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1. Introduction

Opic and Kufiner [1] proved thatif 1 < r < o < oo, then

b % Y é b lr
(f u(%)(f h(T)dT) d%) SC(f hr(%)v(%)d%) , (1.1)
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holds for the nonnegative function A, if

b %) 2 @
K := sup ( f u(T)dT) ( f vl_w(‘r)dT) < 00,
a<n<b \Jx a

where —co0 < a < b < oo and u, v are measurable positive functions in (a, b). Furthermore, an estimate
for the constant C in (1.1) is given by

1 1

1 o\?

CS(1+£)Q(1+—) K, where w =

w 0 r—1

Stepanov [2] proved thatif 0 < r < 1, r < 0 < oo and k > 0 is a measurable kernel, then

o5 o5 o Z’, o5 r
(f u (%) (f k(x, n)h(n)dn) d%) <C (f R (#)v (%) d%) , (1.2)
0 0 0

holds for the nonnegative nondecreasing function 4, if

00 —% 0o 00 o é
L = sup (f v(%)d%) (f u(x) (f k(%,n)dn) d%) < 00,
™0 T 0 T

Furthermore, if C in (1.2) is the smallest feasible, then L = C.
Heinig and Maligranda [3] demonstrated that if 0 < r < 1,7 < o < o0, and k > 0 is a measurable
kernel, then

00 00 % é 00 r
(f u(x) (f k(x, T)h(T)dT) a’%) <C (f h () (x) d%) ,
0 0 0

holds for the nonnegative nonincreasing function A, if

00 S o f) S %
(f u(x) (f k(%,r)dr) d%) < C(f v(%)d%) ,
0 0 0
holds for all s > 0.

Oguntuase et al. [4] proved thatif 1 <r < p < 00,0 <b; < 00,5;€ (1,r),j=1,2,...,m pisa
nonnegative and convex function on (a,d), —o < a < d < co. Define u(xy, ..., x,) and v(xy, ..., %,) as

nonnegative weighted functions such that v(sx1, ..., %,,) = v{(%¢1)v2(%2)...v,,(%,,), then
1
b b 2
! " , dxy...dx, \°
(f [¢ (Arh (1, ooy 2) | u(oe1, ...,%m)l—)
0 0 KoM,
b Aoy i\
< C(f f & (31, ooy ) )V(51, ...,xm)u) , (1.3)
0 0 KoM
holds Yh(xy, ..., x,,) such that a < h(xy, ...,x,) < d, if
AGStrews) = sup Vi@ 7 e [Vara)] T

0<77I ~~~~~ m <bi,..., bm
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o(r— Am) < 007

X [Vl 7 o) “2) g ..ot

Hl...Mm

1

holds, where V;(17,) = [v](rj)]' ‘ (T])’ Ydr, j=1,2,.

.....

and

a3 m
K(%],...,%m) = f f k(%],...,%m,Tl,...,Tm)dTl...dTm.
0 0

Furthermore, if C is the best feasible, then

—1

r—=1 r
1\ ~1\7
C< inf (r ) (r ) AS1 o 5.

1<S$1,nSu<r \ ¥ — 81 r—Sm

Oguntuase and Durojaye [5] showed thatif 1 <r <o <00,0<b; <00,s5;€(1,r), j=1,2,..,mand
¢ 1s a nonnegative function on (a,d), —oo < a < d < oo. Let there exist a convex function ¢ on (a, d)
such that

A(x) < ¢p(x) < By(x),

holds for constants 0 < A < B < oo and u(xy, ..., %), v(%1, ..., %), Which are nonnegative weighted
functions such that v(x4, ..., %,,) = vi(¢1)v2(%2)...v,,(%,,). Then,

1

bl bm o
(f [¢ (Axh (qy ooy )]° del...d%m)
0 0 A

1eeeXm

by b i
< c(f f ¢r(h(%1,...,%m))wdm...d%m) , (1.4)
0 0 Koo

holds Yh(xy, ..., x,,) such that a < h(xq, ..., x,) < d if

511 sm—1

i
A(Sl""’ Sm): Sup [Vl(nl)] " [Vm(nm)] "
0<T]1 ..... T]m<b1 ..... bm
1
Koy Hns T seees m olr Ym) 0
L [ (Mt ViG] 7" [VyuG)] oo,
”(’}:—%")d% wdry,
-1
holds, where V;(,) = [ [v;(z)|™ (r])’ Ydr, j=1,2,.

Akh(%l’ ey m = KGeroonn, %m)f f k(%la s s s - 9nm)h(771’---9 Um)dnldnm,

and

43| m
K(%l,...,%m) = f f k(%],...,%m,T],...,Tm)dT]...dTm.
0 0
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In addition, if C is the best constant, then

r=1 r=1

B 1\ 1\
C<— inf (r ) (r ) A(S1s o S).

1<S1yesSp<r \ ¥ — S1 r— Spy

In recent years, the study of dynamic inequalities on time scales has received a lot of attention and
has become a major field in pure and applied mathematics. The general idea is to prove a result for
a dynamic inequality where the domain of the unknown function is a so-called time scale T, which
may be an arbitrary closed subset of the real numbers R. The case is when the time scale is equal to
the reals or to the integers representing the classical theories of continuous and of discrete inequalities.
Any inequality that can be proven on time scales should be avoided twice, once in the continuous case
and once in the discrete case.

Saker et al. [6] established the time scale version of (1.1) as the following: Let T be a time scale with
a,beT,1 <r<p<oo, heCy(la,b]lr,R) be a nonnegative the function, and f, g € C,,((a, b)r,R) be
positive functions. Then,

1 1
€ T

b o (%) o b
(f f () (f h(T)AT) A%) < C(f h'(%)g (%) A%) , (1.5

b ) @
K = sup ( f f(r)m) ( f gl—“(r)m) < oo, where @ = — -
a<x<b % a r—=

Furthermore, for the constant C in (1.5), the following estimate is satisfied:

holds, if

1 5
KSCS(1+£)Q(1+E) K.
@ 0

In the same paper [6], the authors proved the dual form for (1.5) in the following: Let T be a time
scale with a,b € T, 1 < r < p < o0, h € Cyy(la,b]r,R) be a nonnegative the function, and f, g €
C,qs((a, b)r,R) be positive functions. Then,

b b 0 : b '
(f f ) (f h(T)AT) A%) < C(f h (x)g () A%) , (1.6)

b &
(f gl_w(T)AT) < oo, where w =

Furthermore, for the constant C in (1.6), the following estimate is satisfied:

, L
LsCs@+£Y@+E)L
@ 0

holds, if

0

a<x<b r—1

o (%)
L = sup ( f(T)AT)

For more details about the dynamic inequalities of Hardy-type, we refer the reader to the papers [7-11]
and the book by Agarwal et al. [12].
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The aim of this paper is to demonstrate multidimensional Hardy-type inequalities with general
kernels on time scales. As special cases of our results on time scales, when T = R, we get the
integral inequalities (1.3) and (1.4) proved by Oguntuase et al. [4] and Oguntuase and Durojaye [5],
respectively. Also, as special cases of the main reslts, when T = N, we can obtain other inequalities in
the discrete calculus, which are essentially new for the reader.

The following is the structure of this document. Section 2 covers the fundamentals of time scales
calculus. In Section 3, we prove our main results, where some classical and modern inequalities are
derived.

2. Preliminaries

This section includes definitions and lemmas which are fundamentals of time scales calculus;
see [13—15]. Consider the time scale T and 7 € T. The forward jump operator is defined by:
o(t) = infly € T : v > 7}. A function ® : T — R, is characterized as rd-continuous when it
exhibits continuity at every right-dense point within T and possesses finite left-sided limits at left-
dense points in T. The set of all such rd-continuous functions is ushered by C,,;(T,R), and for any
function @ : T — R, the notation ®“(7) denotes O (o (7)).

The derivatives of ®w and ®/w (where ww” # 0) of two differentiable functions ® and @ are
given by

o\* 0w - ozt
@) = Do + O = Do + DPw”, (—) iy
w ww’
If GA(r) = @w(r), then the delta integral is predefined as
f (At = G(r) — G(rp).
ro

It can be demonstrated that if @ € C,4(T, R), then the Cauchy integral G(r) = fr : w(t)At exists, ro € T,
and it satisfies G*(r) = @(r). The integration by parts formula is provided by

f AN (AT = [AD)e(D];, ~ f A (DA,

vo vo

The time scale chain rule is stated as follows:

(po 9 (1) =¢ (g(x) g" (1), where x € [r,0 (1)], (2.1)

where it is supposed that ¢ : R — R is continuously differentiable and g : T — R is delta differentiable.
The Holder inequality is expressed as:

by b
f f |h(T)g(T)|AT,...AT),
by b s b v
< (f f |h(T)|7ATl...ATm) (f f |g(T)|yAT1...ATm) , (2.2)
ay am ag Aam

where ay, ...,a,,, by, ....b,, € T, h, g : T" — R such that

W) = (11, T2y oy Twr), 8(T) = 8(T1, T2y ooy Tir),
y>land 1/y+1/v=1.
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Theorem 2.1. (Jensen’s inequality) Assume that aj,b; € T, j = 1,2,..,m,and c,d € R. If g : T" —
(¢, d) is rd-continuous and ® : (c,d) — R is continuous and convex, then

el I
h(&, 1)g(n)AT
Lfl lenm h(f, T)AT ai Am ]

1 bl bm
< fbl fb,,, HE DA f f h(&, T)D(g(7))AT, (2.3)
, T)AT vYai am

d

where
At = Aty ATy, RET) = (&, &y Ty e T) and g(T) = g (T1, ooy Th) -

Theorem 2.2. (Minkowski’s inequality) Assume that a;,b; € T, j = 1,2,...m, and vy > 1. If k :
T" X T"— R, w,h : T" — R are nonnegative rd-continuous functions, then

by m b b Y %
(f f w(€) (f f h(T)k(&, T)AT) Af)
b bm b h: y
< f f h(t) (f f W(.f)ky(f,T)Af) A, 2.4)

k(€,T) = k(&1y s Emy Ty s Ti)s W(E) = W (&1, .o &p) and K(T) = h (T, ..y, Ty) .

where

3. The main findings

We shall assume in this work that the functions are nonnegative rd-continuous functions and the
considered integrals exist (and are finite, i.e., convergent). Throughout, we are using the following
assumption: Define the nonnegative functions 4 : T" — R, k : T" X T" — R as the following:

h(ﬂ) = h(’]l, ooy nm) and k(f? 77) = k(gb ""é:m’ s e nm)

Also, we define the general Hardy operator A as the following:

1 (fl) (,{"m)
Al vy = ——— k(&1, o0&y s (N1, .., ) AR,
&L ) K(gl,...,fm)f f €1 oo s s oo 11 oo AT

o (&1) o (Em)
K(f],...,fm) = f f k(f],...,é:m,Tl,...,Tm)AT,
aj an

with

and

_ U REDN e S e
A(sy, ..., sm)_aji:,l,gb,-(fm j;m (K(f)) [VIED] 7 o [Va(én)]

sp—1
m

ue) Af)g Vel Vel G
) —an)

* @) —an) - (G -
where V;(n;) = fanj [\)J-(Tj)]"%]1 (0' (Tj) - aj)’ﬁ At j=1,2,...,m.

J
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Mathematical applications of this work are given in the form of remarks, examples, and corollaries.
Now, we start with the time scale version of (1.3).

Theorem 3.1. Leta;,b; € T,1 <u<p<oo,s;€(l,u),j=1,2,..,m, and y be a nonnegative and
convex function on (a,d), —oo < a < d < oo. We define u(&y, ...,&,) and v(&4, ..., &,) as nonnegative
weighted functions such that

V(€15 ey Em) = V1(EDV2AE) . Vin(En)- (3.2)
If (3.1) holds, then

1

u(© ;
h A
(f . el @) —an) . G —am f)

— -1

o —1\F
< (,u ) (,u ) A(S1, ey Si)
_Sl —sm
1

by v(17) )“
» An) 3.3

Proof. By applying (2.3), we see that

b1 Do
Ah (@) u) A
fal f W AhOF e =y @ —an’t

0

b1 T (1) o (&m) @
k h(n)A
f f ( (K@ ) f (& mh(n) n))

u(@)
A
“C@) —a) . @ —amt

by b 1 a(&1) o (&Em) e
— k(&, h A
fm f ,, (K@ : f KEDh) n)
X

ué)

IA

&) a0 &) —an)
| n 0
- |, ). Ferm e e G
where a(§1) (m)

J(€) = f. f; k(& my(h(m)An. (3.5)
Denote Y (h()) 5=t — = () and substitute it into (3.5) to obtain that

@) (En) 1 . .
J () = f f k(& mI¥m1F [vimo] ... [viu(a)] ™

< [VE@D] T o [V [VE@D] 7 o [VEa]
X (o (m) — al)” (o) — am)ﬂ An, (3.6)

Sm
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, 1 1
where V;(n;) = fa"’ [vj(Tj)]”'l (0' (Tj) —aj)”'1 Atj, j = 1,2,..,m. Applying (2.2) with u > 1 and
u/(u—1)in (3.6), we see that

1

((3)) (&m) 1
I = ( f f KEYa) [V @] [V @)™ An)

(&1) (&m) 1os| 1-sm
fﬂ f” [Vi@o]= . [V )]+
aj am
u

S DT e )T (0 @11 = AP o (0 () — )T An] X

X

Substituting (3.7) into (3.4), we have

b1 7.
Ah (&) u¢) A
fal f W Ah N - @ —an’t

< fbl i u(€)
T Ja e @) - a) (@) - an) Ko@)

(1) (Em) ) |
><( f kEmY) [Vl [V )™ An)

1
o (§1)
1

4
m

X

En) . .
f VIO - V)] 7

a
ou-1)

X i@ .. @) (0 (1) = @) .. (0 () = )™ An] " A
(3.8)

Since . N B
Vj(m)=f_ [vi@p|™ (o (7)) = a)) Ay, j=1,2,om,

then | 1
Vi) = |viap]™ (o (n)) - a))" > 0. (3.9)
]17(”71/(,171))

b

Therefore, the function V; is increasing. Applying the chain rule formula (2.1) on [Vj(n )
we obtain

1A
sjl

[[vj(m)]“’”] = [[V,(nj)]

where &; € [n;,0(n;)], j = 1,2,...,m. Thus, by substituting (3.9) into (3.10), we see

u=sj A (sj=1)
u-1

[ s e
] = ( = 1]) [Vien] ™ veay, (3.10)

G~ -1 1

u-sj A el B = o
[[V;(n/)]“"] =(Z_i’)[V/(§j)] i) (o () - @) (3.11)

Since &; < o(n7;) and V is increasing, we have

V(&) < Vi)

AIMS Mathematics Volume 9, Issue 8, 21414-21432.
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Using the relation 1 < s; <pu, j=1,2,...,m, we get

(s;=1) (s;=D

[viep] " =[vimp] .

Substituting (3.12) into (3.11), we have

(sj=1)

[[Vj(n,)]mrz(‘; __Sl-’)[vy(mﬂ om0 () - a)

o(€)) s A
f. [[Vj(ﬂj)] ”1] An;
J_ . o (&) _Gi=b -1
[E20) [ [l b (o) -0 o0,

Thus, we have (note V;(a;) = 0) that

&) Gj=b = e
[ ol bl o o) - an

j

-1 () ] A
(=) [ ot o

-1 iy
(h) Vi@, j=1.2m,

and then

and then we have from (3.13) that

) o (Em) 15y Lsm
f f Vi@ o [V ()]
aj am

X[l . [vm(nmnﬁ (0 () = @)1 ... (0" () — @)1 A
o (&1) o
(f Vi ml [ @] (0 (1) = @) Aﬂl)

€ -
><--~-><( f’ [V"(nm)] T V@) |7 (0 () — am)ﬂ‘Anm)

-1 -1 H=sq H=sm
< ([j )(“ )[Vi’(fl)]“---[V,‘Z(fm)]“‘

-8 M= Sm

Substituting into (3.8), we see that

g b u(é)
Ah A
f f (A )F O~ ) ¢

-1 i b1 " olu=s) ot=sm)
(5—“) ( —s) f f Ve 7 v

(3.12)

(3.13)

AIMS Mathematics Volume 9, Issue 8, 21414-21432.
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Q

(&1) o (€m) s1—1 sm—1
x( f f KEmYa) [VIaol™ ™ - [V )™ An)

u(é)
Kg(f) (o) —ay)...(cEn) — am)

Applying (2.4) on the term

AZ. (3.14)

b1 o (&1) o (Em) - _ u
f f ( f . &MY [V . [Vama]™ An)

- # o ;fm) M(é:)
X [V (& )] [Vm(fm)] Ko(&) (&) — ay) ... (0(&y) — am)Af’

with o/u > 1, we observe that

by b ) &) B B i
f f ( f f KE ) VIO o [V An)

u(@®) ;
A
Ko@) (@) —an) - (@ En) —an) 5}

b b
< f ) (ViG] (V@]

X [VeE] T v

by 9(;1 Sm)
<| [ f REm Ve . Vi)
n Mm

u(é)
KQ(&)((T(&) a) ... (0(Em) — am)

Substituting (3.15) into (3.14), we obtain

u

Ag] An. (3.15)

S u(é)
ALh A
f | ah@F E) ) (&) ¢

(: 1) ’ ( —sm) [fbl f P (Ve L VI )]

(f f k(& m) V‘r(fl)] -[V,‘Z(fm)]~T
7 T

u(&) e
A A )
* Ko@) (0 @) —a) . (0 En) —am) f) "]

Using the assumptions (3.1) and (3.2), the inequality (3.16) becomes

g u(é)
Al A
f f WA s @ —an’™

1\ Wt z

— I — u m u

< Asy ., sm)( ) ( K ) U ‘P(n)An]
H— 51 M= Sm aj am

AIMS Mathematics Volume 9, Issue 8, 21414-21432.
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ou=-1) ou-1)

-1 u -1 M
H ) :_S) AO(S1, o S

o V101 V1) ]5
“(h A
\1; i v ((n»(0(n1)—ch)-u(ainm)—-am) 1

ou-1) ou-1)

_ (“‘1) ’ ...(“‘1) A(st, o )
H= s M= S
o b V(s o ) ]5
H(h A
fal D e =) e —an !

I
—_
=

|
A

(3.17)

and then

1

2 u(©® :
h A
(f f VAR e o e —an f)

s( 1) .(”‘1) A(S1s s $m)
M= 5 K= Sm

S V(1L s 1) ]
H“(h A ,
fal RS Ty e —an !

which is (3.3). O

X

Remark 3.2. If T =R, then (3.3) gives the inequality (1.3) proved by Oguntuase, Persson, and
Essel [4].

Corollary 3.3. In Theorem 3.1, let T =7, aj,b; € Z,1 <u <o <oo,s;€ (1), j=1,2,...,m, and
be a nonnegative and convex sequence on (a,d), —oo < a < d < oo. Define u(éy, ..., &) and v(&y, ..., &)
as nonnegative weighted sequences such that

V&1, s ) = V1(EDV2(E2)- - Vin(Em)-

Then
b"’_l u(@®) :
Ach
[‘fl—d] g,,,_am v (A @F E+l1—-a)...&n+1—-ay)
==l
A(S1y ooy Si)
— 5 .
S V() Z

X [n;l ...n;m qu( (77))(;71 +1-— (11) (T]m +1- am)] s

provided that

op=sm)
“

A(S1y ey ) = SUP

a_,~<nj<bj

b1 bm—1 ¢ T
( - (kg(g)) Vit + DI [Vt + 1)

&1=m Em=Mm

AIMS Mathematics Volume 9, Issue 8, 21414-21432.
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u(é) : ot wt
% (é:l +1- Cl]) (é‘:m +1- am)) [Vl(nl ¥ l)] [Vm(nm " 1)] <o
where .
Arhéy, .. én) = m Z Z K(€1seoes Ems M1 oo )AL ooy M),
b mn ni=ai NMm=am
&1 Em
K& sonbn) = ) o Z KELs s T o T,
and
n;j—1 i N
Vi = Y v (e 1=a) T =12,
Example 3.4. If we put m = 1, k(&,n) = 1, ¥(x) = x, f(&) = u(€) and g(n) = v(p) in

(c(©-a)*’ (o(p—-ay*!’

Theorem 3.1, then we get the inequality (1.5) proved by Saker et al. [6].

Theorem 3.5. Let aj,b; € T, 1 < u <o <oo,s5; € (1,p), j =1,2,..,m, and ¢ be a nonnegative
function on (a,d), —0 < a < d < oo such that

AY(€) < ¢(&) < BY(6), (3.18)

holds for constants 0 < A < B < oo, and  is a nonnegative and convex function. We define u(¢y, ..., &,)
and v(&,, ..., €y,) as nonnegative weighted functions such that

V(&1 s Em) = VI(EDV2(EL)- - Vin(Em)- (3.19)
If (3.1) holds, then

1

b u(é) )
ALh A
(f f ¢ Ak O e @y —an ™
ST fu=1\7"
< Z( — S1) . (,U — Sm) A(Sy, ..., Sim)

by (771,- ,Um) )”
Anl 3.20
(f f PO G =an e —an -

Proof. From (3.18) and by applying (2.3), we see that

b Dy
Ak (EN] ) A
fm f A EF e . @ —amn ™
by

bln
B | . Ah (N ) A
fm WA O e @ —an ™

b1 Din 1 o (&1) (&m) e
Bgf f [gb(@f f k(f,n)h(n)An)]

AIMS Mathematics Volume 9, Issue 8, 21414-21432.
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} u(®) N
(@ €)= ) (&) — an)

b - 1 (&) Em) @
B f f (@ f K&, mu(h(m)An

<
M@ —a bf’f??a@m) —an™
i} Bgfm E I?@(ff)) T O @ - P @& —an) G-2D
where &) (Em)
7€ = f o [ Kemuanmn (3.22)
Denote y#(h(n)) g 5om=ts— = P(7) and substitute it into (3.22) to obtain that

=]

J (&)

(&) o (Em) 1 -1
f f k&) [ED]F [ @D e [Vii)]
X (o () = ap)¥ ... (0 () — am)® Ay

o (&1) 0 (Em) | 511 sm—1
f f K& [P VG T V@] F

1-s51
m

< VTGO 7 o [VEa] - iG] o [vma)] 7
X (0 (1) = @) ... (- () — @) AT, (3.23)

where Vi(n;) = f"’ [Vj(Tj)]H%ll (0’(7'J-)—aj)’ﬁ Atj, j = 1,2,...,m. Applying (2.2) with 4 > 1 and

a

11/( — 1) on (3.23), we see that

1

((3)) (&m) L
I = ( f f KEYa) V7@l [V @)™ An)

(&) (&m) 1-s| 1-sm
fﬂ f” [Vi@ol=" . [V ()]
aj am
pu-1

S DT e )T (0 @11) = AP e (0 () — )T An]” . (324

X

Substituting (3.24) into (3.21), we have

b1 .
Ach (&) ue) A
fal f A - e —an

bl bm
< B f f )
a an (0(&1) —ay) ... (0(&n) — am) KOE)

) ©n) - L
x(f" KEMY) [V D] . [V ()] ™ An)

T
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X

() € . .
f f\o [Vf-(m)] e [Vg(nm)] -1
“ o )

xmmmﬁmhwmﬁhamrwm%mawmmm@md”Aé (3.25)

Since . L 1
v = [ el (o () o) b = 120
then L 1
Viam) = v (o (m) - a;)"" > 0. (3.26)
Therefore, the function V; is increasing. Applying the chain rule formula (2.1) on [Vj(n j)]l_(sj_l/(ﬂ_l)),
we obtain
ORI il g s e
u-1 _ M= _ p-1
“wmﬂ ]—“wwﬂ ]‘@h1MW@ﬂ VAUN (3.27)

where &; € [n;,0(nj)], j = 1,2,...,m. Thus, by substituting (3.26) into (3.27), we see that

G~ -1 1

u-si A el B 1 o
e e e Y e T S

Since ¢; < 0(n7;) and V is increasing, we have

Vi(&) < vem).
Using the relation 1 < s; < pu, j=1,2,..,m, we see that
(sj=1) (sj=1)
[Viep] ™ = [vimp] T (3.29)
Substituting (3.29) into (3.28), we have

(sj=D -1 1

i A . ) =
[[Vf(’b’)]“l Z(Z—Sf)["? | 7 i (o () = )

and then

-1 1

o (&) b A u—s; o (£)) _L:l” -t 0
o o) = -0,

J J

Thus, we have (note V;(a;) = 0) that

() G 0 N
[ v = oo (o) =) o

J

—1 T (€)) by A
(:—Sj)f [[V‘/(m)]” } A

7
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Hesj

_ (“‘1)[vcr(g,)]w, i=1,2m, (330)

J

and then we have from (3.30) that

o (§1) 0 (m) j Losm
f f [V;T(Th)] = [Vg(nm)] ot
aj am

X Vi@ e [T (0 (70) = @07 <. (0 () = )T A
o (&1) (511 | 1
) (f ViG]~ G Vi) (o (1) — a)*T Aﬂl)

()
X... X ( f [V ()] =N [vm(nm)]“ (0 () — )T Anm)

-1 -1 pH=sq H=sm
P (” ) ( H )[V? @ V@]
p=s1) \u—su

Substituting into (3.25), we see

g u(€)
Ah A
f f [ Ak e @ —am ™

) Bg(ﬂ_l)o(uy | (M_l)g(uﬂ)
— 51 — Sm
by o (§1) o (&m) 1
f f ( f f KEME) [V @)™ - [V i)™ An)

o o o u(§)
<[Vl . vaen)’ K@@ CE) ) e —aé (3.31)

Applying (2.4) on the term

b ) En) ) ] %
f f (f f KY(EMP) VI . [Vama)]™ An)

- 0(#;31) o @(ﬂ;xm) l/l(f )
X[VTE] 7 o [V Ke@ 0 @) = an) o (0 —am)

with o/u > 1, we observe

e

by b ) ) . Y
ff (f KEmP [V . [V @)™ An)

u(@) ‘
A
Ko@) @@ —ar) - (@) —an) f]

b1 by
gb[mf\wmwmm”mewﬂ

o(u-s1) o(u=sm)
< [VIED] T L V@] T

(p=sm)

Y veE

X

by D o(u-
f | ke veE) T

m Nm
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H
o

u) A7, (3.32)

A
“ Ko@) (0 @) —an) (0 En) —am) f]
Substituting (3.32) into (3.31), we obtain

b1 Dy

A (©)° u¢) A

fal f ¢ Ak ENF €~ )~ d

_1 Q(H;:l) by

SBQ('U ) ( ) [ f f W) [V o V]!
ST — S,
bl bm

x(f f k@(g,n)[Vf’(fl)] G .--[VZ(fm)] e
m Mm

u(e) e
A A .
X Ko@) (@) —an) . TC) —an) f) ’7]

(3.33)

Using the assumptions (3.1), (3.18), and (3.19), the inequality (3.33) becomes

b u(é)
Al A
f f [ Ak e (0@ @) ¢

(u—1)

m b1
BA%sy, .. 51) ( pol ) ( ) [ f f ‘P(n)An]
H— 81 — Sm

ou=1) ou=1)

IA

by VL) V(1) ]5
H(h A
f f VD) iy =an) (o) —am !
B (k= 1) g ...('u_l) ' A°(S1y ey Sim)
H= Sm

V1) V(1) i
A
f f PR )~ )~ ) "]

ou—1

(u—1)
B -1\ —1)\%
= (/l ) ...(:_ B ) AQ(Sla-'-a sm)

b V(15 s ) ]“
A 3
f f YD) Gy = a) e —an ™| (534

IA

and then

1

u(&) ’
Arh
f f ¢( k (‘f))] (o (é;l)_al)“_(o'(fm)—am)Ag)

1o

—

> | &

)u ( — 1 )u A(S1, ..., Sim)
— 5,
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1

bl bm v(n17 "777}71) M
h A ,
fm R S T ) —am

which is (3.20). |

X

Remark 3.6. If T = R, then (3.20) gives the inequality (1.4) proved by Oguntuase and Durojaye [5].
Remark 3.7. If A = B =1 in Theorem 3.5, then we get Theorem 3.1.

Remark 3.8. It is obvious that we can use another technique to prove the inequality (3.20) in
Theorem 3.5 by using Theorem 3.1 with (3.1) and (3.18) as follows:

by b :
Ak (EN]E ue) A )
(f f AN . @ —am

S u(€) )
< B ALh A
: f f WA e @ —an ™
< B _1)H...('u_l)ﬂA(sl,...,sm)
H—= 5 H = Sm
b b V(15 ees i) )*I‘
H(h A
8 f L ) S Ty o =
< E(“‘l)“..,(“_1)“A(s1,...,sm)
A\p— s H = Sm

1

b W oo T) )
h A .
X(f PR e T e —am

4. Conclusions

In this work, new multidimensional Hardy-type inequalities with general kernels have been
developed in the context of time scales, a mathematical theory that unifies continuous and discrete
analysis. These inequalities were proven using the n-dimensional time scale versions of Holder’s
inequality, Jensen’s inequality, and Minkowski’s inequality. Special cases were derived for T = N,
which are essentially novel contributions to the field. These results extend the applicability of Hardy-
type inequalities, providing new insights and tools that bridge discrete and continuous mathematical
analysis.
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