j.frl.2021.102612
    [68] Naber NL (2014) Prokon setzt Anleger unter Druck. NDR. Available from: https://www.ndr.de/nachrichten/schleswig-holstein/Prokon-setzt-Anleger-unter-Druck, prokon151.html. (accessed on 01.09.2023)
    [69] Nagel LM, Neller M (2013) Die Windmacher. Axel Springer Deutschland GmbH. Available from: https://www.welt.de/print/wams/wirtschaft/article115294409/Die-Windmacher.html. (accessed on 02.10.2023)
    [70] Navid K (2022) How Many Single Rulebooks? The EU's Patchwork Approach to Ensuring Regulatory Consistency in the Area of Investment Management. Eur Bus Organ Law Rev 23: 347–390. https://doi.org/10.1007/s40804-021-00228-w doi: 10.1007/s40804-021-00228-w
    [71] New Approaches to SME and Entrepreneurship Financing: Broadening the Range of Instruments (2015) O. S.-G. o. t. OECD. Available from: https://www.oecd.org/cfe/smes/New-Approaches-SME-full-report.pdf. (accessed on 29.01.2024)
    [72] Oprean C, Bratian V, Lucian Blaga Univ Sibiu FES (2009) THE ROLE OF PORTFOLIO IN RISK REDUCTION THROUGH DIVERSIFICATION[Proceedings Paper]. Industrial Revolutions, from the Globalization and Post-Globalization Perspective, Vol Iv: Banking, Accounting and Financial Systems from the 21st Century Perspective, 476–480. Available from: https://www.webofscience.com/wos/woscc/full-record/WOS: 000287985000073?SID = EUW1ED0EC3lfxnVvOja8Mwsm6XkMk. (accessed on 29.01.2024)
    [73] Osei DB, Alagidede IP, Agbodjah S (2023) Impact Investing in Ghana: A Multiple-Case Study. J Social Entrep, 1-21. https://doi.org/10.1080/19420676.2023.2166093 doi: 10.1080/19420676.2023.2166093
    [74] Ozdurak C (2021) Will clean energy investments provide a more sustainable financial ecosystem? Less carbon and more democracy. Renew Sust Energ Rev 151: 111556. https://doi.org/10.1016/j.rser.2021.111556 doi: 10.1016/j.rser.2021.111556
    [75] Pástor, Stambaugh RF, Taylor LA (2021) Sustainable investing in equilibrium. J Financ Econ 142: 550–571. https://doi.org/10.1016/j.jfineco.2020.12.011 doi: 10.1016/j.jfineco.2020.12.011
    [76] Pedersen LH, Fitzgibbons S, Pomorski L (2021) Responsible investing: The ESG-efficient frontier. J Financ Econ 142: 572–597. https://doi.org/https://doi.org/10.1016/j.jfineco.2020.11.001 doi: 10.1016/j.jfineco.2020.11.001
    [77] Polzin F, Sanders M (2020) How to finance the transition to low-carbon energy in Europe? Energ Policy 147: 111863. https://doi.org/10.1016/j.enpol.2020.111863 doi: 10.1016/j.enpol.2020.111863
    [78] Prokon droht Anlegern mit Insolvenz (2014) G+J Medien GmbH. Available from: https://www.stern.de/wirtschaft/news/oekostromfinanzierer-prokon-droht-anlegern-mit-insolvenz-3129970.html. (accessed on 30.08.2023)
    [79] PROKON Genussrechte - Verkaufsprospekt (2010 and 2012) Available from: https://www.anleihen-finder.de/wp-content/uploads/2012/12/Prokon-Wertpapierprospekt-2012-03-21.pdf. (accessed on 06.02.2024)
    [80] Prokon Insolvenz - Hoffnung für Anleger (2014) Stiftung Warentest. Available from: https://www.test.de/Prokon-Insolvenz-Hoffnung-fuer-Anleger-4701648-0/#: ~: text = Die. (accessed on 30.08.2023)
    [81] Purkayastha D, Sarkar R (2021) Getting Financial Markets to Work for Climate Finance. J Struct Financ 27: 27–41. https://doi.org/10.3905/jsf.2021.1.122 doi: 10.3905/jsf.2021.1.122
    [82] Qair enters German renewables market (2022) Renews Limited. Available from: https://renews.biz/78268/qair-enters-german-renewables-market/. (accessed on 05.09.2023)
    [83] Rendite festverzinslicher Wertpapiere bis 2023 (2024) Statista Research Department. Available from: from https://de.statista.com/statistik/daten/studie/192860/umfrage/entwicklung-der-renditen-festverzinslicher-wertpapiere-in-deutschland-seit-2000/. (accessed on 15.02.2024)
    [84] Resch J (2013a) PROKON: kein vollständiger Konzernabschluss in Sicht. RA Jochen Resch. Available from: https://www.anwalt.de/rechtstipps/prokon-kein-vollstaendiger-konzernabschluss-in-sicht_050643.html. (accessed on 31.08.2023)
    [85] Resch J (2013b) PROKON: Konzernabschluss lässt noch immer auf sich warten. RA Jochen Resch. Available from: https://www.anwalt.de/rechtstipps/prokon-konzernabschluss-laesst-noch-immer-auf-sich-warten_047997.html. (accessed on 31.08.2023)
    [86] Ribas WP, Pedroso B, Vargas LM, et al. (2022) Cooperative Organization and Its Characteristics in Economic and Social Development (1995 to 2020) Sustainability 14: 8470. https://doi.org/10.3390/su14148470 doi: 10.3390/su14148470
    [87] Ringel M, Mjekic S (2023) Analyzing the Role of Banks in Providing Green Finance for Retail Customers: The Case of Germany. Sustainability 15: 8745. https://doi.org/10.3390/su15118745 doi: 10.3390/su15118745
    [88] Ruedinger A (2019) Participatory and citizen renewable energy projects in France - State of play and recommendations. Available from: https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor = SingleRecord & RN = 52116570. (accessed on 08.01.2024)
    [89] Santos TMO, Bessani M, Da Silva I (2023) Evolving Dynamic Bayesian Networks for CO(2)Emissions Forecasting in Multi-Source Power Generation Systems. Ieee Latin Am Trans 21: 1022–1031. https://doi.org/10.1109/tla.2023.10251809 doi: 10.1109/tla.2023.10251809
    [90] Schlechtere Entwicklung bei Siemens Gamesa drückt auf Siemens Energy (2022) Wirtschaftswoche Dieter von Holtzbrinck. Available from: https://www.wiwo.de/energietechnik-konzern-schlechtere-entwicklung-bei-siemens-gamesa-drueckt-auf-siemens-energy/27995374.html. (accessed on 10.09.2023)
    [91] Schwere Materialmängel: Windrad in Haltern gesprengt (2023) Landwirtschaftsverlag GmbH. Available from: https://www.topagrar.com/energie/news/schwere-materialmaengel-windrad-in-haltern-gesprengt-13388506.html. (accessed on 05.02.2024)
    [92] Selvapandian G, Jeyapaul PP, Gunabalan B (2022) ADOPTION OF GREEN FINANCING STRATEGIES WITH RENEWABLE ENERGY RESOURCES FOR GLOBAL ECONOMIC GROWTH. Glob Econ J 22: 17. https://doi.org/10.1142/s2194565923500045 doi: 10.1142/s2194565923500045
    [93] Siemens Gamesa's shareholders approve delisting of the company (2023) Available from: https://www.siemensgamesa.com/-/media/siemensgamesa/downloads/en/newsroom/2023/01/siemens-gamesa-press-release-extraordinary-general-meeting-2023.pdf?ste_sid = d1a81c358371bc49eeabe7877b7a467e. (accessed on 08.01.2024)
    [94] Steffen B (2018) The importance of project finance for renewable energy projects. Energ Econ 69: 280–294. https://doi.org/10.1016/j.eneco.2017.11.006 doi: 10.1016/j.eneco.2017.11.006
    [95] Sun X, Zhang A, Zhu M (2023) Impact of Pilot Zones for Green Finance Reform and Innovations on green technology innovations: evidence from Chinese manufacturing corporates. Environ Sci Pollut R 30: 43901–43913. https://doi.org/10.1007/s11356-023-25371-4 doi: 10.1007/s11356-023-25371-4
    [96] Sustainability Report 2022 - Tackling challenges (2023) S. E. AG. Available from: https://assets.siemens-energy.com/siemens/assets/api/uuid: 49bc59fb-7af0-47fc-a764-a3550d4153dc/siemens-energy-sustainability-report-2022.pdf. (accessed on 25.02.2024)
    [97] Sustainable Europe Investment Plan, European Green Deal Investment Plan (COM(2020) 21 final) (2020) European Commission Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri = CELEX: 52020DC0021 & from = EN. (accessed on 29.11.2023)
    [98] Taghizadeh-Hesary F, Li YF, Rasoulinezhad E, et al. (2022) Green finance and the economic feasibility of hydrogen projects. Int J Hydrogen Energ 47: 24511–24522. https://doi.org/10.1016/j.ijhydene.2022.01.111 doi: 10.1016/j.ijhydene.2022.01.111
    [99] Taghizadeh-Hesary F, Yoshino N (2019) The way to induce private participation in green finance and investment. Financ Res Lett 31: 98–103. https://doi.org/10.1016/j.frl.2019.04.016 doi: 10.1016/j.frl.2019.04.016
    [100] Taghizadeh-Hesary F, Yoshino N (2020) Sustainable Solutions for Green Financing and Investment in Renewable Energy Projects. Energies 13: 788. https://doi.org/10.3390/en13040788 doi: 10.3390/en13040788
    [101] Überblick über die betroffenen Emittentinnen, dem Status zum Insolvenzverfahren und eine mögliche Quotenzahlung (2023) Available from: from https://gc-ag.org/docs/Uebersicht_Insolvenz_Green_City_Gesellschaften_12_2023.pdf. (accessed on 20.01.2024)
    [102] Unabhängige Analyse: Genussrechte von Prokon im ECOanlagecheck - Teil 1 und 2 (2012) ECOreporter GmbH. Available from: https://www.ecoreporter.de/artikel/ecoanlagecheck-genussrechte-von-prokon-teil-1-des-ausfuehrlichen-ecoanlagechecks-25-05-2012. (accessed on 31.08.2023)
    [103] Unlautere Bewerbung von Genussrechten (2012) OLG Schleswig-Holstein. Available from: https://www.bbh-blog.de/wp-content/uploads/2012/09/OLG-SH-05.09.2012-6-U-14-11.pdf. (accessed on 29.08.2023)
    [104] Verfahren gegen Prokon-Gründer eingestellt (2017) Gerald Braunberger, Jürgen Kaube, Carsten Knop, Berthold Kohler. Available from: https://www.faz.net/aktuell/finanzen/finanzmarkt/prokon-gruender-carsten-rodbertus-betrugsverfahren-eingestellt-15187554.html. (accessed on 06.02.2024)
    [105] Verluste bei der Green City AG (2021) Süddeutsche Zeitung GmbH. Available from: https://www.sueddeutsche.de/muenchen/muenchen-green-city-schieflage-1.5495361. (accessed on 05.02.2024)
    [106] Voluntary cash tender offer (2022) Siemens Gamesa Renewable Energy, S.A. Available from: https://www.siemensgamesa.com/investors-and-shareholders/cash-tender-offer. (accessed on 02.09.2023)
    [107] Wang H, Shen H, Li SW (2023) Does green direct financing work in reducing carbon risk? Econ Model 128: 106495. https://doi.org/10.1016/j.econmod.2023.106495 doi: 10.1016/j.econmod.2023.106495
    [108] Wang R, Usman M, Radulescu M, et al. (2023) Achieving ecological sustainability through technological innovations, financial development, foreign direct investment, and energy consumption in developing European countries. Gondwana Res 119: 138–152. https://doi.org/10.1016/j.gr.2023.02.023 doi: 10.1016/j.gr.2023.02.023
    [109] Wang Z, Teng YP, Xie LB (2023) Innovation for renewable energy and energy related greenhouse gases: Evaluating the role of green finance. Sustaine Energy Techn 57: 103279. https://doi.org/10.1016/j.seta.2023.103279 doi: 10.1016/j.seta.2023.103279
    [110] Wasan P, Kumar A, Luthra S (2024) Green Finance Barriers and Solution Strategies for Emerging Economies: The Case of India. IEEE Transact Eng Manage 71: 414–425. https://doi.org/10.1109/tem.2021.3123185 doi: 10.1109/tem.2021.3123185
    [111] Wu L, Liu D, Lin T (2023) The Impact of Climate Change on Financial Stability. Sustainability 15: 11744. https://doi.org/10.3390/su151511744 doi: 10.3390/su151511744
    [112] Wulf AB, Julia (2015) M&A-Deals: ZF Friedrichshafen, Henkel, Prokon. F.A.Z.-Fachverlag. Available from: https://www.finance-magazin.de/deals/ma/ma-deals-zf-friedrichshafen-henkel-prokon-29345/. (accessed on 15.09.2023)
    [113] Xiang XJ, Liu CJ, Yang M (2022) Who is financing corporate green innovation? Int Rev Econ Financ 78: 321–337. https://doi.org/10.1016/j.iref.2021.12.011 doi: 10.1016/j.iref.2021.12.011
    [114] Ziesemer B (2023) Das große Rätsel von Siemens Energy. Gruner + Jahr Deutschland GmbH. Available from: https://www.capital.de/wirtschaft-politik/das-grosse-raetsel-von-siemens-energy-33856088.html. (accessed on 01.10.2023)
  • This article has been cited by:

    1. Rashid Nawaz, Nicholas Fewster-Young, Nek Muhammad Katbar, Nasir Ali, Laiq Zada, Rabha W. Ibrahim, Wasim Jamshed, Haifa Alqahtani, Numerical inspection of (3 + 1)- perturbed Zakharov–Kuznetsov equation via fractional variational iteration method with Caputo fractional derivative, 2024, 85, 1040-7790, 1162, 10.1080/10407790.2023.2262123
    2. Sakthi I, Raja Das, Bala Anki Reddy P, Entropy generation analysis on MHD flow of second-grade hybrid nanofluid over a porous channel with thermal radiation, 2024, 85, 1040-7790, 623, 10.1080/10407790.2023.2252600
    3. Zafar Hayat Khan, Waqar A. Khan, Ilyas Khan, Farhad Ali, Transient Newtonian fluid flow in a two-dimensional channel with convection and viscous dissipation, 2025, 1040-7790, 1, 10.1080/10407790.2024.2393271
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1692) PDF downloads(205) Cited by(1)

Figures and Tables

Figures(2)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog