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1. Introduction

In this paper, we primarily focus on investigating different properties of generalized (p, q)-elliptic
integrals and the generalized (p, q)-Hersch-Pfluger distortion function. In recent years,
mathematicians have made significant progress in studying inequalities and various properties related
to complete elliptic integrals, especially Legendre elliptic integrals and generalized complete elliptic
integrals of the first and second types [3, 4, 5, 10, 11, 23, 26].

We first introduce some necessary notation. For complex numbers a, b, c with c , 0,−1,−2, . . .,
and x ∈ (−1, 1), the Gaussian hypergeometric function [9] is defined as follows:

F(a, b; c; x) =2 F1(a, b; c; x) =

∞∑
n=0

(a, n)(b, n)
(c, n)

xn

n!
, (1.1)

where (a, n) ≡ a(a+1) · · · (a+n−1) is the shifted factorial function for n ∈ N+, and (a, 0) = 1 for a , 0.
As we all know, 2F1(a, b; c; x) has many important applications in the theory of geometric functions
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and several other contexts [19]. Many special functions in mathematical physics are special or limit
cases of this function [1]. Bhayo studied a new form of the generalized (p, q)-complete elliptic integrals
as an application of generalized (p, q)-trigonometric functions [6]. In recent years, the generalization
of classical trigonometric functions has attracted significant interest [20, 8]. For this, we need the
generalized arcsine function arcsinp,q(x) and the generalized πp,q. For p, q ∈ (1,∞), set

arcsinp,q(x) ≡
∫ x

0

dt
(1 − tq)1/p , x ∈ [0, 1],

and the generalized πp,q is the number defined by

πp,q = 2 arcsinp,q(1) ≡ 2
∫ 1

0

dt
(1 − tq)1/p =

2
q

B
(
1 −

1
p
,

1
q

)
,

where B is the beta function. For Rex > 0 and Rey > 0, the classical gamma function Γ(x) and beta
function B(x, y) are respectively defined as

Γ(x) =

∫ ∞

0
e−ttx−1dt, B(x, y) =

Γ(x)Γ(y)
Γ(x + y)

.

Clearly, arcsinp,q(x) is an increasing homeomorphism from [0, 1] onto [0, πp,q/2], and its inverse
function is the generalized (p, q)-sine function sinp,q is defined on the interval [0, πp,q/2]. Moreover,
the function sinp,q can be extended to the interval [0, πp,q] by

sinp,q(x) = sinp,q(πp,q − x), x ∈ [πp,q/2, π].

sinp,q can be also extended to the whole R, and the generalized (p, q)-sine function reduces to the
classical sine function for p = q = 2.

Applying the definitions of sinp,q(x) and πp,q, we can define the generalized (p, q)-elliptic integrals
of the first kind Kp,q and of the second kind Ep,q by

Kp,q(r) =

∫ πp,q/2

0

dt(
1 − rq sinq

p,q(t)
)1−1/p =

∫ 1

0

dt
(1 − tq)1/p(1 − rqtq)1−1/p

and

Ep,q(r) =

∫ πp,q/2

0

(
1 − rq sinq

p,q(t)
)1/p

dt =

∫ 1

0

(
1 − rqtq

1 − tq

)1/p

dt

respectively, for p, q ∈ (1,∞), r ∈ (0, 1).
As a special case of the Gaussian hypergeometric function, these generalized (p, q)-elliptic integrals

can be represented by Gaussian hypergeometric functions [15] as
Kp,q = Kp,q(r) =

πp,q

2 2F1

(
1 −

1
p
,

1
q

; 1 −
1
p

+
1
q

; rq

)
K ′

p,q = K ′
p,q(r) = Kp,q(r′)

Kp,q(0) =
πp,q

2
, Kp,q(1) = ∞

(1.2)
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and 
Ep,q = Ep,q(r) =

πp,q

2 2F1

(
−

1
p
,

1
q

; 1 −
1
p

+
1
q

; rq

)
E ′p,q = E ′p,q(r) = Ep,q(r′)

Ep,q(0) =
πp,q

2
, Ep,q(1) = 1,

(1.3)

where p, q ∈ (1,∞), r ∈ (0, 1), r′ = (1 − rq)1/q. If p = q = 2, we can derive the classical complete
elliptic integrals K and E , which are well-known complete elliptic integrals of the first kind and
second kind, respectively. These complete elliptic integrals play an important role in many branches
of quasiconformal mapping, complex analysis, and physics.

In 2017, Yang et al. [24] showed that the ratio K (r)/ ln(c/r′) is strictly concave if and only if
c = e4/3 on (0, 1), and K (r)/ ln(1 + 4/r′) is strictly convex on (0, 1).

In 2019, Wang et al. [22] presented the convexity of the function (E ′a − r2K ′
a )/r′2 and some

properties of the function αKa(rα) with respect to the parameter α.
In 2020, Huang et al. [13] established monotonicity properties for certain functions involving the

complete p-elliptic integrals of the first and second kinds. They also presented the inequality π/2 −
log 2 + log(1 + 1/r′) + α(1 − r′) < Kp(r) < π/2 − log 2 + log(1 + 1/r′) + β(1 − r′) which holds for all
r ∈ (0, 1) with the best possible constants α and β. Moreover, these generalized elliptic integrals have
significant applications in the theory of geometric functions and in the theory of mean values. More
properties and applications of these integrals are given in [7, 13, 17, 21, 22, 24, 25].

The generalized (p, q)-elliptic integrals of the first kind Kp,q and of the second kind Ep,q satisfy the
following Legendre relation:

Kp,q(r)E ′p,q(r) + K ′
p,q(r)Ep,q(r) −Kp,q(r)K ′

p,q(r) =
πp,q

2
. (1.4)

This relation has important applications in many areas of mathematics and physics, including
celestial mechanics, quantum mechanics, and statistical mechanics. when p = q = 2, the equation
reduces to the classical Legendre relation.

Inspired by the papers [22], [24] and [13], we can consider extending the results of K (r), Ka(r)
and Kp(r) to the generalized (p, q)-elliptic integrals of the first kind Kp,q.

A generalized (p, q)-modular equation of degree h > 0 is

2F1(a, b; c; 1 − sq)

2F1(a, b; c; sq)
= h 2F1(a, b; c; 1 − rq)

2F1(a, b; c; rq)
, r ∈ (0, 1), (1.5)

which a, b, c > 0 with a + b ≥ c. Using the decreasing homeomorphism µp,q : (0, 1) → (0,∞) defined
by

µp,q(r) =
πp,q

2

K ′
p,q(r)

Kp,q(r)
,

for p, q ∈ (1,∞). The function µp,q is called the generalized (p, q)-Grötzsch ring function, we can
rewrite (1.5) as

µp,q(s) = hµp,q(r), r ∈ (0, 1). (1.6)
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The solution of (1.6) is given by

s = ϕ
p,q
K (r) = µ−1

p,q(µp,q(r)/K). (1.7)

For p, q ∈ (1,∞), r ∈ (0, 1), K ∈ (0,∞), we have

ϕ
p,q
K (r)q + ϕ

p,q
1/K(r′)q = 1. (1.8)

The function ϕp,q
K (r) is referred to as the generalized (p, q)-Hersch-Pfluger distortion function with

degree K = 1/h. For p = q = 2, the functions µp,q(r) and ϕp,q
K (r) reduces to well-known special cases

that Grötzsch ring function µ(r) and Hersch-Pfluger distortion function ϕK(r), respectively, which play
important role in the theory of plane quasiconformal mappings.

In 2015, Alzer et al. [2] studied the monotonicity, convexity, and concavity properties of the
function µ(rα)/α, and established various Grötzsch ring functional inequalities based on these
properties.

In [3], the authors focused on studying the properties of the generalized Grötzsch ring function
µa(r) and the generalized Hersch-Pfluger distortion function ϕa

K(r). They derived various inequalities
involving µa(r) and r−1/Kϕa

K(r) by utilizing the monotonicity, concavity, and convexity of the functions
µa(r), r−1/Kϕa

K(r), log
(
1/ϕa

K(e−x)
)
, and ϕa

K(rx)/ϕa
K(x).

In 2022, Lin et al. [16] explored the monotonicity and convexity properties of the function µp,q(r)
and obtained sharp functional inequalities that sharpen and extend some existing results on the modulus
of µ(r).

Inspired by the papers [3], [12], and [16], our motivation is to extend the existing results of the
functions ϕK(r) and ϕa

K(r) to the generalized (p, q)-Hersch-Pfluger distortion function. Our goal is
to gain the properties of the generalized (p, q)-Hersch-Pfluger distortion function and derive sharp
functional inequalities for this function.

Our main objective of this paper is to investigate various properties of the generalized
(p, q)-elliptic integrals and the generalized (p, q)-Hersch-Pfluger distortion function. We specifically
focus on establishing complete monotonicity, logarithmic, geometric concavity, and convexity
properties of certain functions involving these generalized integrals and arcsine functions.
Additionally, they derive several sharp functional inequalities for the generalized
(p, q)-Hersch-Pfluger distortion function, which improve upon and generalize existing results. Apart
from the introduction, this paper consists of three additional sections. Section 2 contains some
preliminaries as well as several formulas and lemmas. In Section 3, we present some of the major
results regarding the generalized (p, q)-elliptic integrals and provide their proof. In Section 4, we
study the generalized (p, q)-Hersch-Pfluger distortion function, and present some of the major results
and provide their proof.

2. Preliminaries

In this section, we present several formulas and lemmas that have been extensively utilized in the
paper. These formulas and lemmas play a crucial role in the analysis and proofs of the major results.
Throughout this paper, we denote p, q ∈ (1,∞), r ∈ (0, 1) and r′ = (1 − rq)1/q.
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Lemma 2.1. [16] Derivative formulas:

(1)
dKp,q

dr
=

Ep,q − r′qKp,q

rr′q
,

(2)
dEp,q

dr
=

q(Ep,q −Kp,q)
pr

,

(3)
dµp,q(r)

dr
= −

π2
p,q

4rr′qK 2
p,q
,

(4)
d
(
Ep,q − r′qKp,q

)
dr

=
(p − q)

(
Kp,q − Ep,q

)
+ p(q − 1)rqKp,q

pr
,

(5)
d
(
Kp,q − Ep,q

)
dr

=
(p − qr′q)Ep,q + (q − p)r′qKp,q

prr′q
.

Based on the derivative formula Lemma 2.1, we derive the derivative formulas of the function ϕp,q
K (r)

in the following lemma.

Lemma 2.2. Let p, q ∈ (1,∞), then

∂ϕ
p,q
K (r)
∂r

=
ss′qKp,q(s)K ′

p,q(s)

rr′qKp,q(r)K ′
p,q(r)

=
1
K

ss′qKp,q(s)2

rr′qKp,q(r)2 = K
ss′qK ′

p,q(s)2

rr′qK ′
p,q(r)2

for r ∈ (0, 1).

Proof. By the definitions of s = ϕ
p,q
K (r), µp,q(s) = µp,q(r)/K, and the derivative formulas of Kp,q(r), we

can derive the following equation

−
π2

p,q

4ss′qKp,q(s)2 ·
∂s
∂r

= −
1
K

π2
p,q

4rr′qKp,q(r)2 ,

then the derivative formulas of ϕp,q
K (r) is following. �

Lemma 2.3. [4] For p ∈ [0,∞), let I = [0, p), and suppose that f , g : I → [0,∞) are functions such
that f (x)/g(x) is decreasing on I \ {0} and g(0) = 0, g(x) > 0 for x > 0. Then

f (x + y)(g(x) + g(y)) ≤ g(x + y)( f (x) + f (y)),

for x, y, x + y ∈ I. Moreover, if the monotoneity of f (x)/g(x) is strict, then the above inequality is also
strict on I \ {0}.

The following result is a monotone form of L’Hôpital’s Rule [4] and will be useful in deriving
monotoneity properties and obtaining inequalities.

Lemma 2.4. [4] For −∞ < a < b < ∞, let f , g : [a, b] → R be continuous on [a, b], and be
differentiable on (a, b). Let g′(x) , 0 on (a, b). If f ′(x)/g′(x) is increasing (decreasing) on (a, b), then
so are

[ f (x) − f (a)]/[g(x) − g(a)] and [ f (x) − f (b)]/[g(x) − g(b)].
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If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

The following lemma presents some known results of generalized (p, q)-elliptic integrals, which
can be utilized to prove the main results of this paper.

Lemma 2.5. [14] For p, q ∈ (1,∞), r ∈ (0, 1), a = 1 − 1/p, b = a + 1/q, then the functions

(1) h1(r) =
Ep,q(r) − r′qKp,q(r)

rq is strictly increasing and convex from (0, 1) onto (aπp,q/(2b), 1).

(2) h2(r) =
Ep,q(r) − r′qKp,q(r)

rqKp,q(r)
is strictly decreasing from (0, 1) onto (0, a/b).

(3) h3(r) = r′cKp,q(r) is decreasing(increasing) on (0, 1) iff c ≥ a/b (c ≤ 0 respectively) with
h3((0, 1)) = (0, πp,q/2) if c ≥ a/b.

(4) h4(r) =
Kp,q(r) − Ep,q(r)

rqKp,q(r)
is increasing from (0, 1) onto (1/(qb), 1).

(5) h5(r) = r′qKp,q(r)/Ep,q(r) is strictly decreasing from (0, 1) onto itself.

Lemma 2.6. For r ∈ (0, 1), K, p, q ∈ (1,∞), let s = ϕ
p,q
K (r), t = ϕ

p,q
1/K(r).

(1) The function f (r) = Kp,q(s)/Kp,q(r) is increasing from (0, 1) onto (1,K).

(2) For q > 3p−4
p−1 , the function g(r) =

s′q/2Kp,q(s)2

r′q/2Kp,q(r)2 is decreasing from (0, 1) onto (0, 1).

Proof. (1) According to the Lemma 2.1, we have

K 2
p,q(r) f ′(r) =

Kp,q(s)
rr′qK ′

p,q(r)

{
K ′

p,q(s)
[
Ep,q(s) − s′qKp,q(s)

]
−K ′

p,q(r)
[
Ep,q(r) − r′qKp,q(r)

]}
.

Denote

f1(r) = K ′
p,q(r)

[
Ep,q(r) − r′qKp,q(r)

]
= rqK ′

p,q(r)
[
Ep,q(r) − r′qKp,q(r)

rq

]
.

By applying Lemma 2.5(1)(3) and considering s > r, we can conclude that f1(r) is increasing.
Hence, we can determine that f ′(r) is positive. Therefore, we can deduce that f (r) is an increasing
function. For the limiting values, we have lim

r→0+
f (r) = 1 and lim

r→1−
f (r) = K.

(2) Let

g1(r) = K ′
p,q(r)

[
qrqKp,q(r) − 4

(
Ep,q(r) − r′qKp,q(r)

)]
= rqK ′

p,q(r)Kp,q(r)
[
q − 4

Ep,q(r) − r′qKp,q(r)
rqKp,q(r)

]
.

By differentiation, we have

[r′q/2Kp,q(r)2]2g′(r) = −
s′q/2Kp,q(s)2Kp,q(r)

2rr′q/2K ′
p,q(r)

(g1(s) − g1(r)) .

If q > 3p−4
p−1 , g1(r) is increasing by Lemma 2.5(2) and (3), thus g′(r) is negative for s > r. Hence g(r)

is decreasing, the limiting values follow from the definitions (1.2) and (1.7)

lim
r→0+

g(r) = 1, lim
r→1−

g(r) = 0.

�
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Lemma 2.7. For r ∈ (0, 1) and p, q ∈ (1,∞), the inequality

rqKp,q(r)2

N(r)
>

1
q

holds.

Proof. Let M(r) = rqKp,q(r)2/N(r), M1(r) = N(r)/(rqKp,q(r)), we have

M1(r) =
1

rqKp,q(r)

{
q
p
Kp,q(r)

(
Ep,q(r) − r′qKp,q(r)

)
+ Ep,q(r)

(
Kp,q(r) − Ep,q(r)

)
−

(
q
p
− q + 1

)
rqKp,q(r)Ep,q(r)

}
=

q
p

Ep,q(r) − r′qKp,q(r)
rq + Ep,q(r)

Kp,q(r) − Ep,q(r)
rqKp,q(r)

−

(
q
p
− q + 1

)
Ep,q(r).

According to Lemma 2.5, we have

M1(r) <
q
p

+ q
(
1 −

1
p

)
Ep,q(r) <

qπp,q

2
≤ qKp,q(r),

and

M(r) = Kp,q(r)/M1(r) > 1/q.

�

Lemma 2.8. For r ∈ (0, 1), p, q ∈ (1,∞), the function

h(r) =
1

log(1/r)
−

Ep,q(r) − r′qKp,q(r)
r′qKp,q(r)

is strictly increasing from (0, 1) onto (0,∞).

Proof. By differentiation, we have

h′(r) =
1

r
(
log(1/r)

)2 −
N(r)

r
(
r′qKp,q(r)

)2

=
N(r)

rq+1 (
log(1/r)

)2 Kp,q(r)2

rqKp,q(r)2

N(r)
−

(
rq/2

r′q
log

(
1
r

))2 ,
where N(r) =

q
p
Kp,q(r)

(
Ep,q(r) − r′qKp,q(r)

)
+Ep,q(r)

(
Kp,q(r) − Ep,q(r)

)
−

(
q
p
− q + 1

)
rqKp,q(r)Ep,q(r).

Let h2(r) = rq/2 log(1/r), h3(r) = r′q, then h1(r) = h2(r)/h3(r), and h2(1−) = h3(1−) = 0.

h′2(r)
h′3(r)

= −
1

qrq/2

[q
2

log(1/r) − 1
]
.
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By Lemma 2.4, the function h1(r) is strictly increasing from (0, 1) onto (0, 1/q). According to
Lemma 2.7, we conclude that rqKp,q(r)2/N(r) > 1/q. Therefore, it is easy to check that h(r) is
increasing. For the limiting values, lim

r→0+
h(r) = 0. Since

lim
r→1−

r′qKp,q(r) = 0, lim
r→1−

r′q

log(1/r)
= q, lim

r→1−
Kp,q(r) = ∞,

we have

lim
r→1−

h(r) = lim
r→1−

1
r′qKp,q(r)

{
r′qKp,q(r)
log(1/r)

−
(
Ep,q(r) − r′qKp,q(r)

)}
= ∞.

�

3. Generalized (p, q)-elliptic integrals

In this section, we present some of the main results regarding the generalized (p, q)-elliptic integrals.

Theorem 3.1. For p, q ∈ (1,∞), the function Fp,q(r) = (E ′p,q(r) − rqK ′
p,q(r))/r′q is concave on (0, r∗0)

and convex on (r∗0, 1) for some point r∗0 ∈ (0, 1).

Proof. Let F(r) = (Ep,q(r) − r′qKp,q(r))/rq , by the definitions (1.2) and (1.3), which can be expressed
as

F(r) =
Ep,q(r) − r′qKp,q(r)

rq =
πp,q

2rq

[
F

(
−

1
p
,

1
q

; 1 −
1
p

+
1
q

; rq

)
− r′qF

(
1 −

1
p
,

1
q

; 1 −
1
p

+
1
q

; rq

)]
=
πp,q

2rq

 ∞∑
n=0


(
− 1

p , n
) (

1
q , n

)
(
1 − 1

p + 1
q , n

)
n!
−

(
1 − 1

p , n
) (

1
q , n

)
(
1 − 1

p + 1
q , n

)
n!

 rqn +

∞∑
n=0

(
1 − 1

p , n
) (

1
q , n

)
(
1 − 1

p + 1
q , n

)
n!

rq(n+1)


=
πp,q

2

∞∑
n=0

(
1 − 1

p , n
) (

1
q , n

)
(
1 − 1

p + 1
q , n + 1

)
(n + 1)!

(
1 −

1
p

)
(n + 1)rqn =

aπp,q

2(a + b)2F1(a, b; a + b + 1; rq),

with a = 1 − 1/p, b = 1/q. This implies that

Fp,q(r) =
E ′p,q(r) − rqK ′

p,q(r)

r′q
=

aπp,q

2(a + b) 2F1(a, b; a + b + 1; r′q).

By differentiation, we have

F′p,q(r) = −
a2bqπp,q

2(a + b)(a + b + 1)
rq−1

2F1(a + 1, b + 1; a + b + 2; r′q).

Hence,

−
2(a + b)(a + b + 1)

a2bqπp,q
F′′p,q(r)

= (q − 1)rq−2
2F1(a + 1, b + 1; a + b + 2; r′q) −

q(a + 1)(b + 1)
a + b + 2

r2q−2
2F1(a + 2, b + 2; a + b + 3; r′q).
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According to [4, Theorem 1.19(10)],

2F1(a, b; c; x) = (1 − x)c−a−b
2F1(c − a, c − b; c; x) (a + b > c, a, b, c > 0),

we have

−
2(a + b)(a + b + 1)

a2bqπp,q
F′′p,q(r)

= (q − 1)rq−2
2F1(a + 1, b + 1; a + b + 2; r′q) −

q(a + 1)(b + 1)
a + b + 2

rq−2
2F1(a + 1, b + 1; a + b + 3; r′q)

= (q − 1)rq−2
2F1(a + 1, b + 1; a + b + 3; r′q)

[
2F1(a + 1, b + 1; a + b + 2; r′q)

2F1(a + 1, b + 1; a + b + 3; r′q)
−

q
q − 1

(a + 1)(b + 1)
a + b + 2

]
.

(3.1)

Let

F1(x) =
2F1(a + 1, b + 1; a + b + 2; x)

2F1(a + 1, b + 1; a + b + 3; x)
=

∑∞
n=0 anxn∑∞
n=0 bnxn ,

it is easy to obtain that F1(x) is strictly increasing from (0, 1) onto (1,∞), since

an

bn
=

a + b + 2 + n
a + b + 2

> 1.

Similarly, we can deduce that

r 7→ 2F1(a + 1, b + 1; a + b + 2; r′q)

2F1(a + 1, b + 1; a + b + 3; r′q)
−

q
q − 1

(a + 1)(b + 1)
a + b + 2

is strictly decreasing from (0, 1) onto
(

1−b(2a+b+2)
(1−b)(a+b+2) ,∞

)
. Therefore, the sign of F′′p,q(r) changes from

negative to positive on (0, 1) by (3.1), we know that there exists r∗0 ∈ (0, 1) such that Fp,q(r) is concave
on (0, r∗0) and convex on (r∗0, 1). �

Theorem 3.2. For p, q ∈ (1,∞), r ∈ (0, 1), α > 0, Let Hp,q(α) = αKp,q(rα) , Gp,q(α) = Kp,q(rα)/α.
Then

(1) The function α 7→ Hp,q(α) is strictly increasing and log-concave on (0,∞);
(2) The function α 7→ 1/Hp,q(α) is strictly convex on (0,∞);
(3) The function α 7→ Gp,q(α) is strictly decreasing and log-convex on (0,∞).

Proof. (1) Let t = rα, then dt/dα = t log r < 0, and

dHp,q(α)
dα

= Kp,q(t) + α
Ep,q(t) − t′qKp,q(t)

t′q
log r

= Kp,q(t) −
Ep,q(t) − t′qKp,q(t)

t′q
log

(
1
t

)
= Kp,q(t) log

(
1
t

) [
1

log(1/t)
−

Ep,q(t) − t′qKp,q(t)
t′qKp,q(t)

]
.

Hence, the monotonicity of Hp,q(α) follows from Lemma 2.8.
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By logarithmic differentiation,

d
(
log Hp,q(α)

)
dα

=
1
α
−

Ep,q(t) − t′qKp,q(t)
t′qKp,q(t)

log
(
1
r

)
= log

(
1
r

) [
1

log(1/t)
−

Ep,q(t) − t′qKp,q(t)
t′qKp,q(t)

]
.

It is not difficult to verify that d(log Hp,q(α))/dα is strictly increasing with respect to t by Lemma 2.8,
and is strictly decreasing with respect to α. Thus the function α 7→ Hp,q(α) is strictly increasing and
log-concave on (0,∞).

(2) Since t = rα, then α = log(1/t)/ log(1/r). Differentiating 1/Hp,q(α) yields

d
dα

(
1

Hp,q(α)

)
= −

1
Hp,q(α)2 Kp,q(t) log

(
1
t

) [
1

log(1/t)
−

Ep,q(t) − t′qKp,q(t)
t′qKp,q(t)

]
= −

1
α2Kp,q(t)2 Kp,q(t) log

(
1
t

)
h(t)

= −

(
log

1
r

)2 h(t)
log(1/t)Kp,q(t)

,

(3.2)

where h(t) is defined in Lemma 2.8. Let f (r) = log(1/r)Kp,q(r), f1(r) = log(1/r), f2(r) = 1/Kp,q(r), We
clearly see that f1(1) = f2(1) = 0, then

f ′1(r)
f ′2(r)

=
r′qKp,q(r)2

Ep,q(r) − r′qKp,q(r)
=

rq

Ep,q(r) − r′qKp,q(r)
·

r′qKp,q(r)2

rq ,

which is decreasing follows from Lemma 2.5(1),(3). Hence the function f (r) is decreasing from (0, 1)
onto (0,∞) by Lemma 2.4. Therefore, it follows from Lemma 2.8 and (3.2) that the function α 7→

1/Hp,q(α) is strictly convex on (0,∞).
(3) Since t = rα, and dt/dα = t log r < 0, simple computations yields

dGp,q(α)
dα

=
1
α

[
Ep,q(t) − t′qKp,q(t)

t′q
log r −

Kp,q(t)
α

]
=

1
α

[
Ep,q(t) − t′qKp,q(t)

t′q
log r −

Kp,q(t) log r
log t

]
=

Kp,q(t) log r
α

[
Ep,q(t) − t′qKp,q(t)

t′qKp,q(t)
+

1
log(1/t)

]
.

Let g(r) =
Ep,q(r) − r′qKp,q(r)

r′qKp,q(r)
+

1
log(1/r)

, we have

g′(r) =
N(r)

rq+1 (
log(1/r)

)2 Kp,q(r)2

rqKp,q(r)2

N(r)
+

(
rq/2

r′q
log

(
1
r

))2 ,
is positive by Lemma 2.8, where the defition of N(r) is in Lemma 2.8. Hence the function g(r) is
increasing from (0, 1) onto (0,∞). Since log r < 0, the monotonicity of the function Gp,q(α) follows
immediately.
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Since log Gp,q(α) = log Kp,q(t) − logα, by differentiation, we obtain that

d
(
log Gp,q(α)

)
dα

=
Ep,q(t) − t′qKp,q(t)

t′qKp,q(t)
log r −

1
α

=
Ep,q(t) − t′qKp,q(t)

t′qKp,q(t)
log r −

log r
log t

= log r
[

Ep,q(t)
t′qKp,q(t)

− 1 +
1

log(1/t)

]
. (3.3)

It follows from (3.3) and Lemma 2.5(5) that d
(
log Gp,q(α)

)
/dα is strictly decreasing with respect to

t. Therefore, Gp,q(α) is log-convex on (0,∞) with respect to α. �

Next, we apply Theorem 3.2 to obtain the inequality involving the generalized (p, q)-elliptic
integrals Kp,q.

Corollary 3.1. For p, q ∈ (1,∞).
(1) Let α, β be positive numbers with α > β > 0. The double inequality

1 <
Kp,q(rβ)
Kp,q(rα)

<
α

β

holds for all r ∈ (0, 1).
(2) Inequality

Kp,q
(√

xy
)
≥ 2

√
log(1/x) log(1/y)

log[1/(xy)]

√
Kp,q(x)

√
Kp,q(y)

holds with equality if and only if x = y for all x, y ∈ (0, 1).
(3) Inequality

4

log[1/(xy)]Kp,q

(√
xy

) ≤ 1
log(1/x)Kp,q(x)

+
1

log(1/y)Kp,q(y)

holds with equality if and only if x = y for all x, y ∈ (0, 1).
(4) Let α, β be positive numbers with α > β > 0. The double inequality

β

α
<

Kp,q(rβ)
Kp,q(rα)

holds for all r ∈ (0, 1).
(5) Inequality

Kp,q
(√

xy
)
≤

1
2

log
(

1
xy

) √
Kp,q(x)Kp,q(y)

log(1/x) log(1/y)

holds with equality if and only if x = y for all x, y ∈ (0, 1).
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Proof. (1) By utilizing the monotonicity of the function Hp,q(α) stated in Theorem 3.2, along with the
monotonicity of the function Kp,q(r), we can establish that αKp,q(rα) > βKp,q(rβ). Consequently, the
double inequality holds.

(2) Since the function α 7→ Hp,q(α) is strictly log-concave on (0,∞), we can deduce that

log Hp,q

(
α + β

2

)
≥

1
2

(
log Hp,q(α) + log Hp,q(β)

)
⇒ Hp,q

(
α + β

2

)
≥

√
Hp,q(α)Hp,q(β)

with equality if and only if α = β for α, β > 0. For x, y ∈ (0, 1) and set

α =
log(1/x)
log(1/r)

, β =
log(1/y)
log(1/r)

.

Simple computations yields

Hp,q(α) = αKp,q(rα) =
log(1/x)
log(1/r)

Kp,q(x), Hp,q(β) = βKp,q(rβ) =
log(1/y)
log(1/r)

Kp,q(y), (3.4)

Hp,q

(
α + β

2

)
=

1
2

log[1/(xy)]
log(1/r)

Kp,q(
√

xy). (3.5)

Hence, the inequality

Kp,q
(√

xy
)
≥ 2

√
log(1/x) log(1/y)

log[1/(xy)]

√
Kp,q(x)

√
Kp,q(y)

hold with equality if and only if x = y.
(3) Since the function α 7→ 1/Hp,q(α) is strictly convex on (0,∞), we get

1

Hp,q

(
α+β

2

) ≤ 1
2

(
1

Hp,q(α)
+

1
Hp,q(β)

)
(3.6)

with equality if and only if α = β for α, β > 0. Set

α =
log(1/x)
log(1/r)

, β =
log(1/y)
log(1/r)

.

From (3.4)–(3.6), we conclude that the inequality hold with equality if and only if x = y.
(4) Since the function α 7→ Gp,q(α) is strictly decreasing, and the monotonicity of the function

Kp,q(r), we have

Kp,q(rα)
α

<
Kp,q(rβ)

β
.

(5) Since the function α 7→ Gp,q(α) is log-convex on (0,∞),

log Gp,q

(
α + β

2

)
≤

1
2

(
log Gp,q(α) + log Gp,q(β)

)
⇒ Gp,q

(
α + β

2

)
≤

√
Gp,q(α)Gp,q(β)
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with equality if and only if α = β for α, β > 0. Set

α =
log(1/x)
log(1/r)

, β =
log(1/y)
log(1/r)

.

Simple computations yields

Gp,q(α) =
Kp,q(rα)

α
=

log(1/r)
log(1/x)

Kp,q(x), Gp,q(β) =
Kp,q(rβ)

β
=

log(1/r)
log(1/y)

Kp,q(y),

Gp,q

(
α + β

2

)
=

2 log(1/r)
log[1/(xy)]

Kp,q(
√

xy).

Hence, the inequality

Kp,q
(√

xy
)
≤

1
2

log
(

1
xy

) √
Kp,q(x)Kp,q(y)

log(1/x) log(1/y)

hold with equality if and only if x = y. �

Remark 3.1. In [22], Wang et al. provided the proof for the convexity of the function (E ′a − r2K ′
a )/r′2

and presented certain properties of the functions αKa(rα) and 1/αKa(rα) with respect to the parameter
α. It is worth noting that Theorem 3.1 and Theorem 3.2(1),(2) can be reduced to [22, Theorem 1.1,
Theorem 1.3] if p = q = 1/a.

4. Generalized (p, q)-Hersch-Pfluger distortion function

In this section, we study the complete monotonicity, logarithmic, geometric concavity and convexity
of the generalized (p, q)-Hersch-Pfluger distortion function, and present some of the main results about
ϕ

p,q
K .

Theorem 4.1. For K, p, q ∈ (1,∞), and q > 3p−4
p−1 , let a = 1 − 1/p, b = 1/q, f , g be defined on (0, 1] by

f (r) = r−1/Kϕ
p,q
K (r), g(r) = r−Kϕ

p,q
1/K(r).

Then f is decreaseing from (0, 1] onto
[
1, ebR(a,b)(1−1/K)

)
, and g is increasing from (0, 1] onto(

ebR(a,b)(1−K), 1
]
.

Proof. Let s = ϕ
p,q
K (r), then f (r) =

s
r1/K , we have

(r1/K)2 f ′(r) =
s
K

r1/K−1

( s′q/2Kp,q(s)
r′q/2Kp,q(r)

)2

− 1

 .
Hence,

f ′(r)
f (r)

=
1

Kr

( s′q/2Kp,q(s)
r′q/2Kp,q(r)

)2

− 1

 .
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According to Lemma 2.6(2), f ′(r) is negative. Combine with f (1−) = 1 and by [18, Theorem 2],

lim
r→0+

log
(
r−1/K s

)
= lim

r→0+

[(
µp,q(s) + log s

)
−

1
K

(
µp,q(r) + log r

)]
= bR(a, b)

(
1 −

1
K

)
.

Let t = ϕ
p,q
1/K(r), thus r = ϕ

p,q
K (t) and

g(r) = ϕ
p,q
K (t)−K · t =

(
t−1/Kϕ

p,q
K (t)

)−K
= f (t)−K .

According to the monotonicity of f (r), g(r) is increasing on (0, 1]. The limiting values can also be
derived from [18, Theorem 2]. �

Next, we utilize Theorem 4.1 to derive the inequality concerning the generalized (p, q)-Hersch-
Pfluger distortion function ϕp,q

K .

Corollary 4.1. For K, p, q ∈ (1,∞), and q > 3p−4
p−1 , let a = 1 − 1/p, b = 1/q, then

(1) The double inequality∣∣∣ϕp,q
K (r) − ϕp,q

K (s)
∣∣∣ ≤ ϕp,q

K (|r − s|) ≤ ebR(a,b)(1−1/K)|r − s|1/K (4.1)

hold with equality if and only if r = s.
(2) The double inequality∣∣∣ϕp,q

1/K(r) − ϕp,q
1/K(s)

∣∣∣ ≥ ϕp,q
1/K (|r − s|) ≥ ebR(a,b)(1−K)|r − s|K (4.2)

hold with equality if and only if r = s.

Proof. (1) According to Lemma 2.3 and the monotonicity of the function f (r) = r−1/Kϕ
p,q
K (r), we can

conclude that

ϕ
p,q
K (x + y) ≤ ϕp,q

K (x) + ϕ
p,q
K (y)

for x, y ∈ (0, 1). Set r = x + y and s = y, we get∣∣∣ϕp,q
K (r) − ϕp,q

K (s)
∣∣∣ ≤ ϕp,q

K (|r − s|) .

According to f (r) is decreaseing from (0, 1] onto
[
1, ebR(a,b)(1−1/K)

)
, we obtain that

ϕ
p,q
K (|r − s|) ≤ ebR(a,b)(1−1/K)|r − s|1/K

with equality if and only if r = s.
(2) By Lemma 2.3 and the monotonicity of g(r), we have

ϕ
p,q
1/K(x) + ϕ

p,q
1/K(y) ≤ ϕp,q

1/K(x + y)
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for x, y ∈ (0, 1). Set r = x + y and s = y, we obtain that∣∣∣ϕp,q
1/K(r) − ϕp,q

1/K(s)
∣∣∣ ≥ ϕp,q

1/K (|r − s|)

with equality if and only if r = s.
According to g(r) increasing from (0, 1] onto

(
ebR(a,b)(1−K), 1

]
, we get

ϕ
p,q
1/K (|r − s|) ≥ ebR(a,b)(1−K)|r − s|K

with equality if and only if r = s. Therefore, the double inequality (4.2) hold. �

Theorem 4.2. For K, p, q ∈ (1,∞), q > 3p−4
p−1 , the function f (x) = log

(
1/ϕp,q

K (e−x)
)

is increasing and

convex on (0,∞), g(x) = log
(
1/ϕp,q

1/K(e−x)
)

is increasing and concave on (0,∞), and

ϕ
p,q
K (r)ϕp,q

K (t) ≤
(
ϕ

p,q
K

(√
rt
))2

,

ϕ
p,q
1/K(r)ϕp,q

1/K(t) ≥
(
ϕ

p,q
1/K

(√
rt
))2

,

with equality if and only if K = 1 for each r, t ∈ (0, 1).

Proof. Let r = e−x, s = ϕ
p,q
K (r), according to the Lemma 2.6, we have

f ′(x) =
1
K

(
s′q/2Kp,q(s)
r′q/2Kp,q(r)

)2

is positive and increasing with respect to x. Thus f is increasing and convex. Therefore,

f
( x + y

2

)
≤

1
2

( f (x) + f (y)) ,

and putting r = e−x, t = e−y, we obtain

ϕ
p,q
K (r)ϕp,q

K (t) ≤
(
ϕ

p,q
K

(√
rt
))2

,

with equality if and only if K = 1 for each r, t ∈ (0, 1). The proof for g(x) follows a similar approach.
�

Theorem 4.3. For K, p, q ∈ (1,∞), q > 3p−4
p−1 , r ∈ (0, 1), the function f (x) = ϕ

p,q
K (rx)/ϕp,q

K (x) is

increasing from (0, 1) onto
(
r1/K , ϕ

p,q
K (r)

)
, while function g(x) = ϕ

p,q
1/K(rx)/ϕp,q

1/K(x) is decreasing from

(0, 1) onto
(
ϕ

p,q
1/K(r), rK

)
. In particular,

ϕ
p,q
K (rt) ≤ ϕp,q

K (r)ϕp,q
K (t),

ϕ
p,q
1/K(rt) ≥ ϕp,q

1/K(r)ϕp,q
1/K(t),

with equality if and only if K = 1 for each r, t ∈ (0, 1).
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Proof. Let t = rx, u = ϕ
p,q
K (t), s = ϕ

p,q
K (x),

f ′(x) =
u

Ksx

(u′q/2Kp,q(u)
t′q/2Kp,q(t)

)2

−

(
s′q/2Kp,q(s)
x′q/2Kp,q(x)

)2 ,
then

f ′(x)
f (x)

=
1

Kx

(u′q/2Kp,q(u)
t′q/2Kp,q(t)

)2

−

(
s′q/2Kp,q(s)
x′q/2Kp,q(x)

)2 .
Since t < x and

s′q/2Kp,q(s)
x′q/2Kp,q(x)

is decreasing with respect to r by Lemma 2.6, f ′(x) is positive on

(0, 1). For the limiting values, by using L’Hôpital’s Rule, we get

lim
r→0+

f (r) = r1/K , lim
r→1−

h(r) = ϕ
p,q
K (r).

Since the monotonicity of the function f (x), along with the definition of the function ϕp,q
K (r), we

obtain

ϕ
p,q
K (rt) ≤ ϕp,q

K (r)ϕp,q
K (t),

with equality if and only if K = 1 for each r, t ∈ (0, 1). The proof for g(x) follows a similar approach.
As a result, we will omit the detailed proof. �

Theorem 4.4. For K, p ∈ (1,∞), r ∈ (0, 1), q > 3 and p > q(q−3)
q2−2q−1 , the function f (r) defined by

f (r) =
arcsin

(
ϕ

p,q
K (r)

)
arcsin

(
r1/K)

is strictly decreasing from (0, 1] into
[
1, e(1−1/K)bR(a,b)

)
, the function g(r) defined by

g(r) =
arcsin

(
ϕ

p,q
1/K(r)

)
arcsin (rK)

is strictly increasing from (0, 1] into
(
e(1−K)bR(a,b), 1

]
, where a = 1 − 1/p, b = a + 1/q.

Proof. Let s = ϕ
p,q
K (r), f1(r) = arcsin(s), f2(r) = arcsin

(
r1/K

)
, f (r) = f1(r)/ f2(r). Since f1(0) = f2(0) =

0 , we have

f ′1(r)
f ′2(r)

=
s

r1/K

(
1 − r2/K

1 − r2

)1/2 s′q−1Kp,q(s)2

r′q−1Kp,q(r)2 .

Let f3(r) =
s′q−1Kp,q(s)2

r′q−1Kp,q(r)2 , according to the Lemma 2.1 , we have

[r′q−1Kp,q(r)2]2 f ′3(r) = −
s′q−1Kp,q(s)2Kp,q(r)

rr′K ′
p,q(r)

( f4(s) − f4(r)) ,
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where

f4(r) = K ′
p,q(r)

[
(q − 1)rqKp,q(r) − 2

(
Ep,q(r) − r′qKp,q(r)

)]
= rqK ′

p,q(r)Kp,q(r)
[
(q − 1) − 2

Ep,q(r) − r′qKp,q(r)
rqKp,q(r)

]
.

Using Lemma 2.5(2) and (3), we can observe that f4(r) is positive. Consequently, we can deduce that
f3(r) is decreasing. As a result, we obtain that f (r) is decreasing on the interval (0, 1] by Theorem 4.1.
Furthermore, it can be deduced that the monotonicity of g(r) is similar to that of f (r). �

Remark 4.1. Theorems 4.1 to 4.4 can be seen as variations and extensions of the results presented in
[3, Theorem 1.14, Theorem 1.15, Theorem 6.7, Theorem 6.13]. When p = q = 1/a, the results obtained
in Theorems 4.1 to 4.4 can be reduced to those obtained in [3].

5. Conclusions

In this paper, we investigate the properties of the generalized (p, q)-elliptic integrals and the
generalized (p, q)-Hersch-Pfluger distortion function. Through our analysis, we have established
complete monotonicity, logarithmic, geometric concavity, and convexity properties for certain
functions involving these integrals and arcsine functions. These properties provide valuable insights
into the behavior of these functions. Furthermore, we have derived several sharp functional
inequalities for the generalized (p, q)-elliptic integrals and the generalized (p, q)-Hersch-Pfluger
distortion function. These inequalities not only improve upon existing results but also generalize
them.
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J. Zhejiang Sci-Tech Univ., 43 (2020), 846–851.

19. L. J. Slater, Generalized Hypergeometric Functions, London: Cambridge University Press, 1970.

20. S. Takeuchi, Legendre-type relations for generalized complete elliptic integrals, J. Classical Anal.,
9 (2016), 35–42. https://doi.org/10.7153/jca-09-04

AIMS Mathematics Volume 8, Issue 12, 31198–31216.

http://dx.doi.org/http://dx.doi.org/10.2140/pjm.2000.192.1
http://dx.doi.org/https://doi.org/10.2298/AADM201005031B
http://dx.doi.org/https://doi.org/10.3934/math.2022277
http://dx.doi.org/https://doi.org/10.1186/s13660-020-02327-7
http://dx.doi.org/https://doi.org/10.1186/s13660-020-02327-7
http://dx.doi.org/https://doi.org/10.3934/math.2020453
http://dx.doi.org/https://doi.org/10.7153/jca-09-04


31216

21. M. K. Wang, Y. M. Chu, Y. M. Li, W. Zhang, Asymptotic expansion and bounds for complete
elliptic integrals, Math. Inequal. Appl., 23 (2020), 821–841. https://doi.org/10.7153/mia-2020-23-
67

22. M. K. Wang, W. Zhang, Y. M. Chu, Monotonicity, convexity and inequalities involving the
generalized elliptic integrals, Acta Math. Sci., 39 (2019), 1440–1450.

23. M. K. Wang, T. H. Zhao, X. J. Ren, Y. M. Chu, Z. Y. He, Monotonicity and concavity properties of
the Gaussian hypergeometric functions, with applications, Indian J. Pure Appl. Math., 54 (2022),
1105–1124. https://doi.org/10.1007/s13226-022-00325-7

24. Z. H. Yang, J. F. Tian, Convexity and monotonicity for elliptic integrals of the
first kind and applications, Appl. Anal. Discrete Math., 13 (2019), 240–260.
https://doi.org/10.2298/AADM171015001Y

25. T. H. Zhao, M. K. Wang, Y. Q. Dai, Y. M. Chu, On the generalized power-type toader mean, J.
Math. Inequal., 16 (2022), 247–264. https://doi.org/10.7153/jmi-2022-16-18

26. T. H. Zhao, M. K. Wang, G. J. Hai, Y. M. Chu, Landen inequalities for Gaussian hypergeometric
function, RACSAM, 116 (2022), 53. https://doi.org/10.1007/s13398-021-01197-y

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 12, 31198–31216.

http://dx.doi.org/https://doi.org/10.7153/mia-2020-23-67
http://dx.doi.org/https://doi.org/10.7153/mia-2020-23-67
http://dx.doi.org/https://doi.org/10.1007/s13226-022-00325-7
http://dx.doi.org/https://doi.org/10.2298/AADM171015001Y
http://dx.doi.org/https://doi.org/10.7153/jmi-2022-16-18
http://dx.doi.org/https://doi.org/10.1007/s13398-021-01197-y
http://creativecommons.org/licenses/by/4.0

	Introduction
	 Preliminaries
	Generalized (p,q)-elliptic integrals
	 Generalized (p,q)-Hersch-Pfluger distortion function
	Conclusions

