Research article

Extended Moreno-García cosine products

  • Received: 16 August 2022 Revised: 18 October 2022 Accepted: 24 October 2022 Published: 15 November 2022
  • MSC : Primary 30E20, 33-01, 33-03, 33-04

  • The Moreno-García cosine product is extended to evaluate an extensive number of trigonometric products previously published. The products are taken over finite and infinite domains defined in terms of the Hurwitz-Lerch Zeta function, which can be simplified to composite functions in special cases of integer values of the parameters involved. The results obtained include generalizations of finite and infinite products cosine functions, in certain cases raised to a complex number power.

    Citation: Robert Reynolds. Extended Moreno-García cosine products[J]. AIMS Mathematics, 2023, 8(2): 3049-3063. doi: 10.3934/math.2023157

    Related Papers:

  • The Moreno-García cosine product is extended to evaluate an extensive number of trigonometric products previously published. The products are taken over finite and infinite domains defined in terms of the Hurwitz-Lerch Zeta function, which can be simplified to composite functions in special cases of integer values of the parameters involved. The results obtained include generalizations of finite and infinite products cosine functions, in certain cases raised to a complex number power.



    加载中


    [1] S. G. Moreno, E. M. García, New infinite products of cosines and Viète-like formulae, Mathematics Magazine, 86 (2013), 15–25. http://doi.org/10.4169/math.mag.86.1.015 doi: 10.4169/math.mag.86.1.015
    [2] F. Viète, Variorum de Rebus Mathematicis Responsorum Liber VIII, Capvt XVIII, 1593,398–400.
    [3] L. Berggren, J. Borwein, P. Borwein, Pi: a source book, 3 Eds., New York: Springer, 2004. https://doi.org/10.1007/978-1-4757-4217-6
    [4] R. Remmert, Classical topics in complex function theory, New York: Springer, 1998. https://doi.org/10.1007/978-1-4757-2956-6
    [5] A. Bayad, T. Kim, Higher recurrences for Apostol-Bernoulli-Euler numbers, Russ. J. Math. Phys., 19 (2012), 1–10. https://doi.org/10.1134/S1061920812010013 doi: 10.1134/S1061920812010013
    [6] V. Gupta, T. Kim, On a q-analog of the Baskakov basis functions, Russ. J. Math. Phys., 20 (2013), 276–282. https://doi.org/10.1134/S1061920813030035 doi: 10.1134/S1061920813030035
    [7] T. Kim, D. S. Kim, Note on the degenerate gamma function, Russ. J. Math. Phys., 27 (2020), 352–358. https://doi.org/10.1134/S1061920820030061 doi: 10.1134/S1061920820030061
    [8] R. Reynolds, A. Stauffer, A method for evaluating definite integrals in terms of special functions with examples, International Mathematical Forum, 15 (2020), 235–244. http://doi.org/10.12988/imf.2020.91272 doi: 10.12988/imf.2020.91272
    [9] R. Reynolds, A. Stauffer, Extended Prudnikov sum, AIMS Mathematics, 7 (2022), 18576–18586. https://doi.org/10.3934/math.20221021 doi: 10.3934/math.20221021
    [10] C. V. Durell, A. Robson, Advanced trigonometry, Dover Publications, 2003.
    [11] A. Erdéyli, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, McGraw-Hill Book Company Inc., 1953.
    [12] I. S. Gradshteyn, I. M. Ryzhik, Tables of integrals, series and products, Cambridge: Academic Press, 2000.
    [13] R. Gelca, T. Andreescu, Putnam and beyond, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-58988-6
    [14] S. Khan, S. Zaman, S. Ul-Islam, Approximation of Cauchy-type singular integrals with high frequency Fourier kernel, Eng. Anal. Bound. Elem., 130 (2021), 209–219. https://doi.org/10.1016/j.enganabound.2021.05.017 doi: 10.1016/j.enganabound.2021.05.017
    [15] S. Khan, S. Zaman, M. Arshad, H. Kang, H. H. Shah, A. Issakhov, A well- conditioned and efficient Levin method for highly oscillatory integrals with compactly supported radial basis functions, Eng. Anal. Bound. Elem., 131 (2021), 51–63. https://doi.org/10.1016/j.enganabound.2021.06.012 doi: 10.1016/j.enganabound.2021.06.012
    [16] K. Oldham, J. Myland, J. Spanier, An atlas of functions: with equator, the atlas function calculator, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-48807-3
    [17] R. Reynolds, A. Stauffer, A note on the infinite sum of the Lerch function, Eur. J. Pure Appl. Math., 15 (2022), 158–168. https://doi.org/10.29020/nybg.ejpam.v15i1.4137 doi: 10.29020/nybg.ejpam.v15i1.4137
    [18] K. H. Rosen, J. G. Michaels, J. L. Gross, J. W. Grossman, D. R. Shier, Handbook of discrete and combinatorial mathematics, Boca Raton, FL: CRC Press, 2000.
    [19] C. C. Clawson, Mathematical sorcery: revealing the secrets of numbers, New York: Springer, 1999. https://doi.org/10.1007/978-1-4899-6433-5
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1247) PDF downloads(66) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog