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1. Introduction

Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3 and h ∈ L∞(M). Let Lg be the
stationary Schrödinger operator given by

Lg = ∆g + h,

where ∆g = − divg ∇g is the Laplace-Beltrami operator with respect to g and ∇g is the gradient operator.
We consider the following Kirchhoff type equations involving singular nonlinearity:(

a + b
∫

M

(
|∇gu|2g + hu2

)
dvg

)
Lgu = f (x)u−γ − λup (Kg)

in M, where a, b, λ ≥ 0, 0 < γ ≤ 1, 0 < p ≤ 2∗ − 1, f (x) is a positive function in M, and dvg is the
canonical volume element in (M, g). Here, 2∗ = 2n

n−2 is the critical Sobolev exponent for the embedding
of Sobolev spaces H1(M) into Lebesgue spaces.
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The Kirchhoff equation was proposed by Kirchhoff [1] in 1883, which is an extension of the classical
D’Alembert’s wave equation for the vibration of elastic strings. Almost one century later, Jacques
Louis Lions [2] put forward an abstract framework for these kinds of problems and, after that, the
Kirchhoff type problems began to receive significant attention. The problems of Kirchhoff-type are
often referred to as being nonlocal because of the appearance of the integration term

∫
Ω
|∇u|2dx, which

implies that the problem is no longer a pointwise equation. Numerous intriguing studies on such
problems can be found in the literature. We refer the reader to the works by Arosio-Panizzi [3], Alves-
Corrêa-Figueiredo [4], Fang-Liu [5], Fiscella [6], He [7], Sun-Tan [8] and Naimen [9, 10], and Faraci-
Silva [11], and we quote only few of them.

In the Euclidean setting, Liu and Sun [12] investigated the existence of solutions for the following
problem with singular and superlinear terms: −

(
a + b

∫
Ω
|∇u|2dx

)
∆u = f (x)u−γ + λw(x) up

|x|s , in Ω,

u = 0, on ∂Ω,

where Ω is a smooth bounded domain in R3, 0 < γ < 1, 0 ≤ s < 1, 3 < p < 5 − 2s. They obtained two
positive solutions with the help of the Nehari manifold.

Moreover, Lei et al. [13] considered the Kirchhoff equations with the nonlinearity containing both
singularity and critical exponents: −

(
a + b

∫
Ω
|∇u|2dx

)
∆u = λu−γ + u5, in Ω,

u = 0, on ∂Ω,

where Ω is a smooth bounded domain in R3, λ > 0, and γ ∈ (0, 1). By the variational and perturbation
methods, they also obtained two positive solutions.

Furthermore, Duan et al. [14] studied the p-Kirchhoff type problem with singularity:
−

(
a + b

∫
Ω
|∇u|pdx

)
∆pu = f (x)u−γ − λuq, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(1.1)

where Ω ⊂ Rn is a bounded domain with n ≥ 3. Here, a, b ≥ 0 with a + b > 0, 0 < γ < 1, λ ≥ 0,
0 < q ≤ p∗−1, and f is a positive function. Under appropriate conditions, it is shown that problem (1.1)
has a unique positive solution by the variational method and some analysis techniques.

It should be noted that the aforementioned results hold true when 0 < γ < 1. When γ = 1, Wang
and Yan [15] considered a class of Kirchhoff type equations with singularity and nonlinearity: −

(
a + b

∫
Ω
|∇u|2dx

)
∆u = f (x)u−1 − µup, in Ω,

u = 0, on ∂Ω,
(1.2)

where Ω ⊂ Rn is a bounded domain with n ≥ 3, a, b, µ are real numbers, 1 < p < 2∗ − 1, and f (x) ∈
L2(Ω). Using the approximation method, they proved that problem (1.2) has a unique positive solution.

In the realm of Riemannian manifolds, nonlinear analysis has experienced significant development
in recent decades. Some recent research works can be found in [16–19] and the references therein. For
Kirchhoff equations and stationary Kirchhoff systems, we refer the reader to the works by Hebey [20–
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22], Hebey-Thizy [23,24], and the recent paper of Bai et al. [25]. They discussed existence of solutions,
compactness, and stability properties of the critical Kirchhoff equations in closed manifolds. It is worth
noting that there are limited results available for Kirchhoff equations with singularity. Motivated by
the above papers, we investigate the existence and uniqueness of the solution to problem (Kg). To the
best of our knowledge, no previous studies have explored the existence of solutions for problem (Kg)
in Riemannian manifolds. Our work somehow extends the main results in [15,26] from Euclidean case
to any closed Riemannian manifold.

Our main results can be stated as follows. We first consider the case when 0 < γ < 1.

Theorem 1.1. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3. Assume that a, b ≥ 0
with a + b > 0, λ ≥ 0, 0 < γ < 1, 0 < p ≤ 2∗ − 1, and f ∈ L

2∗
2∗+γ−1 (M) satisfying f > 0. Let h ∈ L∞(M)

be such that Lg is positive. Then, problem (Kg) possesses a unique positive weak solution in H1(M).
Moreover, this solution is a global minimum solution.

It should be noted that Theorem 1.1 encompasses the critical case. Additionally, we give the case
when γ = 1 below.

Theorem 1.2. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3. Assume that a > 0,
b ≥ 0, λ ≥ 0, γ = 1, 1 < p < 2∗ − 1, and f ∈ L2(M) is positive. Let h ∈ L∞(M) be such that Lg is
positive. Then, problem (Kg) has a unique positive weak solution in H1(M).

Remark 1.3. In particular, when a = 1, b = 0, problem (Kg) reduces to the following semilinear
singular problem:

∆gu + hu = f (x)u−γ − λup in M.

We mention that Theorems 1.1 and 1.2 are also ture. Moreover, when λ = 0, the counterpart results for
the singular boundary value problem in Rn can be found in [27, 28].

Remark 1.4. The energy functional associated with problem (Kg) fails to be Fréchet differentiable
because of the presence of the singular term. Therefore, the direct application of critical point theory
to establish the existence of solutions is not viable. To overcome the difficulties caused by the nonlocal
term and the singularity, we will follow some ideas similar to those developed in [26, 28, 29].

The paper is organized as follows. In Section 2, we give some definitions related to the Sobolev
space and properties of energy functionals. In Section 3, we establish a series of lemmas and then give
the proof of Theorem 1.1. Finally, in Section 4, we present several lemmas, followed by the proof of
Theorem 1.2.

2. Preliminaries

In this section, we provide several main definitions and properties of functionals that will be useful
for our subsequent analysis. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3 with a
metric g. Given 1 ≤ p < ∞, we denote by Lp(M) the usual Lebesgue space of p-th power integrable
functions with the standard Lp-norm ‖u‖p

Lp =
∫

M
|u|pdvg. The Sobolev space H1(M) is defined as the

completion of C∞(M) with respect to the Sobolev norm given by

‖u‖H1 =

(∫
M
|∇gu|2gdvg +

∫
M

u2dvg

) 1
2

, (2.1)
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where ∇g is the gradient operator and dvg is the canonical volume element in (M, g). Precisely, in local
coordinates {xi}, we have dvg =

√
|g|dx1 . . . dxn, ∇u = gi j ∂u

∂xi
∂
∂x j , and

∆gu = −
1√
|g|

∂

∂xi

(√
|g|gi j ∂u

∂x j

)
,

where (gi j) is the metric matrix, (gi j) is the inverse matrix of (gi j), and |g| = det(gi j) is the determinant
of g. Here, the Einstein’s summation convention is adopted. With the norm (2.1), H1(M) becomes a
Hilbert space with the inner product

〈u, v〉 =

∫
M

(
〈∇gu,∇gv〉g + huv

)
dvg,

where 〈∇gu,∇gv〉g is the pointwise scalar product of ∇gu and ∇gv with respect to g. We assume that
Lg is positive, where by positive we mean that its minimum eigenvalue is positive. In other words, we
assume that for u ∈ H1(M),

λ1 = inf∫
M u2dvg=1

∫
M

(
|∇gu|2g + hu2

)
dvg > 0. (2.2)

Clearly, this happens if h(x) ∈ C0(M) with h > 0. Consequently, we get a natural equivalent norm ‖ · ‖
on H1 given by

‖u‖ =

(∫
M

(
|∇gu|2g + hu2

)
dvg

) 1
2

for all u ∈ H1(M). (2.3)

We denote by the first eigenfunction ϕ1 with ∆gϕ1 + hϕ1 = λϕ1 in M, ‖ϕ1‖ = 1. By the maximum
principle and elliptic regularity, we know that ϕ1 > 0 in M and ϕ1 ∈ C1,α(M) for some 0 < α < 1 (see,
for instance, [30] and references therein).

By the Rellich-Kondrachov theorem, since p < 2∗, H1(M) embeds compactly into Lp(M). For
p = 2∗, let S = S (M, g, h) be the sharp Sobolev constant of (M, g) associated to ‖ · ‖, that is, the largest
positive constant S such that the Sobolev inequality

S ‖u‖2L2∗ ≤ ‖u‖2 (2.4)

holds true for all u ∈ H1(M).
The energy functional corresponding to problem (Kg) is defined by

I(u) =
a
2
‖u‖2 +

b
4
‖u‖4 +

λ

1 + p

∫
M
|u|1+pdvg −

1
1 − γ

∫
M

f (x)|u|1−γdvg,

for u ∈ H1(M) and 0 < γ < 1. Note that, the functional I is only a continuous functional on H1(M)
because of the presence of the singular term. In general, we say that a function u is a positive weak
solution of problem (Kg) if u ∈ H1(M) such that u > 0 a.e. in M and

(a + b‖u‖2)
∫

M
(〈∇gu,∇gϕ〉g + huϕ)dvg + λ

∫
M

upϕdvg −

∫
M

f (x)u−γϕdvg = 0 (2.5)

for all ϕ ∈ H1(M).
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3. Existence of solutions for 0 < γ < 1

In this section, we consider the existence and uniqueness of positive weak solutions to equation
(Kg) for 0 < γ < 1. We first give some useful lemmas, which will be used in the proof of Theorem 1.1.

Lemma 3.1. The functional I is coercive and bounded from below on H1(M).

Proof. By Hölder inequality and (2.4), we have∫
M

f (x)|u|1−γdvg 6

(∫
M
| f |

2∗
2∗+γ−1 dvg

) 2∗+γ−1
2∗

(∫
M
|u|(1−γ)· 2∗

1−γ dvg

) 1−γ
2∗

= ‖ f ‖
L

2∗
2∗+γ−1

· ‖u‖1−γ
L2∗

6 ‖ f ‖
L

2∗
2∗+γ−1

· S
γ−1

2 · ‖u‖1−γ.

Notice that λ ≥ 0, hence

I(u) =
a
2
‖u‖2 +

b
4
‖u‖4 +

λ

1 + p

∫
M
|u|1+pdvg −

1
1 − γ

∫
M

f (x)|u|1−γdvg

≥
a
2
‖u‖2 +

b
4
‖u‖4 −

1
1 − γ

∫
M

f (x)|u|1−γdvg

≥
a
2
‖u‖2 +

b
4
‖u‖4 −

1
1 − γ

‖ f ‖
L

2∗
2∗+γ−1

S
γ−1

2 ‖u‖1−γ,

(3.1)

which implies that I is coercive and bounded from below on H1(M). �

Let m be given by
m = inf{I(u)|u ∈ H1(M)}.

According to Lemma 3.1, m is well-defined. Moreover, since 0 < γ < 1 and f (x) > 0 in M, we can
easily get m < 0.

Lemma 3.2. Given the assumptions of Theorem 1.1, the functional I attains the global minimizer in
H1(M), i.e., there exists u∗ ∈ H1(M) such that I(u∗) = m.

Proof. From the definition of the number m, there exists a minimizing sequence {un} ⊂ H1(M) such that

lim
n→+∞

I(un) = m < 0.

By standard properties of Sobolev spaces on manifolds, if u ∈ H1(M), then |u| ∈ H1(M), and |∇g|u||g =

|∇gu|g a.e. Up to changing un into |un|, we may assume that un ≥ 0 in M. By Lemma 3.1, I is coercive,
so that {un} is bounded in H1(M). Being bounded, we get that, up to a subsequence,

un ⇀ u∗ weakly in H1(M),
un → u∗ strongly in Ls(M),where 1 ≤ s < 2∗,
un → u∗ a.e. in M,

(3.2)

as n→ +∞ for some u∗ ∈ H1(M). Next, we are going to prove that un → u∗ as n→ +∞ in H1(M).
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By Vitali’s theorem (see [26]), we have∫
M

f (x)|un|
1−γdvg =

∫
M

f (x)|u∗|1−γdvg + o(1). (3.3)

Let ωn = un − u∗. From the weak convergence of {un} in H1(M) and Brézis-Lieb’s lemma [31], it
follows that

‖un‖
2 = ‖ωn‖

2 + ‖u∗‖2 + o(1), (3.4)

‖un‖
4 = ‖ωn‖

4 + ‖u∗‖4 + 2‖ωn‖
2‖u∗‖2 + o(1), (3.5)∫

M
|un|

1+pdvg =

∫
M
|ωn|

1+pdvg +

∫
M
|u∗|1+pdvg + o(1), (3.6)

where o(1) is an infinitesimal as n → ∞. Hence, in the case that 0 < p ≤ 2∗ − 1, from (3.4)–(3.6), we
deduce that

m = lim
n→+∞

(
a
2
‖un‖

2 +
b
4
‖un‖

4 +
λ

1 + p

∫
M
|un|

1+pdvg −
1

1 − γ

∫
M

f (x)|un|
1−γdvg

)
= I(u∗) + lim

n→+∞

(
a
2
‖ωn‖

2 +
b
4
‖ωn‖

4 +
b
2
‖ωn‖

2‖u∗‖2 +
λ

1 + p

∫
M
|ωn|

1+pdvg

)
≥ I(u∗),

which implies that I(u∗) = m and lim
n→+∞

‖ωn‖ = 0. This completes the proof of Lemma 3.2. �

We are now in a position to prove Theorem 1.1.
Proof of Theorem 1.1 We divide the proof into three steps.
Step 1. We show that u∗ > 0 a.e in M. It follows from Lemma 3.2 that I(u∗) = m < 0, and then u∗ . 0
in M. Let φ ∈ H1(M) and φ ≥ 0. Since u∗ is a global minimizer in H1(M), for t > 0 we have

0 ≤
1
t
(I(u∗ + tφ) − I(u∗))

=
a
2t

(
‖u∗ + tφ‖2 − ‖u∗‖2

)
+

b
4t

(
‖u∗ + tφ‖4 − ‖u∗‖4

)
+

λ

(1 + p)t

∫
M

(
(u∗ + tφ)1+p − u1+p

∗

)
dvg −

1
(1 − γ)t

∫
M

f (x)
(
(u∗ + tφ)1−γ − u1−γ

∗

)
dvg. (3.7)

Obviously, one gets

1
1 + p

∫
M

(u∗ + tφ)1+p − u1+p
∗

t
dvg =

∫
M

(u∗ + θtφ)pφdvg

and
1

(1 − γ)

∫
M

(u∗ + tφ)1−γ − u1−γ
∗

t
f (x)dvg =

∫
M

f (x)(u∗ + ζtφ)−γφdvg,

where 0 < θ, ζ < 1. Moreover,

(u∗ + θtφ)pφ→ up
∗φ and (u∗ + ζtφ)−γφ→ u−γ∗ φ for a.e x ∈ M
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as t → 0+. We note that
f (x)(u∗ + ζtφ)−γφ ≥ 0 for all x ∈ M,

and, thus, by Fatou’s Lemma, we conclude that

lim sup
t→0+

1
1 − γ

∫
M

(u∗ + tφ)1−γ − u1−γ
∗

t
f (x)dvg

≥ lim inf
t→0+

1
1 − γ

∫
M

(u∗ + tφ)1−γ − u1−γ
∗

t
f (x)dvg

= lim inf
t→0+

∫
M

f (x)(u∗ + ζtφ)−γφdvg

≥

∫
M

f (x)u−γ∗ φdvg.

(3.8)

Moreover, by Lebesgue’s dominated convergence theorem, we get

lim
t→0+

λ

1 + p

∫
M

(u∗ + tφ)1+p − u1+p
∗

t
dvg =

∫
M

up
∗φdvg. (3.9)

Taking the lower limit in (3.7), we obtain

(a + b‖u∗‖2)
∫

M

(
〈∇gu∗,∇gφ〉g + hu∗φ

)
dvg + λ

∫
M

up
∗φdvg −

∫
M

f (x)u−γ∗ φdvg ≥ 0 (3.10)

for all φ ∈ H1(M) with φ ≥ 0. Let ϕ1 be the first eigenfunction of the operator Lg with ϕ1 > 0 and
‖ϕ1‖ = 1. Choosing, in particular, φ = ϕ1 in (3.10), we have∫

M
f (x)u−γ∗ ϕ1dvg ≤ (a + b‖u∗‖2)

∫
M

(〈∇g, u∗∇gϕ1〉g + hu∗ϕ1)dvg + λ

∫
M
ϕ1up

∗dvg < ∞,

which implies that u∗ > 0 a.e. in M.
Step 2. We prove that u∗ is a solution of problem (Kg). To this end, we need to check that u∗
satisfies (2.5). We claim that the inequality (3.10) holds true for all φ ∈ H1(M). Define ϕ : [−δ, δ]→ R
by ϕ(t) = I((1 + t)u∗), then ϕ attains its minimum at t = 0. Thus, we get

ϕ′(t)|t=0 = a‖u∗‖2 + b‖u∗‖4 + λ

∫
M

u1+p
∗ dvg −

∫
M

f (x)u1−γ
∗ dvg = 0. (3.11)

Let φ ∈ H1(M) and ε > 0. We define

ψ = (u∗ + εφ)+ ∈ H1(M),

where (u∗ + εφ)+ = max{0, u∗ + εφ}. Using (3.11) and inserting ψ into (3.10), we deduced that

0 ≤
(
a + b‖u∗‖2

) ∫
M

(
〈∇gu∗,∇gψ〉g + hu∗ψ

)
dvg + λ

∫
M

up
∗ψdvg −

∫
M

f (x)u−γ∗ ψdvg

=

∫
{u∗+εφ>0}

[(
a + b‖u∗‖2

) (
〈∇gu∗,∇g(u∗ + εφ)〉g + hu∗(u∗ + εφ)

)
+ λup

∗ (u∗ + εφ) − f (x)u−γ∗ (u∗ + εφ)
]

dvg
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=

∫
M

[(
a + b‖u∗‖2

) (
〈∇gu∗,∇g(u∗ + εφ)〉g + hu∗(u∗ + εφ)

)
+ λup

∗ (u∗ + εφ) − f (x)u−γ∗ (u∗ + εφ)
]

dvg

−

∫
{u∗+εφ≤0}

[(
a + b‖u∗‖2

) (
〈∇gu∗,∇g(u∗ + εφ)〉g + hu∗(u∗ + εφ)

)
+ λup

∗ (u∗ + εφ) − f (x)u−γ∗ (u∗ + εφ)
]

dvg

≤ε

∫
M

[(
a + b‖u∗‖2

) (
〈∇gu∗,∇gφ〉g + hu∗φ

)
+ λup

∗φ − f (x)u−γ∗ φ
]

dvg

− ε

∫
{u∗+εφ≤0}

[(
a + b‖u∗‖2

) (
〈∇gu∗,∇gφ〉g + hu∗φ

)
+ λup

∗φ
]

dvg + ε2
(
a + b‖u∗‖2

)
‖h‖∞

∫
M

φ2dvg.

(3.12)

Since the measure of the domain of integration {u∗ + εφ ≤ 0} tends to zero as ε→ 0+, it follows that

lim
ε→0

∫
{u∗+εφ≤0}

(〈∇gu∗,∇gφ〉g + hu∗φ)dvg = 0

and

lim
ε→0

∫
{u∗+εφ≤0}

up
∗φdvg = 0.

Hence, dividing (3.12) by ε and letting ε→ 0+, one has

(a + b‖u∗‖2)
∫

M
(〈∇gu∗,∇gφ〉g + hu∗φ)dvg + λ

∫
M

up
∗φdvg −

∫
M

f (x)u−γ∗ φdvg ≥ 0.

By the arbitrariness of φ, the above inequality also holds equally well for −φ. Thus, u∗ is a solution of
problem (Kg). Furthermore, by Lemma 3.2, one has

I(u∗) = inf
u∈H1(M)

I(u),

which means that u∗ is a positive global minimizer solution.
Step 3. We prove the uniqueness of solutions of problem (Kg). Suppose v∗ ∈ H1(M) is also a solution
of problem (Kg). Then, u∗ and v∗ satisfy (2.5). Taking ϕ = u∗ − v∗ in (2.5), we get

(a + b‖u∗‖2)
∫

M
(〈∇gu∗,∇g(u∗ − v∗)〉g + hu∗(u∗ − v∗))dvg + λ

∫
M

up
∗ (u∗ − v∗)dvg

−

∫
M

f (x)u−γ∗ (u∗ − v∗)dvg = 0, (3.13)

and

(a + b‖v∗‖2)
∫

M
(〈∇gv∗,∇g(u∗ − v∗)〉g + hv∗(u∗ − v∗))dvg + λ

∫
M

vp
∗ (u∗ − v∗)dvg

−

∫
M

f (x)v−γ∗ (u∗ − v∗)dvg = 0. (3.14)
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Denote

J(u∗, v∗) =‖u∗‖4 + ‖v∗‖4 − (‖u∗‖2 + ‖v∗‖2)
∫

M
(〈∇gu∗,∇gv∗〉g + hu∗v∗)dvg.

Subtracting (3.13) from (3.14), we obtain

a‖u∗ − v∗‖2 + bJ(u∗, v∗) + λ

∫
M

(up
∗ − vp

∗ )(u∗ − v∗)dvg −

∫
M

f (x)(u−γ∗ − v−γ∗ )(u∗ − v∗)dvg = 0. (3.15)

Using the Cauchy-Schwarz inequality, we get∫
M

(〈∇gu∗,∇gv∗〉g + hu∗v∗)dvg ≤ ‖u∗‖‖v∗‖ ≤
1
2

(‖u∗‖2 + ‖v∗‖2). (3.16)

This implies that

J(u∗, v∗) =‖u∗‖4 + ‖v∗‖4 −
1
2

(
‖u∗‖2 + ‖v∗‖2

)2

=
1
2

(
‖u∗‖2 − ‖v∗‖2

)2
≥ 0.

(3.17)

On the other hand, for 0 < γ < 1 and p > 0, we have

(m−γ − n−γ)(m − n) ≤ 0 and (mp − np)(m − n) ≥ 0 for all m, n > 0,

which thus implies∫
M

f (x)(u−γ∗ − v−γ∗ )(u∗ − v∗)dvg ≤ 0 and
∫

M
(up
∗ − vp

∗ )(u∗ − v∗)dvg ≥ 0. (3.18)

Hence, if a > 0, it follows from (3.15) that a‖u∗ − v∗‖2 ≤ 0 and then ‖u∗ − v∗‖2 = 0. If a = 0, b > 0,
inequalities (3.15) and (3.17) imply that J(u∗, v∗) = 0 and ‖u∗‖2 = ‖v∗‖2. Consequently,

J(u∗, v∗) = ‖u∗‖2
(
2‖u∗‖2 − 2

∫
M

(〈∇gu∗,∇gv∗〉g + hu∗v∗)dvg

)
= ‖u∗‖2

(∫
M

(|∇gu∗|2g + hu2
∗)dvg − 2

∫
M

(〈∇gu∗,∇gv∗〉g + hu∗v∗)dvg +

∫
M

(|∇gv∗|2g + hv2
∗)dvg

)
= ‖u∗‖2

∫
M

(|∇g(u∗ − v∗)|2g + h(u∗ − v∗)2)dvg

= ‖u∗‖2‖u∗ − v∗‖2 = 0,

which implies ‖u∗ − v∗‖2 = 0. Thus, u∗ = v∗ a.e. in M. This completes the proof of Theorem 1.1.

4. Existence of solutions for γ = 1

In this section, we establish the existence and uniquness of a positive weak solution to the problem
(Kg) for γ = 1 in H1(M).

We begin with some auxiliary lemmas that will be used in the proof of Theorem 1.2.
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Lemma 4.1. Let q ∈ L
n
2 (M) satisfy q(x) ≥ 0 a.e. in M. Then, for every g ∈ L

2n
n+2 (M), the problem

Lgu + q(x)u = g(x) in M, (4.1)

has a unique solution in H1(M).

Proof. For u ∈ H1(M), define J : H1(M)→ R by

J(u) =
1
2
‖u‖2 +

1
2

∫
M

qu2dvg −

∫
M

gudvg,

which is differentiable. By Hölder inequality and (2.4), we find

J(u) ≥
1
2
‖u‖2 −

∫
M

gudvg ≥
1
2
‖u‖2 − ‖g‖

L
2n

n+2
‖u‖

L
2n

n−2

≥
1
2
‖u‖2 − S −

1
2 ‖g‖

L
2n

n+2
‖u‖.

This implies that J(u) is coercive and bounded from below in H1(M). Then, J achieves its minimum
at some u0 ∈ H1(M), which is its critical point. Thus, u0 is a solution of (4.1). Since, for u , v,

〈J′(u) − J′(v), u − v〉 =

∫
M

(|∇g(u − v)|2g + h(u − v)2)dvg +

∫
M

q(u − v)2dvg

= ‖u − v‖2 +

∫
M

q(u − v)2dvg > 0,

J is strictly convex. Therefore, the problem (4.1) has a unique solution. �

Remark 4.2. Clearly, the sign condition on q in Lemma 4.1 is not necessary to obtain the desired
properties. Indeed, the same conclusion holds provided q is “not too negative”. For instance, q ∈ L

n
2 (M)

satisfies ‖q‖L n
2
< S .

We make use of a well-known approximating scheme for this problem. To this end, let n ∈ N and
fn(x) = max{ 1n ,min{ f (x), n}}. We consider the following approximating equation

(a + b‖un‖
2)Lgun =

fn(x)
(un + 1

n )γ
− λup

n in M. (4.2)

Lemma 4.3. Problem (4.2) has a nonnegative solution un in H1(M) with γ > 0.

Proof. Given n ∈ N, let v be a function in H1(M). By Lemma 4.1, define ω = Q(v) to be the unique
solution of

(a + b‖v‖2)Lgω =
fn(x)

(|v| + 1
n )γ
− λ|v|p−1ω in M. (4.3)

Taking ω as a test function, we have

‖ω‖2 ≤
1
a

∫
M

fn(x)ω
(|v| + 1

n )γ
dvg ≤

nγ+1

a

∫
M
|ω|dvg.
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Using Hölder inequality and (2.4), we infer

‖ω‖2 ≤
nγ+1

a

∫
M
|ω|dvg ≤

nγ+1

a

(∫
M
|ω|2

∗

dvg

) 1
2∗

(∫
M

1dvg

) n+2
2n

≤ Cnγ+1‖ω‖,

where C is a constant independent on v. Then, one has

‖ω‖ ≤ Cnγ+1.

Hence, the ball of radius Cnγ+1 in H1(M) is invariant for Q.
We now prove the continuity and compactness of Q from H1(M) to H1(M). Indeed, if vk → v in

H1(M), recalling ωk = Q(vk) satisfies (4.3), and one has

(a + b‖vk‖
2)

∫
M

(〈∇gωk,∇gϕ〉g + hωkϕ)dvg =

∫
M

fn(x)
(|vk| +

1
n )γ

ϕdvg − λ

∫
M
|vk|

p−1ωkϕdvg, (4.4)

for each ϕ ∈ H1(M). Moreover, since ωk is bounded in H1(M), there exist a subsequence (still denoted
by {ωk}) and a function ω ∈ H1(M) such that ωk ⇀ ω in H1(M) and ωk → ω in Ls(M)(1 ≤ s < 2∗).
Letting k → +∞ in (4.4), we see

(a + b‖v‖2)
∫

M
(〈∇gω,∇gϕ〉g + hωϕ)dvg =

∫
M

fn(x)ϕ
(|v| + 1

n )γ
dvg − λ

∫
M
|v|p−1ωϕdvg. (4.5)

It shows that ω = Q(v). Furthermore, taking ϕ = ωk in (4.4) and letting k → +∞, we have

(a + b‖v‖2) lim
k→+∞

‖ωk‖
2 =

∫
M

fn(x)ω
(|v| + 1

n )γ
dvg − λ

∫
M
|v|p−1ω2dvg. (4.6)

On the other hand, taking ϕ = ω in (4.5), one gets

(a + b‖v‖2)‖ω‖2 =

∫
M

fn(x)ω
(|v| + 1

n )γ
dvg − λ

∫
M
|v|p−1ω2dvg. (4.7)

Using (4.6) and (4.7), we deduce that

lim
k→+∞

‖ωk‖
2 = ‖ω‖2.

Hence ωk → ω strongly in H1(M), and then Q is continuous. In order to obtain the compactness of Q,
we apply the above argument again, with ‖v‖2 replaced by lim

k→+∞
‖vk‖

2 in (4.5)–(4.7). By the Schauder

fixed point theorem, we infer that Q has a fixed point un ∈ H1(M), which solves

(a + b‖un‖
2)Lgun =

fn(x)
(|un| +

1
n )γ
− λ|un|

p−1un in M. (4.8)

Choosing u−n = max{−un, 0} as a test function in (4.8), we have

0 ≥ (a + b‖un‖
2)

∫
M

(〈∇gun,∇gu−n 〉g + hunu−n )dvg

=

∫
M

fn(x)u−n
(|un| +

1
n )γ

dvg − λ

∫
M
|un|

p−1unu−n dvg ≥ 0.

Therefore, un is a nonnegative solution of (4.2). �
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Remark 4.4. When γ = 1, problem (4.2) becomes:

(a + b‖un‖
2)Lgun =

fn(x)
|un| +

1
n

− λup
n in M. (4.9)

Obviously, Lemma 4.3 is also correct for problem (4.9), which is the approximated problem of (Kg).

Lemma 4.5. Let un be the solution of (4.9). Then, un is bounded in H1(M). Moreover, there exists a
constant cλ > 0 such that

un > cλ, a.e. x ∈ M. (4.10)

Proof. (i) Taking un as a test function in (4.9) and recalling 0 ≤ fn ≤ f + 1, we have

‖un‖
2 ≤

1
a

∫
M

fnun

un + 1
n

dvg ≤
1
a

∫
M

fndvg ≤
1
a

∫
M

( f + 1)dvg := c f .

Therefore, un is bounded in H1(M).
(ii) By (i), we know ‖un‖

2 ≤ c f , and then

Lgun ≥
fn

a + bc f

1
un + 1

n

−
λ

a
up

n . (4.11)

Consider the following equation:

Lgωn =
fn

a + bc f

1
ωn + 1

n

−
λ

a
ωp

n in M. (4.12)

Combining (4.11) and (4.12), we infer

Lg(ωn − un) ≤
fn

a + bc f

un − ωn

(ωn + 1
n )(un + 1

n )
−
λ

a
(ωp

n − up
n).

Choosing (ωn − un)+ as a test function, noticing that

(ωp
n − up

n)(ωn − un)+ ≥ 0,

and recalling that fn > 0, we have

‖(ωn − un)+‖2 =

∫
M

(
|∇g(ωn − un)+|2g + h((ωn − un)+)2

)
dvg ≤ 0.

Hence, (ωn − un)+ = 0 a.e. in M, which implies ωn ≤ un. Let ϕ1 be an eigenfunction associated to the
first eigenvalue λ1 of Lg. Define k : [0,∞)→ R by

k(ε) =
fn

a + bc f

1
εϕ1 + 1

n

−
λ

a
(εϕ1)p − λ1εϕ1.

Obviously, k(ε) is decreasing on [0,+∞) and satisfies k(0) > 0. Moreover, by the continuity of the
function k, we can choose ελ > 0 small enough such that

k(ελ) =
fn

a + bc f

1
ελϕ1 + 1

n

−
λ

a
(ελϕ1)p − λ1ελϕ1 ≥ 0,
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which implies

Lg(ελϕ1) ≤
fn

a + bc f

1
ελϕ1 + 1

n

−
λ

a
(ελϕ1)p.

Thus, we obtain that ελϕ1 is a sub-solution of (4.12). By the comparison principle, we infer ωn ≥ ελϕ1.
Since ϕ1 > 0 in M and ϕ1 ∈ C1,α(M), 0 < α < 1, there exists a positive constant c such that ϕ1 > c.
Thus, we conclude that

un ≥ ωn ≥ ελϕ1 > ελc := cλ, a.e. x ∈ M.

�

Now, we are in a position to present the proof of Theorem 1.2.
Proof of Theorem 1.2 (i) We first show the existence of a positive weak solution of problem (Kg).
By Lemma 4.5, {un} is bounded in H1(M), and we can choose a subsequence (still called {un}) and
u ∈ H1(M) such that

lim
n→+∞

∫
M

(〈∇gun,∇gϕ〉g + hunϕ)dvg =

∫
M

(〈∇gu,∇gϕ〉g + huϕ)dvg (4.13)

for every ϕ in H1(M). Furthermore, since un satisfies (4.10), we have

0 ≤

∣∣∣∣∣∣ fnϕ

un + 1
n

∣∣∣∣∣∣ ≤ ( f + 1)|ϕ|
cω

.

Thus, by Lebesgue convergence theorem, we obtain

lim
n→+∞

∫
M

fnϕ

un + 1
n

dvg =

∫
M

fϕ
u

dvg. (4.14)

On the other hand, un is the solution of (4.9), namely,

(a + b‖un‖
2)

∫
M

(〈∇gun,∇gϕ〉g + hunϕ)dvg =

∫
M

fn(x)ϕ
(un + 1

n )
dvg − λ

∫
M

up
nϕdvg (4.15)

for every ϕ in H1(M). Then, by (4.13)–(4.15), one has

(a + b lim
n→+∞

‖un‖
2)

∫
M

(〈∇gu,∇gϕ〉g + huϕ)dvg =

∫
M

fϕ
u

dvg − λ

∫
M

upϕdvg. (4.16)

Choosing ϕ = un in (4.15) and letting n→ +∞, we get

(a + b lim
n→+∞

‖un‖
2) lim

n→+∞
‖un‖

2 =

∫
M

f dvg − λ

∫
M

up+1dvg. (4.17)

Replacing ϕ by u in (4.16), we infer

(a + b lim
n→+∞

‖un‖
2)‖u‖2 =

∫
M

f dvg − λ

∫
M

up+1dvg. (4.18)
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Combining (4.17) with (4.18), we deduce that lim
n→+∞

‖un‖
2 = ‖u‖2. Thus, substituting this into (4.16)

leads to
(a + b‖u‖2)

∫
M

(〈∇gu,∇gϕ〉g + huϕ)dvg =

∫
M

fϕ
u

dvg − λ

∫
M

upϕdvg,

which shows that u is a solution of (Kg). Furthermore, recalling Lemma 4.5, the solution is positive.
(ii) We prove the uniqueness of solutions of (Kg). Suppose that v is another solution of (Kg). Denote

J(u, v) = ‖u‖4 − ‖u‖2
∫

M
(〈∇gu,∇gv〉g + huv)dvg − ‖v‖2

∫
M

(〈∇gu,∇gv〉g + huv)dvg + ‖v‖4.

By (3.17), we have
J(u, v) ≥ 0.

Since

(a + b‖u‖2)
∫

M
(〈∇gu,∇gϕ〉g + huϕ)dvg =

∫
M

f
u
ϕdvg − λ

∫
M

upϕdvg (4.19)

and

(a + b‖v‖2)
∫

M
(〈∇gv,∇gϕ〉g + hvϕ)dvg =

∫
M

f
v
ϕdvg − λ

∫
M

vpϕdvg, (4.20)

we subtract (4.19) from (4.20) and obtain

a‖u − v‖2 + bJ(u, v) + λ

∫
M

(up − vp)(u − v)dvg −

∫
M

f
(
1
u
−

1
v

)
(u − v)dvg = 0. (4.21)

Moreover, it is easy to get∫
M

(up − vp)(u − v)dvg ≥ 0,
∫

M
f
(
1
u
−

1
v

)
(u − v)dvg ≤ 0.

Therefore, it follows from (4.21) that ‖u − v‖ = 0, which implies u = v. This ends the proof.

5. Conclusions

This paper investigates Kirchhoff-type equations with singular nonlinear terms on closed
Riemannian manifolds. Currently, results for Kirchhoff-type equations are mostly established in
Euclidean spaces. This paper establishes the existence and uniqueness of solutions to nonlinear
Kirchhoff equations with strong and weak singularities on closed Riemannian manifolds. This is
achieved through the application of minimization techniques and approximation methods. The results
obtained in this study are novel.
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31. H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of
functionals, Proc. Amer. Math. Soc., 88 (1983), 486–490. http://dx.doi.org/10.1090/S0002-9939-
1983-0699419-3

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 8, 21397–21413.

http://dx.doi.org/http://dx.doi.org/10.1017/S0308210500021144
http://dx.doi.org/http://dx.doi.org/10.1016/j.jfa.2010.11.018
http://dx.doi.org/http://dx.doi.org/10.4171/151
http://dx.doi.org/http://dx.doi.org/10.1090/S0002-9939-1983-0699419-3
http://dx.doi.org/http://dx.doi.org/10.1090/S0002-9939-1983-0699419-3
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Existence of solutions for 0<<1 
	Existence of solutions for =1
	Conclusions

