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1. Introduction

In this paper, we are interested in the following Kirchhoff type problem with singularity and critical
exponents
- (a -b | |Vul dx) Au = Af ()™ + Q(x)|ul*u, in R?,

R4
u>0, in R*,

(1.1)

where a,b > 0,0 <y < 1, 4 > 0 is a parameter, and f(x), Q(x) are nonnegative and continuous
functions. Throughout this paper, we make the following assumptions:

(0)) O(x) € C(R*) is bounded on R*; Q) := max s O(x).

(Q») There exist k different points a;,a,, - - - ,a; in R* such that Q(a i) = Qp; moreover, aj, j =
I,---, k are strict local maximums satisfying |Q(x) — Q(a;)| = o(|x — ajlﬁ’) with2 < B <4asx — a;
uniformly for j=1,--- k.

(fi) f € Lﬁ(R“) is a positive function.
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(f>) There exist 6; > 0, Szﬂ < B, <3 +vyandp; > 0such that f(x) > p;|x — ajl‘ﬁ2 for |x —aj| <
01, j=1,---,k, where a; are defined as in (Q,).

Problem (1.1) is related to the stationary analogue of the equation that occurs in the study of the
vibrations of string or membrane namely,

oul?

0*u 6u Eh (*
ph—z +0 fl( ) (Po 2Lf -

0x

62
) + fo(x, u), (1.2)

which was presented by Kirchhoff in [1], where p, &, 9, po, L are constants representing some physical
meanings, respectively, E is the Young’s modulus, u(x,¢) is the lateral displacemen, f;, f, are the
external forces. When f; = f,, it extends the classical D’ Alembert wave equation for free vibrations of
elastic strings. Due to problem (1.2) being no longer a pointwise identity, so, it is often called nonlocal
problem, and has received great attention of many researchers. The following singular Kirchhoff type
problem has been considered

_(a+bf|Vu| dx)Au—/lg(x)—+ @ i a
Q

X w
u > O, in Qa
u=0, on 0Q,

(1.3)

where 3 < p<5-25,0<y<1,4>0and g, h e C(Q) are nonnegative functions. The first to study
problem (1.3) were Liu and Sun [2], they proved that problem (1.3) has two positive solutions by using
the Nehari method when N = 3,0 < s < 1 and 3 < p < 5 — 2s. Later, Lei and Liao [3] investigated
problem (1.3) with s = 0 and p =5, they obtained the existence and multiplicity of positive solutions
by using the Nehari method and variational method. The result of [2] was improved in [4] and two
positive solutions were obtained under p = 3. For more similar works on singular Kirchhoff type
problem, one can refer to [5—12] and the references therein.
In 2015, Yin and Liu [13] considered the following new Kirchhoff type problem firstly

_(a_b fg |vM|2dx) Au= f(x,u), in Q, (1.4)
=0, on 0Q,

where Q is a smooth bounded domain in RY, a,b > 0 are parameters. In the case of f(x,u) = |u’">u
with 2 < p < 2%, 2" = N 2, they proved the existence and multiplicity of nontrivial solutions for
problem (1.4) by using variational method. Such problem presents differently interesting difficulties

from Kirchhoff type problem (1.3) due to the absence of new nonlocal term —b |Vul? dx. Later

on, Lei et al. [14] investigated problem (1.4) with f(x,u) = Alu|™, they obtained t}?e existence and
multiplicity of positive solutions by variational method. Particularly, Wang et al. [15] obtained many
solutions for problem (1.4) in the case of f(x,u) = |u|*u + ug(x) by using variational method. For
more results related to new Kirchhoff type problem, we refer the readers interested in these to [16, 17].
In fact, for the case p = p(x), some results are given in [18-21]. In particular, Hamdani et al. has
considered the following p(x)-Kirchhoff type problem in [22]

—a- 1 (x) _ (x)-2 .
{ (a=b [, 5IVuldx) Apgu = Al + g(x,u), in Q, 0s)

u=0, on 0Q,
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where a > b > 0 are constants, Q € R" is a bounded smooth domain, p(x) € C(ﬁ) with 1 < p(x) < N, 4
is a real parameter and g(x,u) is a continuous function. Under appropriate hypotheses, the authors used
Mountain Pass Theorem and Fountain Theorem to obtain the existence and multiplicity of nontrivial
solutions for problem (1.5). In [23], Vetro studied a nonlinear p(x)-Kirchhoff type problem with
Dirichlet boundary condition, in the case of a reaction term also depends on the gradient. Using a
topological approach based on the Galerkin method, the author discussed the existence of two notions
of solutions: strong generalized solution and weak solution. Strengthening the bound on the Kirchhoff
type term, the author established existence of weak solution, with using the theory of operators of
monotone type this time.

To the best of our knowledge, so far few results are known on the relation between the number of the
maxima of the coefficient function of the critical term and the number of the positive solutions for new
Kirchhoff type problem with singularity. Comparing problem (1.1) with the previous mentioned works,
we need to overcome the non-differentiability of the functional of the problem and indirect availability
of critical point theory due to the presence of singular term. On the other hand, we try to consider
the relationship between the number of positive solutions and the topology of global maximum set of
Q(x) by the idea of category. Moreover, we should point out that the appearance of the nonlocal term
and the lack of compactness resulted from the nonlinearity with the critical Sobolev growth prevent us
from using variational method in a standard way.

The energy functional corresponding to problem (1.1) is defined by

b 1 A
1) = Sl = Sl - 5 f 000 luf*dx = 1= f £ lul' ™ dx, (1.6)
R4 - R4

for u € D'2(R*), where D'*(R*) is the completion of C*(R*) with the norm [|ul* = f |Vul>dx and the
R4

corresponding inner product (u,v) = f Vu - Vvdx for any u, v € D'*(R*). It is well known that the
R4
singular term leads to the non-differentiability of I, on D'*(R*). Therefore, it is difficult to find out the

local minimizer and the mountain pass type solutions of the problem. Here, we say u € D'*(R*) is a
weak solution to problem (1.1), if for any ¢ € D'*(R?), it holds

f VuVedx — b( |Vu|2dx) f VuVedx

(1.7)
fQ(X)Iul updx — /lff(x)—dx_

Our main results are as follows.

Theorem 1.1. Assume that a,b > 0, 0 <y < 1. If the conditions (Q,) and (f) hold, then there exists
Ao, such that for each 0 < A < Ay, problem (1.1) admits a positive ground state solution.

Theorem 1.2. Assume that a,b > 0, 0 < v < 1. If the conditions (Q,), (Q,), (f1) and (f>) hold, then
there exists Aoy, such that for each 0 < A < Ago, problem (1.1) has at least k positive solutions.

Throughout this paper, we use the following notations:
e B, (respectively, dB,) denotes the closed ball (respectively, the sphere) of center zero and radius

r,ie., B, ={ue DR : |lul| <r}, 0B, = {u € D'*R*) : |lul| = r};
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e C,Cy,Cy,C,,...denote various positive constants, which may vary from line to line;
e We use — (—) to denote the strong (weak) convergence;

1 1
e O(€') denotes 'Oi—f)' < C as € — 0, and o(€') denotes L@l 5 0ase—0;

E[

e Define the best constant § = inf {Ilull2 :u € DV2(RY), f lul*dx = 1}, which is attained by the
Q

functions U, (x) = C/ (& + |x = xol?) for all & > 0, where C, = (85)?.
2. Preliminaries

In order to prove our results, we first consider the functional on the Nehari manifold:
N, = {u € D2 ®RH\(0} : allull® - bl|ul*
- [ ot ar-a [ sl vax=o)
R4 R*
and split N; = N7 U N9 U N7 as follows
AG={u€Nhuﬂ+7mmF—M3+7mmﬁ—G+ﬁof;Q@Hmﬂh>OL
R
A@={u€Nhwﬂ+7mmf—b6+7mmﬁ—64ﬂ0lewﬂm“M:OL
R
AG={uerdl+wWW—bB+7mw“%3+wJ:Quwﬁdx<ﬂ.
R
One can easily see that for u € N,
allull* = 3bllull* - 3f Q) |ul* dx + /b’f SOl dx
R4 R4
= a(l + Yl = b3 +)llull* = (3 + 7)f O(x) lul* dx
R4
(2.1)
= =2dllull® + (3 + 7)/1f SOl dx
R4
= —2b|lull* - 2 f O(x) lul* dx + (1 + )4 f F@lul'7dx.
R4 R4
Lemma 2.1. Assume that 0 < 1 < Ay, u € DY2(RY\{0}, then there exists unique 0 < t* = " (u) <

Imax <1 =1 (u) suchthat t'u € N*, r'u € N7, [(t"u) = infoio- In(tu) and [)(r"u) = sup,,, L(tu).
Furthermore, N = 0 for all 0 < 1 < Ay, where

3+y 1+y

27 [ a \? I+y \?
A]: ) .
Ifls \3+y) \b+s520u
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Proof. For any u € D"*(R*)\{0} and ¢ > 0, we have

dI tu
D P el - f 0 ul* dx — A1~ f FEOluldx
=! V[at“yllull — bt ||l
# [ et dr-a [ gt
R

=t lh(t) - ﬂf f(x)luIl_ydx] ,
R4

(2.2)

where h(f) = at'™||ul]> = b2 ||ul|* — £ Q(x) |u|* dx. Easy computations show that /() > 0 for all

0<t<tpand W' (r) <O forall t > tpax. Thus h(t) achieves its maximum at

2

- a(l + y)|ull?
(B +7v) (b||u||4 + f 0 Ju* dx)
R
with max (r) = h(fmay)
te[0,+00)
IZJ
_ 2alulP a(l + y)llull?
+y
B+7y) (b||u||4 + f 0 Jul* dx)
R
a \* 1+vy
— 2 3+y
llu (3 " )

bllull* + f O(x) |ul* dx
R4
Since 0 < y < 1, Holder inequality, Sobolev embedding inequality and (f;) imply

1y

T 1 ~
f Ol 7dx < A1 2 (f |u|4dX) < IIfII%STIIMII1 7.
R? MEAW) -3 Y

It follows from Sobolev embedding inequality, (2.4) and (2.5) that

h(tmax) - /lf f(X)lull_ydx
R4

3+y

>2||u||3+y( a ) L+y
B 3+
Dlull* + f 0Wluf* d)
R

=1 1—
= AL S = [lul
3y

1+

a ks 1+vy ki L_ 1—
2 -1 S Y> 0,
> (3 +y) (b+S—2QM) 1A . luell

(2.3)

(2.4)

(2.5)

(2.6)
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forall 0 < A4 < A;. Consequently, #; and ¢ satisfy 0 < #; < f.x <t such that

h(ty) = ﬂf fOolul' ™ dx = h(ry)

R4
and
W(t5) > 0> H(ty),

that is, rfu € N} and f;u € N. Hence, N7 # 0 for all 0 < A < A;. We can further obtain from (2.2)
that ‘”ﬂ(”” > 0 for all z+ <t<ty, 4 <0 forall 0 < 1 < 1y and t > 5. Thus, Li(t5u) = infoce 1y(tu0)
and I,l(t u) =sup,, I)(tu)

Now, we come to show that N9 = 0 for all 0 < A < A;. Arguing by contradiction, assume that there
exists up € Ng and uy # 0. Similarly to (2.6), we can obtain from (2.1) that

Ly
2

2 2
3 2;l||fo|| a(l +y)lluol . f FOluoldx
Y 4
(3+7)(b||uo||4+ f Q(X)Iuol4dX) ¥
2a||uo||2

- -2 f FOOluol'dx = 0

which is a contradiction. Hence, N/? =Qforall0 <A< A;. O
Lemma 2.2. Assume that 0 < A < A\, then there exists a gap structure in N,:

NUIl > Cypy > Cao > |lull,u e N7, U € Ny,
where

L
y+1

)2 Cio = (ﬂ3—||f||4S ) . 27

_( a(l +v)
TG+ b+ 520

Proof. Since 0 < A < Ay, according to Lemma 2.1, we have N} # 0. For any u € N7, it follows from
(2.1) and (2.5) that

3+ B 3
P < =~ f @l Tdx <
R

+y pal _
5 Afll e S = full' ™,
a a 3+y

which yields ||u|| < C,.
For any U € N, it follows from (2.1) and Sobolev embedding inequality that

a(l +PIUIP <bB+IUI*+ (3 + 7)f Q) [UI* dx
R4
< G +GIUNT+S2oulUI),

which yields ||U|| > Cp;. Using 0 < A < Ay, one can further obtain

3+ rl =
Co < (M= 2IflLeS ) = Cyr.
a 3+y

The proof is completed. O
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Lemma 2.3. Assume that 0 < A < Ay, then N7 is a closed set in D"*(R?).

Proof. Since 0 < A < Ay, by Lemma 2.1, one has N} # 0. Let U, be a sequence in N} with U, — U,
in D'2(R*), then U, — Uy in L*(Q). Since N; € N,, one can obtain from (2.1) and (2.5) that

alUglP? = a lim [|U, > = lim [b||Un||4+ f 0 U, [*dx + A f f(X)IUnll‘de]
n—oo n—oo R4 R4
= bllUolI* + f Q) [Uol* dx + 4 f FNUol7dx
R* R4

and
= 2allUo|I* + A3 + V)f FOIUo|' 7 dx
R4

= lim [—2a||u,,||2 +A3 +7y) f f(x)lU,,Il‘de] <0,
n—o0 R4
so Up € N, U{0}. It follows from U, € N and Lemma 2.2 that
allUol* = a lim ||U,|I* > aC}, > 0,

that is, Uy # 0. Hence, Uy € N and N is a closed set in D"*(R*). o

Lemma 2.4 Given u € N7, there exist € > 0 and a continuous function z, : B,(0) — R" defined for
w € D'2(RY), w € B.(0) such that

20) =1, z.(w)u+w) e NE, Ywe DR, |w|<e.

Proof. We only prove the case of u € N. The case of u € N can be proved by a similar argument.
Define F : R x D'*(R*) — R by

F(t,w) =at"™|lu + w||* = b£>||Ju + w|*

— f Q) |u+w*dx - /lf FO)lu + w|'Vdx.
R4 R4

Since u € N7 C N, we obtain F(1,0) = 0 and

F,(1,0) = a(l + p)llull® = b3 + pllull* = 3 +7) fR4 O(x) |ul* dx < 0.

Using implicit function theorem to F at the point (1,0), we may deduce that there is € > 0 satisfying
for w € D'2(R%), |w|| < &, the equation F(¢,w) = 0 has a unique continuous solution ¢ = z,(w) > 0
with z,(0) = 1. Since F(z.(w), w) = 0 for w € D2(R*), ||w|| < &, we get

0 =az 7 Wllu + wi* = bz (w)llu + wil*
— 27 (w) f Q) lu+wl'dx - 2 f FOlu+w|'Vdx
R4 R4

=2 ) az2w)llu + wi* = bz w)llu + wil*
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— Zi(w) f Q) Ju + wi* dx — Az, (w) f SOlu + WIl‘de],
R4 R4

that is, z.(w)(u + w) € N, for all w € D*(R*) and ||w]| < €. Since F,(1,0) < 0 and

Fi(zew), w)=a(l +y)zew) lu + wil* + b3 + ). W)l + wi?
~ B+ (W) fR Ol + wi'dx
=[a(1 + Pllzew)u + WP + 5B + P)llza(w)(u + wI*
-3+7) fR QW@lee(w)u + wldx] /7 (w),
we can choose € > 0 suitably small(e < €) such that ||w|| < €, for w € D'2(R%),
a(l +Ylleew)e + W) + b3 + Pz w)u + wl*
~(3+7) fR QW) + w)i'dx <0,

which yields z.(w)(u + w) € N, for any w € D'*(R?*), ||w|| < €. This completes the proof.

Lemma 2.5. The functional I, is coercive and bounded from below on N,. Moreover,
(i) IfO0 <A <Ay, theninfy: I <O;
(ii) If 0 < A < A, then inf ~n: vz Mo > 0 for some constants, where

Mo = Mo (17,5, 0w If1Ls. ).

and
A2 = I%Al

Proof. For any u € N,, from (1.6), (2.1) and (2.5) we can obtain that

a b 1 A B
I () = —||u||2 - leull4 - Zf Q(x) |ul* dx - 1—f FOO Jul'™ dx
R4 — 7Y Jr¢

a A3 +y) 1-

> P - G )fR4f(x)|u| Y dx
a A3+ 7) 1 1—
2 P = G S

Due to 0 <y < 1, I, is coercive and bounded from below on N).

(2.8)

(i) When 0 < 4 < Ay, we have N7 # 0, from Lemma 2.1, N7 and N are two closed sets in
D"?(R*) from Lemma 2.3. So infy+ /; and inf- I, are well defined. For any u € N7 € N, we can get

from0 <y < 1,4 > 0and (2.5) that
a b 1 A _
I (w) = EIIMII2 - —||u||4 - —f Q) [ul* dx — l—f F lul'™ dx
—7Y Jr4
a AB +vy)
_ Gy = 28 f FOO ! dx

2T g
_AAED e <
T3 —y)
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which yields infy+ 1, < 0.
(i1) Let u € N7, it follows from Lemma 2.2 that ||u|]| > C,,; (see (2.7)). Forall 0 < A < A,, one can
get from above inequality and (2.8) that

AB+7y)
4(1 -

5= 1
IIfIIf Tl

A3 +7y)
A(1 -

a
1y (u) Zé—lllull2 -

1[4 1
> |ul| y[zllull -

||f|| ]

>( a(l +y) )2 [g( a(l +y) )2
Grnors2om) F\GrnersTon
A3
- DA s 7]

which implies that there exists a constant My = M, (/l, v, S, 0m f II%) such that inf ~no = My >0
3+y
forall0 < A < A,. m|

According to Lemmas 2.1 and (2.3), for 0 < 4 < A;, N7 and N are two closed sets in D2 (RY),
then we can apply Ekeland’s variational principle to find the minimums of functional I, on both N}
and N;. Let {u,} C Ny be a minimizing sequence for I, on Ny. That is, {u,} C N7 satisfy

ay < Li(u,) < aj + % (2.9)
and
13(2) 2 Li(u,) — %Ilun —zll, Yze Ny, (2.10)
where

a; = inf Li(u), a; = inf I)(u) and @, = inf L(u).
ueNy ueNy ueN,

some suitable positive constant C, so there exists a nonnegative function u; € D"*(R*) such that

From I;(|u,|) = 1;(u,), we can assume that u, > 0. Moreover, Lemma 2.5 shows that ||u,| < C, for

Uy — Uy, in D'2(R*) EI,
Uy — Uy, in Ly (R*) 2<p<4), (2.11)
u,(x) = uy(x), a.e.in R*.

By Vitali theorem, as done similarly in the proof of [11], we have
lim f [ |y dx = f F() lual'™ dx, (2.12)
n—oo R4 R4

when {u,} is bounded in DV?(R*).

AIMS Mathematics Volume 7, Issue 5, 7909-7935.
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Lemma 2.6. Assume that 0 < A < Ay and {u,} C N7 satisfy (2.11) with u, # O, then there exists a

constant C| > 0 such that the following alternative holds true:
(i) If {u,} € N, we have

a(l + Pllwl* = b3+ P)lluall* = 3 + ) fR4 O(x) luy|* dx > Cy;

(ii) If {u,} C N, we have

a1+ Pl = b3 + Pl = G +7) f 0 lu,[*dx < —C,.
R4

Proof. We just prove (i), since (ii) follows similarly. Since {u,} C N7, (2.1), (2.12) and u, # 0, it is
enough to show that

B+ f FOOluadx > lim inf 2alu,|). (2.13)
R4 n—o0
Arguing by contradiction, assume that
B+ f FOlu)dx = lim inf2alu,|*). (2.14)
R4 n—oo

Since {u,} C N, one has

G+ 7)/1f SOl 7V dx > 2allu |,
R4

According to (2.12), we can further obtain

3 +vy)4 f FOOlua)"dx = lim supallu,|*) = lim infalu,|*). (2.15)
R4 n—00 n—oo
It follows from (2.14) and (2.15) that
B +y)d f FOlua 7 dx = lim (2allu,|?). (2.16)
R4 n—o0

Passing to the limit as n — oo and using (2.1) and (2.16), we get

1
lim [bllun||4+ f Q(x)lun|4dx]:/l—;y FOlual 7 dx. (2.17)
n—oo R4 R4

Therefore, it follows from (2.16) and (2.17) that

1+ P
v all
3+ 7y noe

=1, (2.18)
bllul* + | Qx) u,|* dx
R4

AIMS Mathematics Volume 7, Issue 5, 7909-7935.
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For 0 < A < A4, passing to the limitas n — oo 1n (2 6), using (2.12), (2 16) and (2.18), we have

. 3+7 Lty r 1-
0<}§£‘o[2(3 )7 (b+S 2Q )'? —ﬂ||f||4S ]Ilunll 7
1+y
2
2 2
<lim 2al|u,|| a(l + y)llul
n—oco 3+7

(3+y>(b||un||4+ f Q(X)Iun|4dX)
R4
—limA | f)u,l7dx
n—oo R4

. 2allu|
= lim

n—eo 3 4

-4 | f@u,l7dx =0,
R4

which is impossible. Thus, (2.13) holds and the proof of Lemma 2.6 is completed.

O

Given s > 0 small enough and 0 < ¢ € D'"*(R*), we set u = u, and w = s in Lemma 2.4,
then we obtain that there exists a continuous function z, : B.,(0) — R* such that z,(0) = 1 and
2a(sY)(u, + sy) € Ny. For simplicity, we denote z,,,(s) = z,(si) in the following proof. However, we

have no idea whether or not z,,(s) is differentiable. For the sake of proof, we set

wy(5) = 1
2,0 = tim 297 e o e
’ s—0* S

Lemma 2.7. Assume that 0 < A < A,. Suppose {u,} C Ny satisfy (2.10) and (2.11) with u, # 0, then

z,,,(0) is uniformly bounded for any 0 < ¢ € D"*(R?).

Proof. We only consider the case of u,, z,,(s)(u, + s¢) € N since the situation on N} can be proved

similarly. Since u,, z,y(s)(u, + s¢y) € Ny C N, we have

allua]* = blluy|I* ~ f O(x) |uy|* dx — /lf SOl 7dx = 0
R4 R4

and
2 2 4 4
az (Mt + Yl = bz, (9)lluy + s

- Zi,(//(s)f o(x) |u, + szp|4 dx — /lz,ll:py(s)f fOlu, + swll_ydx =0.
R4 R4
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Using 0 <y < 1 and A > 0, the above two equalities yield
0 =alz},(s) = 1]l + syl = b |25, (5) = 1] ey + syl
S ENORS] f Q) luy + syl dx
R4
— g =1 | f@l + syl Vdx
ny R
+ alluy + SYIP = Nl P| = b [l + s911* = el

_ f 0(x) [|un + s¢|4 _ |un|4] dx — /lf f(x) [|un + Sl/’|l_7 _ |un|1—7] dx
R4 -

. () =1 \
<[ensts) = 1]{alust) + 1]l 50 = 5225l + 501
Zi’w(s) -1 )
- —f O(x) |u, + sy|” dx
Zn,l/,(S) -1 R4
1-y 1
- fzi((s% fw SOty + sl dx} + a [l + sl = lual?] .

Dividing by s > 0 and passing to the limit as s — 0%, using (2.1), we obtain
0 SZ,'1,¢(()){ZaIILtnII2 — 4b|lu,|* - 4f Q) luy|* dx
R4

—(1-9)2 f F@lu|" 7 dx} + 2a f Vu, Virdx
R4 R4
<z, Ofal + Pl = b3 + )l I

~3+7v) f Q) lu,|* dx} + 2a f Vu, Vidx,
R4 R4

(2.19)

which implies that z;’w(O) # —oo according to Lemma 2.6 and the boundedness of {u,}. Now we show
that z; ,(0) # +oo. Arguing by contradiction, we assume that z;, ,(0) = +oo and so z, ,(0) > 1 for n
sufficiently large and s > 0 small. Applying condition (2.10) with z = z, ,(s)(u, + si), we have

1 s

- [Zn,(//(s) - 1] letall + = 2 ()
1

> Z“I/ln - Zn’w(S)(un + Sw)”

> Li(up) = Li(2ny () (tn + 5Y)).

(2.20)
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Since u, € Ny C N,, then one can get from (1.6) and (2.20) that

i () =10 w1 1 )
_ > - —aq(— —
() 27— a(z = 7l + svl
11 Zy-1
+b(= — ’ » 4
G Ty 2 =Tl * vl
4
1 1 Zyu(s)—1 A
T T 2 Ty, Q0 e+ syl d)
PR S BN [ el 7
2 1-vy s
RIS BN VR e 71
4 1-vy s

4 4
|Lt,1 + Sl/’l - |un|
dx.

1 1
+ —_—_——_—_——
G-1=5) ). 0w
Letting s — 0", using the continuity of z,,(s), Lemma 2.6 and ||u,|| < Cy, we obtain

gl ZZ;w(O){ _ Ml a(l - 2 Nul* + b(1 —
n

4
; — el

+ (1 - i)fv O(x) |un|4 dx} —a(l - L) Vu,Vipdx
I -y Jps 1 —y" Jps

4
+b(1 - ——) | |Vu, f Vu, Vigdx
1 - R4 R4

4
+l-r—) f O(x) lu,* wdx
-7 Jr4

lluall

1
=2y O = =7 + 7 e = Pl = 56 =Pl

-9 [ ol ) -at - =) [ i Tuas @21
R4 -7 Jr¢
+b(1—i) |Vu, | f Vu, Vipdx
1 - y R4 R4
4
+(l-7—) f Q(x) |uy|* ydx
=Y Jr¢

C, C 2
>7,,(0) (—70 + s 1y) —a(l - T f4 Vu, Vidx
- - R

4
+b(1 - ——) | |Vu, f Vu, Vipdx
1 - R4 R4

4

+(1- 1—)f Q(x) |uy |’ yx
-7 Jr¢

which is impossible because Z;w(o) = 400 and —% + 1% > ( for n large enough. Hence, Z;W(O) # 400,

To sum up, |z;, ¢(0)| < +oo. Moreover, three inequalities (2.19), Lemma 2.6 and (2.21) with ||u,|| < Cy

also imply that
2,,(0) < Cy, (2.22)
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for n sufficiently large and a suitable positive constant C,. O

Lemma 2.8. Assume that 0 < A < A,. Suppose {u,} C N7 satisfy (2.10) and (2.11) with u, # 0, then
for any 0 < € D"2(R*), we have, as n — oo,

a f Vunwdx—b( f |Vun|2dx) f Vu, Viydx
R4 R4 R4

(2.23)
—f O(x) lun unwdx—ﬂf JQ) a7 Ypdx = o(1).
R* R*

Proof. For any 0 < ¢ € D'2(R"), applying condition (2.10) with z = z,,(s)(u, + si), it leads to

[2069 = il | sl

N n n

> —|| Un = Zny(8) (U + Y|

[Z,,,d,(s) —1], |z +1]
] s { —a 2

2
llun + sy

1
ZE [I/l(un) - [A(Zn,://(s)(un + Slﬁ))

Zy ()~ 1
Azpy(s) — 1]
4[Zf:<sz)_11 f O(x) |u, + syl dx
() - L
Ta- y) ng(s) — 1] f 0y + sy d
a|lu, + sl = llu, I N b lluy + sll* = lluy|I*
2 Ry 4 S
LU gt st =l
4 R4 N
|t + sl = |y

T— Q( ) dx.
—y P

ity + syl*

+b(

Passing to the limit as s — 0*, according to the continuity of z,,/(s), Fatou’s Lemma and 0 < y < 1,
we have

127,45 (O] - llat ]l
—’w + M

n n

2,0 = alllP + b+ [ QU+ 4 [ ool )
R4 R4

—a f Vuan/dx+b( |Vun|2dx) f Vi, Vipdx
R4 R4 R4

+f Q(X)Iunlzunl//dX+/1f J O lun ™ pdx

= f Vunwdx+b( f |vun|2dx) f Vu, Vipdx
R4 R4

Q00 > uppdx + A | f(X) || dx,
R4 R*
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since u, € N7 C N,. Thanks to ||u,|| < Co, |z,’w(0)| < (, and (2.22), we passing to the limit, we have

a f Vu,,wdx—b( f |Vu,,|2dx) f Vi, Vigdx
R4 R4 R*

(2.24)
—f O(x) [ unwdx—ﬂf JQ a7 Ypdx = o(1).
R4 R¢

Now, we come to show that (2.24) holds for every ¥ € D'*(R*). For any € D"*(R*) and & > 0, set
We = u, + & and Q, = {x € R* : . < 0}. Since u, € N, by applying inequality (2.24) with i = 138

we have |
o(1) <—{a f vu,,w;dx—b( f |vu,,|2dx) f Vi, Viridx
E R4 R4 R4
—f Q(x)lunlzunwidx—ﬂf £ [ i dx)
R* R4
1
:_{a f Vu,V(u, + ep)dx
& RN\Q,

—b f Vi, |? f Vu,V(u, + ep)dx
RAM\Q, Q\Q,

- Q(X) |un|2 Mn(un + 8$)dx

RNQ,
-2 f FOO Il (aty + p)dx)
RNQ,
1
=—{allu,|I* = llu,I* - f Q) luy|* dx - 2 f £l | dxc}
E R4 R*
+{a f Vu,,wdx—b( |Vun|2dx) f Vu, Viydx
R# R* R*
- fR 0@l uypdx = 2 fR Sl ]

- l{a‘f Vu,V(u, + e)dx
Qg

&

—b f Vi, f Vu,V(u, + e)dx
QS QS

- f Q) [yl t(uy + £)dx — A f SO || (a + Sw)dX}
o Q

<{a f Vu,,wdx—b( f |Vu,,|2dx) f Vu, Vidx
R# R4 R#

- f Q(X) |un|2 unwdx - /lf f(X) |un|_y lﬁdx} - af Vuthﬁdx
R* R4 Q.

(2.25)
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Letting € — 0" to the above inequality and using the fact that |QQ.| — 0 as € — 0%, we have

a f Vunvwdx—b( f |Vu,,|2dx) f Vu, Vipdx
R4 R4 R4

—f O(x) [ unl//dx—/lf fO) 7" ydx = o(1), Yy € DVA(RY).
R4 R4

This inequality also holds for —y, so we get that (2.23) holds for every yy € D'*(R%). |
Lemma 2.9. Assume that 0 < A < Ay. Suppose {u,} C N7 satisfy (2.10) and (2.11) and

L(u,) > c<cy, asn— oo, (2.26)

a’s?

4
where ¢ # 0 and c; = 0 DA% with

4
3+y

(L +PIfll2
2(1-7y)

_3+y
4

1652(bs? + QM)]H
bOu(1 —7y)

then uy % 0 and {u,} possesses a subsequence strongly convergent to u, in D"*(R*).

Proof. We claim that u;, # 0. Arguing by contradiction, we assume u, = 0. Then, by u, € N7 C N,
and (2.12), we have

allul* = blluall* = | Q) lunl* = 0(1). (2.27)
Rﬁl
It follows from (1.6), (2.27) and I; — ¢ # O that
¢ = L(u,) +o(1) = zllunll2 +o(1). (2.28)

If ¢ < 0, we get a contradiction from the last equality. If ¢ > 0, there exists ny € N such that ||u,|| > ¢
for n > ny. This together with (2.28) leads to lim,,_. ||u,||* > Then, by (2.26), (2.28) and the
above equality, we obtain that

(bs2+Q )"

a2s2 22

4 a
<= —2%  _pawm<—9% 9y A=
ST 405+ Ou) < Iowr o S 7 im el = c.
which is a contradiction. Therefore u; # 0. We will prove that u, — u, in D"?(R*). Write v, = u, — u,
and we claim that ||v,|| — 0. Otherwise, up to a subsequence (still denoted by v,), we may suppose

vl = [ with [ > 0. From (2.23), we have that (I’ (u,), u;) = o(1) and hence

o(1) =alluall® = b(P + llual *)llua, |

. . (2.29)
- f O(x) lual" dx — ﬁf SOl Vdx.
R R*
Moreover, by (I (u,), u,) = o(1), we can use Brézis-Lieb’s Lemma to obtain
o(1) =a(lluall* + vall®) = BAWall* + 20valPlleeall® + llueall*)
(2.30)

_f Q(x)luﬂl“dx—f Q(x)lvn|4dX—/1f Flual' 7 dx.
R4 R4 -
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Combing with (2.29) and (2.30), we obtain
o(1) = allvall* = bv,ll* = blIvallllul* - f4 Q(x) [va|* dx
R

and so, by the Sobolev inequality, we have
allvall® = blvall* = BlvalPlluall
= f Q) val* dx + o(1) < S Qulvall* + o(1).
R4

As n — oo, we obtain that
2> S*(a — bllull)
SZb + QM

By (1.6), (2.29), (2.32) and Holder’s inequality, we obtain

> 0.
a b 1
Iy (uy) =§|Ibu||2 - ZIIWII“ -7 f4 O(x) |ul* dx
R
/l 1-
— | f)|ul 7 dx
-7 Jr¢

b b
:Z”u/1”4 + 512”1/!1”2

—ﬂ(———)ff(X)luallde+ fQ(X)|M/1|4dX
R4

bS*a—bllul), >
A el
2 S+ Owu

1 1
—/l(m - 5) fw FOO gl dx

_b(S2h+ Qullall* B2l
4%+ Qm)  2(S%h+ Qu)

b 4
>— +
_4||u4||

abS?||uy|? 1+ - -
Al SISl
282+ Qy) 2(1
_ abS P S 2||bu||4
C2(S2h+ Qu) A4S+ QM)
bQOulluall*
2M A IIfllfS T ||u||l -
4S%b+ 0y) 2(1
N abS||u,|I? b?S? IIbull“

“2(S%b + Q) A4S + Owm)

- 3+y[1652(b52+Q )]
4 bOu(1-7)

A+
2(1-7y)

(2.31)

(2.32)

(2.33)
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Furthermore, by using (2.29)—(2.33), we deduce that
c+o(l) = I, (u,)

a b 1 A _
== lltal? = S loaall* = = f O(x) luy|* dx = —— f SO [l ™ dx
2 4 R4 1 - 'y R4

4
a b 1 A _
=§||bu||2 - lebull4 ~7 fw O(x) |uy* dx — T—y fw F0) lual'™" dx

b b 1
+ gllvnll2 - Z”Vn||4 - Ellvnll2||bu||2 ~ 1 fw O() [val* dx + o(1)

a b
=1 (uy) + Z”VnHz - Z”Vn||2||u/1”2 +o(1)

-b 2
=I, (I/t/l) + %lz + 0(1)
aS? abS ?||u,ll? b2S2|lull*

2l )+ T 0w T 2% + 0 T WS + 0n)

+ o(1)
a*S?

4
> 2 DA% o=y,
“4(bS? + Q) 1

which contradicts the assumption ¢ < % - D/lﬁ. Therefore, the claim holds, namely, u, — u,
in D'2(R*). This completes the proof of Lemma 2.9. i

3. Proof of Theorem 1.1
In this section, we want to prove Theorem 1.1 by a minimization argument on N;.

3+y
Proof. There exists a constant Az = (%)T such that c; > Ofor A < Az. Set0 < A < Ag =
min{A, A3}, then Lemmas 2.1-2.9 hold for all 0 < 4 < Ag = min{A;, A3}. Due to Lemmas 2.1 and 2.3
and Ekeland’s variational principle, we can obtain the minimizing sequence {u,} C N satisfying
(2.9)—(2.11). Obviously, {u,} is bounded in D'*(R*), going if necessary to a subsequence, still denoted

by itself, there exists u, € D"*(R*) such that

Uy, = U, in D'2(R*) El,
u, — U, in Lfoc (R4) 2<p<4),
U, (x) = u,(x), a.e.in R*.

Now, we will prove that u, is a positive ground state solution of problem (1.1). According to (2.9) and
Lemma 2.5, we have

I/l(un) - a/j <0<cy,

so Lemma 2.9 with ¢ = a7 results in u, # 0 and u, — u, in D"*(R*). One can further obtain from the
above relation, u, € N; C N, and Lemma 2.6 (i) imply that u, € N; and

a(l + )llull® = b3 + p)llull* — 3 + y)f O(x) |u.* dx > 0.
R4
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Hence, u. € N. Furthermore, passing to the limit as n — oo in (2.23) and using Fatou’s Lemma, we
get

Pl f £l wdx <liminf A f £ ™ wdx
R4 n—o0 R4

=a f Vu,Vydx — b f T f Vu,Vidx (3.1)
R4 R4 R4
- f 000 I w,
R4

for any 0 < € D"2(R*). We can repeat the arguments used in (2.24) and (2.25) to derive that (3.1)
holds for any ¥ € D'*(R*). Consequently, u, verifies (1.7) by the arbitrariness of y € D'*(R*)in (3.1),
hence u.. is a weak solution of problem (1.1). Furthermore, similar to the proof of [24] Theorem 1, we
have u, € C;_(R*). Since u, > 0, u, # 0, and u. satisfies (1.7), by the strong maximum principle, it
suggests that u, > 0 in D'?(R*). Furthermore, there holds

L(u,) = lim L(u,) = aj.

Finally, we want to show that u, € N7 and I;(u.) = «]. For any u € N7, according to Lemma 2.1,
there exists unique 0 < "(u) < tmax < ? (u) such that r"(wu € N, r(wu € N, L(t"(wu) =
infooi<-q L1(tu) and 1)(t~ (w)u) = sup,,, [(fu). Then 1~ (u) = 1 and there exists ) € (tmax, (1))
such that 1;(#* (w)u) < Li(t(w)u). So

) < Lt (wu) < Lwu) < L (wu) = Lw).

By the arbitrariness of u € N and the definitions of a7 and @, we have a} < a; and so @, = a] thanks
to Ny = Ny UN; by Lemma 2.1. Therefore, I,(1.) = @y = a; and thus u, is a ground state solution of
problem (1.1). This completes the proof of Theorem 1.1. O

4. Proof of Theorem 1.2

It is well known that the function

(8e)?

— &> 0, xeR% 4.1
e+l-xp) 77" @D

Us.x(X) =
solves
—Au=u’, xeR"

For j = 1,2,---,k fixed, we define a cut off function ¢;(x) € Cg"(R“) such that 0 < ¢;(x) < 1,
@j(x) = 1for |x —a;| < ¢, and ¢;j(x) = O for |x — a;| > 26, with 0 < 6; < /2 where 6, is given in
(f2)- Letug j(x) = ¢j(x — a;)U,q,(x). The following estimates can be easily established from similar
estimates in [25]:

Aty (x) = Apj(x —aj)Be)?  2lx —ajlp;(x — a;)(8e) .

(8+ |x—aj|2) (8+ |x—aj|2)

Since ¢(x — a;) = 1 near aj, it follows that

e jlF = S+ O(8) |ugl3 = S* + O(). (4.2)
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Lemma 4.1. Assume that (Q,), (Q>), (fi) and (f>) hold, then there exists 0 < Ay < Ao, such that for
0 <A< Ay and & > 0 small, we have

sup Iﬂ(tug,j) < Cy,
>0

where c, is given in Lemma 2.9.
Proof. For j=1,2,--- ,k, according to (Q,), for any p > 0, there exists a ¢y > 0 such that
|0(x) — Q(a;))| < plx — ajlﬂ‘, Y0 < |x—aj| < dp <. 4.3)

For 0 < A < A,, by Lemmas 2.1 and 2.5 (ii), there exists t, > tyn. > 0 such that t,u,; € N and
L(toug ;) = sup,sq Li(tug ;) > Bo > 0. On the other side, I,(t.u, ;) — —oo as t — +oo suggest that there
exists #p > 0 such that 7, < 1. Hence, f,,,x < t. < t,. To proceed, set

at? , bt , A
p(t) = 7””8,]‘” - T”us,j” -7 J; Omlu ;| dx.

We easily see that p(f) achieves its maximum at
1/2
allue ;|I”
Bllu jlI* + f Ol j|*dx
R4

as?+0@) |\
bS* + QuS? + O(e)

as?

12
= —bS4 n QMSZ) + 0(8),

Tmax =

with )
D) < P(To) =~ — 4 O(e). (4.4)
bSZ + QM
Since tna < te < 1o, by the definition of u, j, (4.3) and using a change of variables, we obtain that for &
small enough

t, Ie
—f\gm—Qmm%ﬁm:—j\ 106x) — Ol
4 Jgs 4 Jiv—aji<s
1 f plx — a1 (8¢)?
== 4dx
4 Jix-aji<so (€ + |x = x0?)
. 8¢e)?
+20(M)% LZL X
4 Jsosin-aji<s (& + |x = x0[?) 4.5)
) 00 r3+,6] 5 0 3
<C —dr+C —d
=t3pe o (e+rd)? F¥LaE s (e+r2)? d
2 3+p1 0
Bl Ve r
<Csps? —dr+ & d
<C;pe ](; TS r+ Cue féor r

s 2
<Cse? + Cge”.
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Similarly, by (f2) and 22 < 8, < 3 +, for any & > 0 satisfying 0 < & < 63, we have

1-y

1. _
z f FOlus 'V dx
-y lx—aj|<6

P

= A= [f f(X)Iug,jll‘ydx+f f(x)lug,jll‘de]
-y lx—aj|<é) S1<lx—aj|<é

-y — .| B At

A pilx —ajl ™ (8e)

z /ll - f 2\ dx *o
Y Jix-ajl<é; (3 + |x — xo| )

9

Copre A f e et f __r__,
= — = 8 _—
e R A TS i

> Copre 722 T _dr = AC =5
2 2
=z L701€ - 2y 8& .

Therefore, from (4.4)—(4.6) and 2 < 3| < 4, it holds

Ly(tous ;) =p() + %8 fR L1900 - O(alus,j|*dx

1
-2 f FOOlus ' dx
I- Y [x—ajl<d
aS? B 5 8
_b52 ¥ O + 0(e) + Cse?2 + Cee™ — ACge™ 2
a52 3ty-po
<—+C AC 2
bS?+ Oy 98 T 488

3+y
28,-5-3 5+3
Set & = 177 and As = (CQCED) 277 since Z5E < B, < 3 + 7y, we have

3y-28,

Coe — ACge 7> = 135 (C9 _AC T ) < -DA%5,

and SO
eleg,j eWeg,j v B
A 5] t>p A 5] ESZ QM A

for all 0 < A < A4 = min{A,, A3, As}. O
Now we choose Ry satisfying Ry > Z’J‘. |a;| and set
() = I, 0<t<R,,
= %, Ry <t

Similar to [26], we define a map of “barycenter type” 5 : D'2(R*) \ {0} — R* as

f n(Ix)xlul*dx
R4

lul*dx
R4

Bu) =
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For j=1,2,---,k, we also define
)= {ue Ny IBw —ajl < rof, @) ={ueNy:Bw) —ajl =rof, 4.7)

where ry > 0 such that

Bo(@) N Bo(a) =0, j=12,-- .k

By Lemma 2.1, there exists a unique #, > 0 such that f,u,; € N;. Furthermore, as £ — 0%, we
obtain by using a change of variables that

8 2
f n(IXI)xcp}‘-(X)LAldx
R e+ |x— aj|2)
ﬁ(tsus,j) = )
4 (8¢e)
f @ (x)——————dx
R (8 +|x - ajlz)
2
[ 70VEx+ apVBr-+ apic Ve + s (8 |)|2)
) (8)
‘][y (,Dj( \/{_-TX + aj)mdx
- a;.

From this, we deduce the following fact.
Lemma 4.2. There exists g > O such that for all 0 < & <&yand 1 < j < k, we have B(t.u. ;) € By, (a;).
Lemma 4.2 implies that Tj # {0} forall 1 < j < k. By Lemma 2.5, we can define

cﬁ = inf I,(u), cl = inf I (u),
uET] uE(Dj

andso ¢! > a7 = My > 0if 0 < A < A,.
Lemma 4.3. Assume that (Q,) holds, then there exists A¢ such that
2¢2
L

AT A4bS?+ Qu)
for j=1,2,--- kand 0 < A < As.

Proof. Let us argue by contradiction and suppose that there exist sequences 4, — 0, and {u,} € d)ﬁ
satisfying

a*S?
I, (u, <42
W) = € < T T o

and
allu,|* = bllu,|l* - f O(x) luy|* dx — /lnf FOlu,|'7dx = 0. (4.8)
R4 R4

Then {u,} is bounded in D'*(R%), since I, is coercive according to Lemma 2.5. Moreover, since {u,} €
@’ c N7, by the Sobolev inequality, we can further get that

a(l + llual? < b3 +)llull* + (3 + 7)f O(x) [uy|* dx
R4

<G+ Puall* + G +7)QuS
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from which we infer that
et l| > Cro > 0,

where Cjo = Jm‘;()z;%. Noting that 4, — 0, we then deduce from (4.8) that there is a constant
C1; > 0 such that

f4 Q) lu,l* dx + bllu,|l* = allu,|* > C1y > 0,
R

for all n € N. Thus, we are able to choose ¢, > 0 such that v, = t,u, satisfies

alvall® = | Qurval* dx + blIvall*. (4.9)
R
This and Sobolev inequality give that ||v,||> > bszi o . Moreover,

1
2
bllulI* + f O lu,|* dx + A, f FOOlu |7 dx
R4 R4

t, =

f O lutal* dox + blluay|I*
R4

It follows that #, is uniformly bounded. Then, we can assume that lim,_,., ¢, = #. By Q(x) < Qu,
Adss — 0 and the boundedness of {u,}, we see that t;, < 1. We show next that the case 7y < 1 leads to a
contradiction. Since for f; < 1, we have
a’S?
4bS*+ Qy) ~

= lim tﬁ[(i - Z) (anunn2 ~ bl = 2, f f(x>|un|l—7dx)

1 1
hm a||vn|| = hm 4at 2|1,

Ll L
£ G = Pl + G =T, [ Folul!
252
=1 21 =< Cl—
n1—>r£lo L, (14) foc = A4(bS? + Q)

These inequalities above also provide

a’S? aS?
— =P and 1 AP = 1 P —— 4.10
1557 0 and  lim vl = im [lunll” = e ( )
Letd, = = =2 then ||3,|l; = 1. Moreover, by (4.9) and (4.10),
2 2
hm 19,12 = lim ||vn||2 L [Vl

= 1 -
noe |valy 12 (al|vl 2 = BlIvall*/ Qu)?

namely, 9, is a minimizing sequence for S. We now use a result of [27] to find a point y, € R* such
that
IV3,|* = du = S6,, and [9,]> — dv =6, (4.11)
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with the above convergence holding weakly in the sense of measure, where d,, is a Dirac mass at .

Then
f n(|x])xlu, | dx f n(xl)xd, | dx
R4 R4

Buy) = = = n(lyol)yo, as n — oo.
| dx 19,/ *dx
R4 R4
From the definition of n(x), B(u,) € dB,,(a;) and B, (a;) N\ B, (a;) =0, j=1,2,---,k, we know that
a; # yoand yy € 0B, (a;) forany j=1,2,--- k. Thus, from (4.9) and (4.11), we conclude that

11
lim 7, (u,) = lim tﬁ[(— -7 (allunll2 — blluy|I* = A, f f(x)lun|1‘7dx)

(— - —)bnunn + (— - —m f FOOlu|' ™ dx|
1 1 4
= hm O(x) |u,|* dx + hm bllunll
4 R4
1
= hm 1 Q(x) val* dx + hm b||vn||
1
f(Qy;’: lim 2 | Qulvl*dx+ lim 2blv,I
ggO) lim (a] vll? = bllvall") + lim b”Vn”
2s2 1
_900) 621 + lim ~b(1 - Q(yo))” il
40y (bS*+ Qy) noe 4 Owm
a*s?
< A v
4(bS? + Qu)
which contradicts (4.10). This completes the proof. O

We show the existence of k solutions in N}

Proof. Fix 0 < A < Ay = min{Ay, Ag}, where A4 and A4 are defined in Lemmas_4.1 and 4.3,
respectively. Forany j = 1,2,--- ,k, since N is a closed set by Lemma 2.3, we have, ‘Y‘ﬁ = Tﬁ U (Dﬁ
from the same ideas presented in Lemma (3.1) of [28]. According to Lemmas (4.1) and (4.2) and the
definition of ¢, in Lemma 2.9, we have

a’S?

0<cl< Li(tu, ) <c) < ————. 4.12
USSR ) < 1 38T 0, 12
This together with Lemma (4.3) leads to
~j a252 j

c, > (4.13)

— > .
T 4BS ¥ Q) A
Thus, cﬁ = inf i I,(u). By Ekeland’s variational principle, we can obtain the minimizing sequence
- uely
{u,;} € T, satisfying

Cfl < I/l(l/ln,j) < Cfl + ; and I,(z) > I/l(un,j) - leun] -z, ¥z € Tfl
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with u, ; — u,; in D"2(R*) for any j € [1,k]. Therefore, by Lemma 2.9 and (4.13), we have uyj 0
and u,; — u,;, up to a subsequence. Thus, replicating the same argument of Section 3, we have

uyj € Tﬁ C N is a positive solution of problem (1.1). Moreover, since B, (a;) N B, (a;) = 0, for i # j,
we conclude that u, ; # uy; if i # j. This implies that problem (1.1) has at least k positive solutions
ur; € Ny (j=1,2,--- k) forall 0 < A < Agy. Since Ny N N7 = 0, by Lemma 2.2, we can further
obtain that u, and u, ;(j = 1,2,--- , k) are distinct and so problem (1.1) admits at least k + 1 positive
solutions. O

5. Conclusions

In this paper, we study the multiplicity results of positive solutions for a class of Kirchhoff type
problems with singularity and critical exponents. Under suitable assumptions on Q(x) and f(x), by the
variational method and delicate estimates, we prove that problem admits k + 1 positive solutions for
A > 0 sufficiently small. The related results in [29-32] are improved and generalized.
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