In this study, some mappings related to the Fejér-type inequalities for harmonically convex functions are defined over $ \left[ 0, 1\right] $. Some Fejér-type inequalities for harmonically convex functions are proved using these mappings. Properties of these mappings are considered and consequently, refinements are obtained of some known results.
Citation: Muhammad Amer Latif. Fejér type inequalities for harmonically convex functions[J]. AIMS Mathematics, 2022, 7(8): 15234-15257. doi: 10.3934/math.2022835
In this study, some mappings related to the Fejér-type inequalities for harmonically convex functions are defined over $ \left[ 0, 1\right] $. Some Fejér-type inequalities for harmonically convex functions are proved using these mappings. Properties of these mappings are considered and consequently, refinements are obtained of some known results.
[1] | F. Chen, S. Wu, Fejér and Hermite-Hadamard type inequalities for harmonically convex functions, J. Appl. Math., 2014 (2014). https://doi.org/10.1155/2014/386806 doi: 10.1155/2014/386806 |
[2] | S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167 (1992), 49–56. https://doi.org/10.1016/0022-247X(92)90233-4 doi: 10.1016/0022-247X(92)90233-4 |
[3] | S. S. Dragomir, A refinement of Hadamard's inequality for isotonic linear functionals, Tamkang J. Math., 24 (1993), 101–106. https://doi.org/10.5556/j.tkjm.24.1993.4479 doi: 10.5556/j.tkjm.24.1993.4479 |
[4] | S. S. Dragomir, On the Hadamard's inequality for convex on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775–788. |
[5] | S. S. Dragomir, Further properties of some mapping associated with Hermite-Hadamard inequalities, Tamkang J. Math., 34 (2003), 45–57. https://doi.org/10.5556/j.tkjm.34.2003.271 doi: 10.5556/j.tkjm.34.2003.271 |
[6] | S. S. Dragomir, Y. J. Cho, S. S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. Math. Anal. Appl., 245 (2000), 489–501. https://doi.org/10.1006/jmaa.2000.6769 doi: 10.1006/jmaa.2000.6769 |
[7] | S. S. Dragomir, D. S. Milŏsević, J. Sándor, On some refinements of Hadamard's inequalities and applications, Univ. Belgrad. Publ. Elek. Fak. Sci. Math., 4 (1993), 3–10. |
[8] | S. S. Dragomir, Inequalities of Jensen type for HA-convex functions, Fasc. Math., 1 (2020), 103–124. |
[9] | S. S. Dragomir, Inequalities of Hermite-Hadamard type for HA-convex functions, Moroccan J. Pure Appl. Anal., 3 (2017), 83–101. https://doi.org/10.1515/mjpaa-2017-0008 doi: 10.1515/mjpaa-2017-0008 |
[10] | S. S. Dragomir, On Hadamard's inequality for convex functions, Mat. Balkanica, 6 (1992), 215–222. https://doi.org/10.1017/S0004972700031786 doi: 10.1017/S0004972700031786 |
[11] | S. S. Dragomir, On Hadamard's inequality for the convex mappings defined on a ball in the space and applications, Math. Inequal. Appl., 3 (2000), 177–187. https://doi.org/10.7153/mia-03-21 doi: 10.7153/mia-03-21 |
[12] | S. S. Dragomir, On Hadamard's inequality on a disk, J. Inequal. Pure Appl. Math., 1 (2000). |
[13] | S. S. Dragomir, On some integral inequalities for convex functions, Zb. Rad., 1996, 21–25. |
[14] | S. S. Dragomir, R. P. Agarwal, Two new mappings associated with Hadamard's inequalities for convex functions, Appl. Math. Lett., 11 (1998), 33–38. https://doi.org/10.1016/S0893-9659(98)00030-5 doi: 10.1016/S0893-9659(98)00030-5 |
[15] | L. Fejér, Über die fourierreihen Ⅱ, Math. Naturwiss. Anz Ungar. Akad. Wiss, 24 (1906), 369–390. |
[16] | J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une function considérée par Riemann, J. Math. Pures Appl., 58 (1983), 171–215. |
[17] | İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942. |
[18] | M. I. Ho, Fejer inequalities for Wright-convex functions, J. Inequal. Pure Appl. Math., 8 (2007). |
[19] | D. Y. Hwang, K. L. Tseng, G. S. Yang, Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane, Taiwanese J. Math., 11 (2007), 63–73. https://doi.org/10.11650/twjm/1500404635 doi: 10.11650/twjm/1500404635 |
[20] | K. C. Lee, K. L. Tseng, On a weighted generalization of Hadamard's inequality for Gconvex functions, Tamsui-Oxford J. Math. Sci., 16 (2000), 91–104. |
[21] | M. A. Latif, Mappings related to Hermite-Hadamard type inequalities for harmonically convex functions (Submitted). |
[22] | M. A. Latif, S. S. Dragomir, E. Momoniat. Fejér type inequalities for harmonically-convex functions with applications, J. Appl. Anal. Comput., 7 (2017), 795–813. https://doi.org/10.11948/2017050 doi: 10.11948/2017050 |
[23] | K. L. Tseng, S. R. Hwang, S. S. Dragomir, On some new inequalities of Hermite-Hadamard-Fejér type involving convex functions, Demonstr. Math., 40 (2007), 51–64. https://doi.org/10.1515/dema-2007-0108 doi: 10.1515/dema-2007-0108 |
[24] | K. L. Tseng, S. R. Hwang, S. S. Dragomir, Fejér-type inequalities (Ⅰ), J. Inequal. Appl., 2010 (2010), 531976. https://doi.org/10.1155/2010/531976 doi: 10.1155/2010/531976 |
[25] | K. L. Tseng, S. R. Hwang, S. S. Dragomir, Fejér-type inequalities (Ⅱ), RGMIA Res. Rep. Coll., 12 (2009), 1–12. |
[26] | R. Xiang, Refinements of Hermite-Hadamard type inequalities for convex functions via fractional integrals, J. Appl. Math. Inform., 33 (2015), 119–125. https://doi.org/10.14317/jami.2015.119 doi: 10.14317/jami.2015.119 |
[27] | G. S. Yang, M. C. Hong, A note on Hadamard's inequality, Tamkang J. Math., 28 (1997), 33–37. https://doi.org/10.5556/j.tkjm.28.1997.4331 doi: 10.5556/j.tkjm.28.1997.4331 |
[28] | G. S. Yang, K. L. Tseng, On certain integral inequalities related to Hermite-Hadamard inequalities, J. Math. Anal. Appl., 239 (1999), 180–187. https://doi.org/10.1006/jmaa.1999.6506 doi: 10.1006/jmaa.1999.6506 |
[29] | G. S. Yang, K. L. Tseng, Inequalities of Hadamard's type for Lipschitzian mappings, J. Math. Anal. Appl., 260 (2001), 230–238. https://doi.org/10.1006/jmaa.2000.7460 doi: 10.1006/jmaa.2000.7460 |
[30] | G. S. Yang, K. L. Tseng, On certain multiple integral inequalities related to Hermite-Hadamard inequalities, Utilitas Math., 62 (2002), 131–142. |
[31] | G. S. Yang, K. L. Tseng, Inequalities of Hermite-Hadamard-Fejér type for convex functions and Lipschitzian functions, Taiwanese J. Math., 7 (2003), 433–440. |