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1. Introduction

We only consider finite and undirected graphs throughout this paper. Let G = (V(G), E(G)) be a
graph with n = |V(G)| vertices and m = |E(G)| edges. For any vertex u ∈ V(G), we use dG(u) (or du

when no confusion can arise) to denote the degree of u in G, which is the number of edges incident to
u. Such a maximal number (resp. minimal number) is called the maximal degree ∆(G) (resp. minimal
degree δ(G)). For any vertex u in G, we use NG(u) to denote the set of all vertices adjacent with u, and
the elements of NG(u) are called neighbors of u. A sequence of positive integers π = (d1, d2, . . . , dn) is
called the degree sequence of G if di = dvi for any vertex vi ∈ V(G), where i = 1, 2, . . . , n.

The join of two graphs G1 and G2, denoted by G1+G2, is the graph with the vertex set V(G1)∪V(G2)
and edge set E(G1)∪ E(G2)∪ {xy|x ∈ V(G1), y ∈ V(G2)}. The cyclomatic number of G is the minimum
number of edges in it whose removal makes it acyclic, denoted by γ = γ(G). Let G γn be the set of
n-vertex graphs with cyclomatic number γ. We use Kn and Pn to denote the complete graph and path
of n vertices, respectively. As usual, we use the symbol ℓ(Pn) to denote the length of the path Pn,
which equals to the number of edges in Pn. The cyclomatic number, denoted by γ, of a graph G
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is the minimum number of edges of G whose removal makes G acyclic. Let G γn be the class of all
connected graphs with order n and cyclomatic number γ. We use [4] for terminology and notation not
defined here.

The topological index is a real number that can be used to characterize the properties of the
molecule graph. Nowadays, hundreds of topological indices have been considered and used in
quantitative structure-activity and quantitative structure-property relationships. One of the
well-known topological indices is the general Randić index, which was defined by Bollobás and
Erdös [5] and Amic [1] independently:

Rα(G) =
∑

uv∈E(G)

[dudv]α ,

where α is a nonzero real number. This topological index has been extensively investigated. We
encourage interested readers to consult [3, 6, 7, 10, 11, 13] for more mathematical properties and their
applications.

Even though the mathematical and chemical theory of the general Randić index has been well
considered, some extremal graph-theoretical problems concerning this graph invariant are still open.
In this paper, we focus on exploring the extremal graphs in G γn with respect to the general Randić index.

2. Graphs in G γn with minimum general Randić index

It is interesting to explore the extremal graphs for some topological indices in the class of graphs
with a given cyclomatic number. In this section, we focus on determining the extremal graphs in G γn
with the minimum general Randić index. Before proceeding, we shall prove or list several facts as
preliminaries.

Lemma 2.1. The function P(x, α) = 2αxα+1− (x − 1)α [2α(x − 2)+3α]+ xα (2α − 3α)−6α > 0 for x ≥ 4
and 1 ≤ α ≤ 39

25 .

Proof. It is routine to check that

P(x, α) =2αxα+1 − (x − 1)α [2α(x − 2) + 3α] + xα (2α − 3α) − 6α

=2αxα+1 − (x − 1)α [2α(x − 1) − 2α + 3α] + xα (2α − 3α) − 6α

=2α
[
xα+1 − (x − 1)α+1

]
+ (2α − 3α) (x − 1)α + (2α − 3α) xα − 6α

=2α
[
xα+1 − (x − 1)α+1

]
+ (2α − 3α) [xα + (x − 1)α] − 6α

=2α
[
xα + (x − 1)α

]
+ 2αx(x − 1)

[
xα−1 − (x − 1)α−1

]
+ (2α − 3α)

[
xα + (x − 1)α

]
− 6α

= (2 · 2α − 3α)
[
xα − (x − 1)α

]
+ 2αx(x − 1)

[
xα−1 − (x − 1)α−1

]
− 6α.

Note that ρ(t) = tα − (t − 1)α is an increasing function for t ∈ [4,+∞), and 2 · 2α > 3α if, and only if,
α < ln 2

ln 3−ln 2 ≈ 1.709, then we have

P(x, α) = (2 · 2α − 3α)
[
xα − (x − 1)α

]
+ 2αx(x − 1)

[
xα−1 − (x − 1)α−1

]
− 6α

≥ (2 · 2α − 3α) (4α + 3α) + 2α · 12 ·
(
4α−1 − 3α−1

)
− 6α

=5 · 8α − 3 · 6α − 9α − 12α.
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For simplicity, let H(α) = 5 · 8α − 3 · 6α − 9α − 12α. To continue our proof, we first verify the
following fact. □

Claim 1. The function ϱ(t) = k1at − k2bt − k3ct has a unique zero point in the interval [0,+∞) for any
positive real numbers k1, k2, k3, a, b, c such that k1 − k2 − k3 > 0 and 1 < a < b < c.

Proof of Claim 1. It is routine to check that ϱ′(t) = k1 ln a · at − k2 ln b · bt − k3 ln c · ct. Note that

ϱ(0) = k1 − k2 − k3 > 0 and ϱ(M) = at
[
k1 − k2

(
b
a

)t
− k3

(
c
a

)t
]

t=M
→ −∞, and it follows that ϱ(t) has

zero points in the interval [0,+∞). Without loss of generality, we assume that t1, t2 = t1 + h ∈ [0,+∞)
are the two distinct zero points of ϱ(t) for h > 0, which is equivalent to k1at1 − k2bt1 − k3ct1 = 0 and
k1at2 − k2bt2 − k3ct2 = 0. Besides, we know that ϱ′(t) = k1 ln a · at − k2 ln b · bt − k3 ln c · ct, which implies
that

ϱ′(t1) =k1 ln a · at1 − k2 ln b · bt1 − k3 ln c · ct1

< ln a
(
k1at1 − k2bt1 − k3ct1)

=0.

In addition, we have

ϱ(t2) = ϱ(t1 + h) =k1at1ah − k2bt1bh − k3ct1ch

=
(
k2bt1 + k3ct1) ah − k2bt1bh − k3ct1ch

<
(
k2bt1 + k3ct1) ah −

(
k2bt1 + k3ct1) bh

=
(
k2bt1 + k3ct1) (ah − bh)

<0,

which contradicts to the fact that ϱ(t2) = 0. Hence, there must exist a unique number t0 ∈ [0,+∞) such
that ϱ(t0) = 0. As desired, we have completed the proof of Claim 1. □

Claim 2. The function H(α) = 5 · 8α − 3 · 6α − 9α − 12α has a unique zero point in the interval (1, 2).

Proof of Claim 2. It is routine to check that H′(α) = 5 ln 8 · 8α − 3 ln 6 · 6α − ln 9 · 9α − ln 12 · 12α.
Note that H(1) = 1 > 0 and H(2) = −13 < 0, and it follows that H(α) has zero points in the
interval (1, 2). Without loss of generality, we assume that α0, α1, . . . , αl are the zero points of H(α)
such that 1 < α0 < α1 < . . . < αl. Hence, H(α0) = 5 · 8α0 − 3 · 6α0 − 9α0 − 12α0 = 0. Furthermore,

H′(α0) =5 ln 8 · 8α0 − 3 ln 6 · 6α0 − ln 9 · 9α0 − ln 12 · 12α0

= ln 8 (3 · 6α0 + 9α0 + 12α0) − 3 ln 6 · 6α0 − ln 9 · 9α0 − ln 12 · 12α0

= 3 (ln 8 − ln 6)︸          ︷︷          ︸
k1

6α0 − (ln 9 − ln 8)︸        ︷︷        ︸
k2

9α0 − (ln 12 − ln 8)︸         ︷︷         ︸
k3

12α0 .

It follows from Claim 1 that ϱ(t)|a=6,b=9,c=12 has a unique zero point in the interval t0 ∈ [0,+∞).
Consequently, we know that the unique zero point of ϱ(t)|a=6,b=9,c=12 must lie in the interval (0, 1) since
ϱ(0)|a=6,b=9,c=12 > 0 and ϱ(1)|a=6,b=9,c=12 = −0.7473 < 0. Hence, ϱ(t)|a=6,b=9,c=12 < 0 always holds for
any real number t ≥ 1. This implies that H′(αi) = ϱ(αi)|a=6,b=9,c=12 < 0 for αi > 1 and i = 0, 1, . . . , l,
which contradicts to the continuity of the function H(α). As desired, we have completed the proof of
Claim 2. □
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Now, we continue to our proof. Note that H(39
25 ) = 5 · 8

39
25 − 3 · 6

39
25 − 9

39
25 − 12

39
25 ≈ 0.01857 > 0 and

H(1.57) = 5 · 81.57 − 3 · 61.57 − 91.57 − 121.57 ≈ −0.07428 < 0. Hence, P(x, α) ≥ H(α) > 0 for α ∈ [1, 39
25 ].

As desired, we have completed the proof of Lemma 2.1.

Figure 1. The graph of the function H(α) = 5 · 8α − 3 · 6α − 9α − 12α for α ∈ [0, 39
25 ), where α

and H(α) denote the horizontal and vertical axes, respectively.

Lemma 2.2. The function Q(x, α) = 3α
(
xα+1 − (x− 1)α+1)− 9α + 2xα(2α − 3α) > 0 for x ≥ 4 and α ≥ 1.

Proof. For simplicity, we distinguish the following two cases.
Case 1. α ∈ [1, 3).

Note that h(t) = tα is an increasing function in the interval [1 − 1
x , 1] for α ≥ 1, and it follows from

Lagrange’s mean value formula that h(1) − h
(
1 − 1

x

)
=

[
1 −

(
1 − 1

x

)]
h′(ξ) = 1

xh′(ξ) = 1
xαξ

α−1 > 0,

where ξ ∈ (1 − 1
x , 1). Hence, x

[
1 −

(
1 − 1

x

)α]
= x

[
h(1) − h

(
1 − 1

x

)]
= αξα−1. Thus, we have

Qx(x, α) =3α(α + 1) [xα − (x − 1)α] + 2αxα−1(2α − 3α)

=xα−1
{

3α(α + 1)x
[
1 −

(
1 −

1
x

)α]
+ 2α(2α − 3α)

}
=xα−1

[
3αα(α + 1)ξα−1 + 2α(2α − 3α)

]
=αxα−1

[
3α(α + 1)ξα−1 + 2(2α − 3α)

]
.

By our initial hypothesis, it is routine to check that ξα−1 > (1 − 1
x )α−1, then we have

Qx(x, α) >αxα−1

3α(α + 1)
(
1 −

1
x

)α−1

+ 2(2α − 3α)


>αxα−1

3α(α + 1)
(
3
4

)α−1

+ 2(2α − 3α)
 (

because 1 −
1
x
>

3
4

)
=2α3αxα−1

1
2

(α + 1)
(
3
4

)α−1

+

(
2
3

)α
− 1


>2α3αxα−1

[
9
32

(α + 1) +
(
2
3

)α
− 1

] because
(
3
4

)α−1

>

(
3
4

)2 .
AIMS Mathematics Volume 8, Issue 12, 29352–29367.
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Let p(α) = 9
32 (α + 1) +

(
2
3

)α
− 1, then we have p′(α) = 9

32 +
(

2
3

)α
ln 2

3 and p′′(α) =
(

2
3

)α (
ln 2

3

)2
> 0.

Hence, p′(α) ≥ p′(1) = 9
32 +

2
3 ln

(
2
3

)
≥ 1

100 > 0, which implies that p(α) is increasing in the interval
[1,+∞). Hence, p(α) ≥ p(1) = 11

48 > 0. It immediately yields that Qx(x, α) > 2α3αxα−1 p(α) > 0.
Therefore, we have

Q(x, α) ≥ f (4, α) = 3α(4α+1 − 3α+1) − 9α + 2 · 4α(2α − 3α)

=2 · 9α
[(

12
9

)α
+

(
8
9

)α
− 2

]
>0,

as desired, and we have completed the proof.
Case 2. α ∈ [3,+∞).

Note that

Qx(x, α) =3α(α + 1) [xα − (x − 1)α] + 2αxα−1(2α − 3α)

=xα−1
{

3α(α + 1)x
[
1 −

(
1 −

1
x

)α]
+ 2α(2α − 3α)

}
.

Let g(α) = 1 − 2
x −

(
1 − 1

x

)α
be a function defined in the interval [3,+∞), then we have g′(α) =(

1 − 1
x

)α
ln

(
1 + 1

x−1

)
> 0. Hence, g(α) ≥ g(3) = 1 − 2

x −
(
1 − 1

x

)3
= x2−3x+1

x3 > 0, implying that 1 −(
1 − 1

x

)α
> 2

x . Thus, we have

Qx(x, α) =xα−1
{

3α(α + 1)x
[
1 −

(
1 −

1
x

)α]
+ 2α(2α − 3α)

}
>2αxα−1

[
3α
α + 1
α
− (3α − 2α)

] (
because

α + 1
α
> 1

)
>0.

Let l(α) =
(

12
9

)α
+

(
8
9

)α
− 2. It is routine to check that

l′(α) =
(

8
9

)α [(12
8

)α
ln

(
12
9

)
+ ln

(
8
9

)]
>

(
8
9

)α [
ln

(
12
9

)
+ ln

(
8
9

)]
=

(
8
9

)α
ln 15 > 0. Hence,

l(α) ≥ l(3) = 782
729 > 0. It then follows that

Q(x, α) ≥ f (4, α) = 3α(4α+1 − 3α+1) − 9α + 2 · 4α(2α − 3α)

=2 · 9α
[(

12
9

)α
+

(
8
9

)α
− 2

]
>0,

as desired, and we have completed the proof. □

Proposition 2.3. Let G ∈ G γn be a graph with γ ≥ 3 and n ≥ 2(γ − 1), then there is no pendent vertex
in G if it has a minimum general Randić index for α ≥ 1.
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Proof. Suppose to the contrary that there exists a pendent vertex in G. Let u be a vertex of degree
at least three and NG(u) = {u1, u2, . . . , uk}. In what follows, we use P = uu1û2 . . . ûr to denote a
pendent path in G. Assume that u2 , u1 is another neighbor of u with du2 ≥ 2. We consider the graph
Ĝ1 = G−uu2+u2ûr (depicted in Figure 2), which is an element of G γn . Let l−2 be the number of vertices

in {u3, u4, . . . , uk}, whose degree is greater than or equal to two. Clearly, l ≥ 2 and
k∑

i=3
dαui
≥ 2α(l − 2).

For simplicity, we distinguish the following two cases:
Case 1. ℓ(P) = 1.

Direct calculations show that

Rα(G) − Rα(Ĝ1) =dαu dαu2
+ dαu − 2α (du − 1)α − 2αdαu2

+
[
dαu − (du − 1)α

] k∑
i=3

dαui

≥dαu dαu2
+ dαu − 2α (du − 1)α − 2αdαu2

+ 2α (l − 2)
[
dαu − (du − 1)α

]
=

[
(dαu2
− 2α + 1)

(
dαu − 2α

)]︸                          ︷︷                          ︸
A1

+ 2α
{
(l − 1)

[
dαu − (du − 1)α

]
+ (1 − 2α)

}︸                                            ︷︷                                            ︸
A2

.

It is not difficult to find the first term of the previous equality A1 =
[
(dαu2
− 2α + 1)

(
dαu − 2α

)]
> 0 for

α ≥ 1, du ≥ 3 and du2 ≥ 2. To continue the proof, it remains to verify that A2 > 0. For simplicity,
we let H(x) = (l − 1)[xα − (x − 1)α] − (2α − 1) for α ≥ 1 and x ≥ 3. It is routine to check that
H(x) > [(xα − (x − 1)α) − (3α − 2α)] + [(3α − 2α) − (2α − 1)] since l ≥ 3. Note that f1(x) = xα − (x − 1)α

is increasing in the interval [3,△], then we have xα − (x − 1)α ≥ 3α − 2α. In addition, we know that
3α − 2α ≥ 2α − 1 always holds for α ≥ 1. Hence, H(x) > 0 and, consequently, we have A2 > 0. It then
immediately deduces that Rα(G) − Rα(Ĝ1) > 0, a contradiction. This implies that there is no pendent
vertex in G.
Case 2. ℓ(P) ≥ 2.

Direct calculations show that

Rα(G) − Rα(Ĝ1) =dαu dαu2
− (du − 1)α 2α + 2αdαu − 2α (du − 1)α

+2α (1 − 2α) − 2αdαu2
+

[
dαu − (du − 1)α

] k∑
i=3

dαui

≥dαu dαu2
− (du − 1)α 2α + 2αdαu − 2α (du − 1)α

+2α (l − 2)
[
dαu − (du − 1)α

]
+ 2α (1 − 2α) − 2αdαu2

= dαu2

(
dαu − 2α

)︸         ︷︷         ︸
A3

+ 2α (l − 1)
[
dαu − (du − 1)α

]︸                          ︷︷                          ︸
A4

+ 2α
[
dαu − (du − 1)α + 1 − 2α

]︸                              ︷︷                              ︸
A5

.

Note that A3 > 0 and A4 > 0, and it is also not difficult to find that A5 =
1

l−1A2 is positive under the
initial assumptions. Hence, Rα(G) − Rα(Ĝ1) > 0. Again a contradiction. This implies that there is no
pendent vertex in G.

As desired, we complete the proof of Proposition 2.3. □
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Figure 2. The transformation G ⇒ Ĝ1.

Proposition 2.4. Let G ∈ G γn be a graph with γ ≥ 3 and n ≥ 2(γ − 1), then the maximum vertex degree
is three in G if it has minimum general Randić index for 1 ≤ α ≤ 39

25 .

Proof. It follows from Proposition 2.3 that G contains at least one cycle as its induced subgraph, and
the n-vertex cycle is the only connected graph for the which minimum and maximum vertex degree is
two. Hence, in conjunction with the assumption γ ≥ 3, we have ∆ = ∆(G) ≥ 3. To complete the proof,
it suffices to show that ∆ = 3. If ∆ > 3, then it is routine to check that

n =
∑

2≤i≤∆

ni ≥ 2(γ − 1) = 2(m − n) = 2

 ∑
2≤i≤∆

ini

2
−

∑
2≤i≤∆

ni

 ,
which is equivalent to

n2 ≥
∑

4≤i≤∆

(i − 3)ni >
∑

4≤i≤∆

(4 − 3)ni > 0.

Hence, there at least exists a vertex of degree two. For simplicity, we suppose that u is the vertex in G
with maximum degree and NG(u) = {u1, u2, . . . , u∆}. We distinguish the following two cases.
Case 1. ∃i ∈ {1, 2, . . . ,∆} such that dui = 2.

For convenience, we suppose that u1 is the neighbor of u with degree two and du2 ≥ du3 ≥ . . . ≥ 2.
Subcase 1.1. du2 = 2 and u1 is not adjacent to u2.

Let Ĝ2 = G−uu2+u1u2 ∈ G γn . t is the neighbor of u1, different from u, depicted in Figure 3. Hence,
we have

Rα(G) − Rα(Ĝ2) =dαu 2α+1 − (du − 1)α 3α − 6α + dαt (2α − 3α) +
[
dαu − (du − 1)α

] ∆∑
i=3

dαui

=dαu 2α+1 − (du − 1)α 3α − 6α + dαt (2α − 3α) + 2α (du − 2)
[
dαu − (du − 1)α

]
=2αdα+1

u − (du − 1)α [2α(du − 2) + 3α] + dαt (2α − 3α) − 6α

≥2αdα+1
u − (du − 1)α [2α(du − 2) + 3α] + dαu (2α − 3α) − 6α.

For simplicity, we let f2(x) = 2αxα+1 − (x − 1)α [2α(x − 2) + 3α] + xα (2α − 3α) − 6α. It follows from
Lemma 2.1 that f2(x) = P(x, α) > 0 for x ≥ 4 and 1 ≤ α ≤ 39

25 . Hence, Rα(G) − Rα(Ĝ2) > 0, which
contradicts to the choice of G. Hence, the maximum vertex degree of G is three.
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Figure 3. The transformation G ⇒ Ĝ2.

Subcase 1.2. du2 = 2 and u1 is adjacent to u2.
Let Ĝ3 = G − uu3 + u1u3 ∈ G γn , depicted in Figure 4. Hence, we have

Rα(G) − Rα(Ĝ3) =3 × dαu 2α + 4α − (du − 1)α 3α − 2 × 6α − 2α(du − 1)α +
[
dαu − (du − 1)α

] ∆∑
i=4

dαui

=3 × dαu 2α + 4α − (du − 1)α 3α − 2 × 6α − 2α(du − 1)α + 2α (du − 3)
[
dαu − (du − 1)α

]
=2αdα+1

u + 4α − (du − 1)α [2α(du − 2) + 3α] − 2 × 6α.

Figure 4. The transformation G ⇒ Ĝ3.

Let f3(x) = 2αxα+1 + 4α − (x − 1)α [2α(x − 2) + 3α] − 2 × 6α, and then we have f3(x) = f2(x) + (3α −
2α)(xα−2α) > 0. Hence, Rα(G)−Rα(Ĝ3) > 0 for x ≥ 4 and 1 ≤ α ≤ 39

25 , which contradicts to the choice
of G. Hence, the maximum vertex degree of G is three.
Subcase 1.3. du2 > 2 and u1 is adjacent to u2 and du3 > 2.

Let Ĝ4 = G − uu3 + u1u3 ∈ G γn , depicted in Figure 5. Hence, we have

Rα(G) − Rα(Ĝ4) =dαu 2α + 2αdαu2
+ dαu dαu2

+ dαu dαu3
− (du − 1)α 3α − 3αdαu2

−dαu2
(du − 1)α − 3αdαu3

+
[
dαu − (du − 1)α

] ∆∑
i=4

dαui

≥dαu 2α + dαu2
(2α − 3α) + dαu3

(dαu − 3α) − (du − 1)α 3α

+dαu2
(dαu3
− 3α) − (du − 1)α 3α + 2α

(
du − 3)[dαu − (du − 1)α

]
>2αdα+1

u − (du − 1)α [2α(du − 2) + 3α] + dαu (2α − 3α) − 6α

>0,
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and the last inequality holds because f2(x) > 0 for x ≥ 4 and 1 ≤ α ≤ 39
25 . Hence, Rα(G) − Rα(Ĝ4) > 0.

Again, a contradiction. Hence, the maximum vertex degree of G is three.

Figure 5. The transformation G ⇒ Ĝ4.

Subcase 1.4. du2 > 2, u1 is adjacent to u2 and du3 = 2.
Let Ĝ5 = G − uu3 + u1u3 ∈ G γn , depicted in Figure 6. Hence, we have

Rα(G) − Rα(Ĝ5) =dαu 2α+1 + 2αdαu2
+ dαu dαu2

− 6α − (du − 1)α 3α − dαu2
3α

− (du − 1)α dαu2
+

[
dαu − (du − 1)α

] ∆∑
i=4

dαui

≥dαu 2α+1 − 6α − (du − 1)α 3α + dαu2

[
(2α − 3α + dαu − (du − 1)α)

]
+2α (du − 3)

[
dαu − (du − 1)α

]
>2αdα+1

u − (du − 1)α [2α(du − 2) + 3α] + 4α − 2 × 6α

>0,

and the last inequality holds because f3(x) > 0 for x ≥ 4 and 1 ≤ α ≤ 39
25 . Hence, Rα(G) − Rα(Ĝ5) > 0.

Again, a contradiction. Thus, we have completed that the maximum vertex degree of G is three.

Figure 6. The transformation G ⇒ Ĝ5.

Subcase 1.5. du2 > 2, u1 is not adjacent to u2.
Let Ĝ6 = G − uu2 + u1u2 ∈ G γn , depicted in Figure 7. Hence, we have

Rα(G) − Rα(Ĝ6) =dαu 2α + 2αdαt + dαu dαu2
− (du − 1)α 3α − 3αdαt − 3αdαu2

+
[
dαu − (du − 1)α

] ∆∑
i=3

dαui

≥dαu 2α + dαu (2α − 3α) + 2α
(
dαu − 3α

)
− (du − 1)α 3α + 2α (du − 2)

[
dαu − (du − 1)α

]
=2αdα+1

u − (du − 1)α [2α(du − 2) + 3α] + dαu (2α − 3α) − 6α > 0,
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and the last inequality holds because f2(x) > 0 for x ≥ 4 and 1 ≤ α ≤ 39
25 . Hence, Rα(G) − Rα(Ĝ6) > 0,

a contradiction to the choice of G. Hence, the maximum vertex degree of G is three.

Figure 7. The transformation G ⇒ Ĝ6.

Case 2. ∀i ∈ {1, 2, . . . ,∆} such that dui > 2.
Note that there is a vertex u0 ∈ V(G) \ NG(u) of degree two, which is not adjacent to at least one

neighbor, say u1, of u. Let Ĝ7 = G − uu1 + u0u1 ∈ G γn (depicted in Figure 8). Hence,

Rα(G) − Rα(Ĝ7) =dαu1

(
dαu − 3α

)
+ (2α − 3α)

∑
z∈NG(u0)

dαz +
[
dαu − (du − 1)α

] ∆∑
i=2

dαui

≥3α
(
dαu − 3α

)
+ 2 × dαu (2α − 3α) + 3α (du − 1)

[
dαu − (du − 1)α

]
=3α

[
dα+1

u − (du − 1)α+1
]
− 9α + 2 × dαu (2α − 3α).

Figure 8. The transformation G ⇒ Ĝ7.

For simplicity, we let f4(x) = 3α[xα+1 − (x − 1)α+1] − 9α + 2xα(2α − 3α) = Q(x, α), which is positive
for x ≥ 4 and α ≥ 1 by Lemma 2.2. Hence, we have Rα(G) − Rα(Ĝ7) > 0. Thus, there would be a
contradiction to the choice of G, and the maximum vertex degree of G is three.

This completes the proof of Proposition 2.4. □

Let φi j be the number of edges in G joining the vertices of degree i and j, and we use ni and n j to
denote the number of vertices of degree i and j, respectively.

Proposition 2.5. ( [2]) Let G ∈ G γn , γ ≥ 3, be a graph such that it contains only vertices of degrees
two and three, then the following holds:

(i) at least two vertices of degree two are adjacent if n > 5(γ − 1).
(ii) φ22 = 0 implies φ33 = 0 (or φ33 = 0 implies φ22 = 0) if n = 5(γ − 1).
(iii) at least two vertices of degree three are adjacent if 2(γ − 1) ≤ n ≤ 5(γ − 1).
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Proposition 2.6. Let G ∈ G γn be a graph with γ ≥ 3 and n > 5(γ − 1), then at least one of the vertices
x and y for any edge e = xy has the degree two in G if it has a minimum general Randić index for
1 ≤ α ≤ 39

25 .

Proof. By Proposition 2.3 and Proposition 2.4, we know 2 ≤ du ≤ 3 holds for any vertex u in G.
Simultaneously, it follows from Proposition 2.5 that there at least exist two vertices, say u1 and u2,
such that φ22 > 0. Suppose to the contrary that there exists two adjacent vertices v1 and v2 of degree
three (i.e., φ33 > 0). Let u0 , u1 be the vertex adjacent with u2, which may coincide with v1 or v2. For
convenience, we distinguish the following two cases.
Case 1. NG(u1) ∩ NG(u2) = ∅.

Let Ĝ8 = G − {u1u2, u2u0, v1v2} + {u1u0, v1u2, v2u2} (depicted in Figure 9), which is an element in
G γn . By direct calculations, we have Rα(G) − Rα(Ĝ8) = 4α + 9α − 2 × 6α > 0. This contradicts to the
assumption of G. Hence, φ33 = 0. As desired, we have completed the proof.

Figure 9. The transformation G ⇒ Ĝ8.

Case 2. NG(u1) ∩ NG(u2) , ∅.
Without loss of generality, we let u0 ∈ NG(u1) ∩ NG(u2) , ∅. In what follows, we consider the

following three subcases.
If u0 , {v1, v2} and u0 is not adjacent to v1 and v2, we let Ĝ9 = G−{u2u0, v1v2}+{u2v2, v1u0} (depicted

in Figure 10), which is an element in G γn . By direct calculations, we have Rα(G) − Rα(Ĝ9) = 0. Note
that NĜ9

(u1) ∩ NĜ9
(u2) = ∅, by the analogous method as in Case 1, and there exists a new graph G̃1

such that Rα(G)−Rα(G̃1) = Rα(Ĝ9)−Rα(G̃1) > 0. This contradicts to the assumption of G. As desired,
we have completed the proof.

Figure 10. The transformation G ⇒ Ĝ9.

If u0 , {v1, v2} and u0 is adjacent to v1, we let Ĝ10 = G − {u1u2, v1v2} + {u1v1, u2v2}, which is an
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element in G γn . By direct calculations, we have Rα(G)−Rα(Ĝ10) = 4α+9α−2 ·6α > 0. This contradicts
to the assumption of G. As desired, we have completed the proof.

If u0 = v2, then we consider a neighbor ṽ of v1 different from v2. Let Ĝ11 = G − {u2v2, ṽv1} +

{v1u2, ṽv2} ∈ G γn , and again we obtain that Rα(G) − Rα(Ĝ11) = 0. Note that NĜ11
(u1) ∩ NĜ11

(u2) = ∅,
by the analogous method as in Case 1, and there exists a new graph G̃2 such that Rα(G) − Rα(G̃2) =
Rα(Ĝ11) − Rα(G̃2) > 0. This contradicts to the assumption of G. We have completed the proof. □

Proposition 2.7. Let G ∈ G γn be a graph with γ ≥ 3 and n = 5(γ − 1), then one of the vertices x and y
for any edge e = xy has the degree two and the other has the degree three in G if it has the minimum
general Randić index for 1 ≤ α ≤ 39

25 .

Proof. It follows from Propositions 2.3 and 2.4 that 2 ≤ du ≤ 3 holds for any vertex u in G. If φ22 = 0
and φ33 , 0, then one can find that φ23 = 0 by Proposition 2.5, a contradiction. If φ22 , 0 and
φ33 , 0, then from the proof of Proposition 2.6 we conclude that there exists a graph Ĝ12 ∈ G γn such
that Rα(G) − Rα(Ĝ12) > 0. This contradicts to the initial assumption of G. Hence, φ22 = φ33 = 0. As
desired, we complete the proof of Proposition 2.7. □

In a similar way, we obtain the following fact.

Proposition 2.8. Let G ∈ G γn be a graph with γ ≥ 3 and 2(γ − 1) < n < 5(γ − 1), then G does not
contain any edge connecting the vertices of degree two if it has a minimum general Randić index for
1 ≤ α ≤ 39

25 .

Denote by Gi j[φi j , 0] that the graphs contain only vertices of degree i and j, such that for every
edge in a one end-vertex has the degree i and the other end-vertex has the degree j, and we use
Gi j[φii = 0] (resp. Gi j[φ j j = 0]) to denote the graphs containing only vertices of degree i and j, such
that no vertices of degree i (resp. j) are adjacent.

Theorem 2.9. Let G ∈ G γn be a graph with γ ≥ 3 and n vertices, then the following holds for 1 ≤ α ≤
39
25 :

(i) Rα(G) ≥ 9α(n + γ − 1) for n = 2(γ − 1), with equality if, and only if, G is isomophic to cubic
graphs.

(ii) Rα(G) ≥ 6α(2n − 4γ + 4) − 9α(n − 5γ + 5) for 2(γ − 1) < n < 5(γ − 1), with equality if, and only
if, G is isomophic to G23[φ22 = 0].

(iii) Rα(G) ≥ 6α(n + γ − 1) for n = 5(γ − 1), with equality if, and only if, G is isomophic to
G23[φ23 , 0].

(iv) Rα(G) ≥ 4α(n−5γ+5)+6α(6γ−6) for n > 5(γ−1), with equality if, and only if, G is isomophic
to G23[φ33 = 0].

Proof. Let Ĝ13 ∈ G γn be a graph that achieves the minimum general Randić index. We only give
the proof of (ii); the rest could be proved in a similar way. It follows from Propositions 2.3 and 2.4
that 2 ≤ du ≤ 3 holds for any vertex u in Ĝ13. Hence, we have n2 + n3 = n and 2n2 + 3n3 = 2(n+ γ − 1)
by the Handshaking Theorem. Besides, by Proposition 2.8, it is easily seen that φ22 = 0. Hence,
φ23 = 2n2 and φ23 + 2φ33 = 3n3. Direct calculations show that φ23 = 2n − 4γ + 4 and φ33 = 5γ − n − 5.
Thus, Rα(G) ≥ Rα(Ĝ13) = 6α(2n − 4γ + 4) − 9α(n − 5γ + 5). The corresponding extremal graph is
G23[φ22 = 0]. □
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The second Zagreb index is another well-known vertex degree-based graph invariant in chemical
graph theory, which was introduced in 1972 by Gutman and Trinajstić [8]. We encourage the interested
reader to consult [9,12] for more information for this graph invariant. Undoubtedly, the second Zagreb
index is the special case of the general Randić index when α = 1. It is easily seen that Theorem 2.9
extends one of the main results proved by Ali et al. [2].

3. Graphs in G γn with maximum general Randić index

We begin with the following auxiliary result, which plays an important part in our proofs.

Proposition 3.1. Let G ∈ G γn be a graph with a maximum general Randić index for α ≥ 1, then
∆(G) = n − 1.

Proof. Suppose to the contrary that there exists a vertex u in G with ∆(G) = du < n− 1. Note that there
exists v ∈ V(G) such that u , v, du ≥ dv and NG(v)\NG(u) = {v1, v2, . . . , vp} , ∅. We can construct a
new graph Ĝ14 the following way

Ĝ14 = G − {vv1, vv2, . . . , vvp} + {uv1, uv2, . . . , uvp} ∈ G γn .

It is routine to check that

Rα(Ĝ14) − Rα(G) =
∑

x∈NG(u)\NG(v)

[
(du + p)α − dαu

]
dαx +

p∑
i=1

[
(du + p)α − dαv

]
dαvi

+
∑

y∈NG(u)∩NG(v)

[
(du + p)α + (dv − p)α − dαu − dαv

]
dαy .

Note that H(t) = tα is an increasing function for α ≥ 1, and the first and second terms of the previous
equality are nonnegative. By the Lagrange mean value theorem, we have (du + p)α − dαu = αpξα−1

(resp. dαv − (dv − p)α = αpηα−1) for ξ ∈ (du, du + p) (resp. η ∈ (dv − p, dv)). Hence, A6 = (du + p)α +
(dv − p)α − dαu − dαv > 0, and, consequently, we have Rα(Ĝ14) > Rα(G), a contradiction. This completes
the proof. □

Proposition 3.2. ( [14]) Let x1, x2, . . . , xn, p, t ≥ 1 be integers, α be any real number such that α < {0, 1}
and x1 + x2 + . . . + xn = p.

(1) The function f (x1, x2, . . . , xn) =
∑n

i=1 xαi is the minimum for α < 0 or α > 1 (maximum for
0 < α < 1, respectively) if, and only if, x1, x2, . . . , xn are almost equal, or |xi − x j| ≤ 1 for every
i, j = 1, 2, . . . , n.

(2) If x1 ≥ x2 ≥ t, the maximum of the function f (x1, x2, . . . , xn) is reached for α < 0 or α > 1
(minimum for 0 < α < 1, respectively) only for x1 = p − t − n + 2, x2 = t, x3 = x4 = . . . = xn = 1.
The second maximum (the second minimum, respectively) is attained only for x1 = p − t − n + 1, x2 =

t + 1, x3 = x4 = . . . = xn = 1.

Theorem 3.3. Let G ∈ G γn be a graph with γ =
(

k−1
2

)
and k ≥ 4, then for α ≥ 1 we have

Rα(G) ≤
(
k − 1

2

)
(k2 − 2k + 3)2α + (n − 1)α(k2 − 2k + 3)α + (n − 2)(n − 1)α,

with equality if, and only if, G � (Kγ1 ∪ (n − 2)K1) + K1 � Kγn , depicted in Figure 11.
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Figure 11. The graph G � (Kγ1 ∪ (n − 2)K1) + K1 � Kγn with degree sequence (n − 1, 2γ +
1, 1, 1, . . . , 1).

Proof. It follows from Proposition 3.1 that there at least exists one vertex with a maximum degree n−1.
Hence, we have G = Ĝ15 + K1, which contains |V(Ĝ15)| = n − 1 vertices and m(Ĝ15) =

(
k−1

2

)
edges. For

simplicity, let π = (d1, d2, . . . , dn) and π̂ = (d̂1, d̂2, . . . , d̂n−1) be the nonincreasing degree sequence of G
and Ĝ15, respectively. Hence, di = d̂i−1 + 1 for i = 2, 3, . . . , n and d1 = n − 1. Thus, we have

Rα(G) =
∑

v1v j∈E(G)

[
d1d j

]α
+

∑
viv j∈E(G),2≤i< j≤n

[
did j

]α
=(n − 1)α

n∑
i=2

dαi +
∑

viv j∈E(Ĝ15)

[(
d̂i + 1

) (
d̂ j + 1

)]α
.

By Proposition 3.2 for α ≥ 1, we have

A7 =

n∑
i=1

dαi − dα1

≤1 · (n − 1)α + 1 · tα + (n − 2) · 1α − 1 · (n − 1)α

=(n − 1)α + (k2 − 3k + 3)α + (n − 2) − (n − 1)α

=(k2 − 3k + 3)α + (n − 2),

where d1 = n − 1 = 2m − t − n + 2, d2 = t = 2γ + 1 and d3 = d4 = . . . = dn = 1. In addition, we find the
maximum value of

A8 =
∑

viv j∈E(Ĝ15)

[(
d̂i + 1

) (
d̂ j + 1

)]α
≤

(
k − 1

2

) [(
k2 − 3k + 3

) (
k2 − 3k + 3

)]α
,

with equality if, and only if, Ĝ15 � Kγ1 ∪ (n − 2)K1.
It follows from the previous that

Rα(G) =(n − 1)αA7 +A8

≤

(
k − 1

2

)
(k2 − 2k + 3)2α + (n − 1)α(k2 − 2k + 3)α + (n − 2)(n − 1)α,

Hence, G = (Kγ1 ∪ (n − 2)K1) + K1 � Kγn . This completes the proof of Theorem 3.3. □
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Commun. Math. Comput. Chem., 56 (2006), 557–570.

11. X. Li, L. Wang, Y. Zhang, Complete solution for unicyclic graphs with minimum general Randić
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