Citation: B. B. Jena, S. K. Paikray, S. A. Mohiuddine, Vishnu Narayan Mishra. Relatively equi-statistical convergence via deferred Nörlund mean based on difference operator of fractional-order and related approximation theorems[J]. AIMS Mathematics, 2020, 5(1): 650-672. doi: 10.3934/math.2020044
[1] | T. Acar, A. Aral, S. A. Mohiuddine, On Kantorovich modifications of (p, q)-Baskakov operators, J. Inequal. Appl., 2016 (2016), 1-14. |
[2] | T. Acar, S. A. Mohiuddine, Statistical (C, 1)(E, 1) summability and Korovkin's theorem, Filomat, 30 (2016), 387-393. |
[3] | R. P. Agnew, On deferred Cesàro means, Ann. Math., 33 (1932), 413-421. |
[4] | H. Aktuǧlu, H. Gezer, Lacunary equi-statistical convergence of positive linear operators, Cent. Eur. J. Math., 7(2009), 558-567. |
[5] | W. A. Al-Salam, Operational representations for the Laguerre and other polynomials, Duke Math. J., 31 (1964), 127-142. |
[6] | M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., 328 (2007), 715-729. |
[7] | P. Baliarsingh, On a fractional difference operator, Alex. Eng. J., 55 (2016), 1811-1816. |
[8] | F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, Istanbul, 2012. |
[9] | C. A. Bektaş, M. Et, R. Çolak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl., 292 (2004), 423-432. |
[10] | C. Belen, S. A. Mohiuddine, Generalized statistical convergence and application, Appl. Math. Comput., 219 (2013), 9821-9826. |
[11] | N. L. Braha, H. M. Srivastava, S. A. Mohiuddine, A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean, Appl. Math. Comput., 228 (2014), 162-169. |
[12] | S. Chapman, On non-integral orders of summability of series and integrals, Proc. Lond. Math. Soc., 2 (1911), 369-409. |
[13] | E. W. Chittenden, On the limit functions of sequences of continuous functions converging relatively uniformly, Trans. AMS, 20 (1919), 179-184. |
[14] | A. A. Das, B. B. Jena, S. K. Paikray, et al. Statistical deferred weighted summability and associated Korovokin-type approximation theorem, Nonlinear Sci. Lett. A, 9 (2018), 238-245. |
[15] | K. Demirci, S. Orhan, Statistically relatively uniform convergence of positive linear operators, Results Math., 69 (2016), 359-367. |
[16] | K. Demirci, S. Orhan, Statistical relative approximation on modular spaces, Results Math., 71 (2017), 1167-1184. |
[17] | O. H. H. Edely, S. A. Mohiuddine, A. K. Noman, Korovkin type approximation theorems obtained through generalized statistical convergence, Appl. Math. Lett., 23 (2010), 1382-1387. |
[18] | H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. |
[19] | G. Gasper, M. Rahman, Basic Hypergeometric Series, Camb. Univ. Press, 2004. |
[20] | F. H. Jackson, Ageneralization of the functions Γ(n) and xn, Proc. R. Soc. Lond., 74 (1904), 64-72. |
[21] | B. B. Jena, S. K. Paikray, Product of statistical probability convergence and its applications to Korovkin-type theorem, Miskolc Math. Notes, 20 (2019), 1-16. |
[22] | B. B. Jena, S. K. Paikray, U. K. Misra, Statistical deferred Cesàro summability and its applications to approximation theorems, Filomat, 32 (2018), 2307-2319. |
[23] | B. B. Jena, S. K. Paikray, U. K. Misra, Inclusion theorems on general convergence and statistical convergence of (L, 1, 1)-summability using generalized Tauberian conditions, Tamsui Oxf. J. Inf. Math. Sci., 31 (2017), 101-115. |
[24] | U. Kadak, Weighted statistical convergence based on generalized difference operator involving (p, q)-gamma function and its applications to approximation theorems, J. Math. Anal. Appl., 448 (2017), 1633-1650. |
[25] | U. Kadak, On weighted statistical convergence based on (p, q)-integers and related approximation theorems for functions of two variables, J. Math. Anal. Appl., 443 (2016), 752-764. |
[26] | U. Kadak, P. Baliarsingh, On certain Euler difference sequence spaces of fractional order and related dual properties, J. Nonlinear Sci. Appl., 8 (2015), 997-1004. |
[27] | U. Kadak, S. A. Mohiuddine, Generalized statistically almost convergence based on the difference operator which includes the (p, q)-gamma function and related approximation theorems, Results Math., 73 (2018), Article 9. |
[28] | U. Kadak, H. M. Srivastava, M. Mursaleen, Relatively uniform weighted summability based on fractional-order difference operator, Bull. Malays. Math. Sci. Soc., 42 (2019), 2453-2480. |
[29] | V. Karakaya, T. A. Chishti, Weighted statistical convergence, Iranian. J. Sci. Technol. Trans. A, 33 (A3)(2009), 219-223. |
[30] | S. Karakuş, K. Demirci, O. Duman, Equi-statistical convergence of positive linear operators, J. Math. Anal. Appl., 339 (2008), 1065-1072. |
[31] | P. P. Korovkin, Linear operators and approximation theory, Hindustan Publ. Co., Delhi, 1960. |
[32] | A. Lupaş, A q-analogue of the Bernstein operator. In: Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca, 9 (1987), 85-92. |
[33] | S. A. Mohiuddine, An application of almost convergence in approximation theorems, Appl. Math. Lett., 24 (2011), 1856-1860. |
[34] | S. A. Mohiuddine, Statistical weighted A-summability with application to Korovkin's type approximation theorem, J. Inequal. Appl., 2016 (2016). |
[35] | S. A. Mohiuddine, B. A. S. Alamri, Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas Fs. Nat., Ser. A Mat., RACSAM, 113(2019), 1955-1973. |
[36] | S. A. Mohiuddine, A. Asiri, B. Hazarika, Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, Int. J. Gen. Syst., 48((2019), 492-506. |
[37] | S. A. Mohiuddine, B. Hazarika, M. A. Alghamdi, Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat, 33((2019), 4549-4560. |
[38] | E. H. Moore, An Introduction to a Form of General Analysis, The New Haven Mathematical Colloquium, Yale University Press, New Haven 1910. |
[39] | M. Mursaleen, K. J. Ansari, A. Khan, On (p, q)-analogue of Bernstein operators, Appl. Math. Comput., 266 (2015), 874-882. |
[40] | M. Mursaleen, V. Karakaya, M. Ertürk, et al. Weighted statistical convergence and its application to Korovkin type approximation theorem, Appl. Math. Comput., 218 (2012), 9132-9137. |
[41] | M. Mursaleen, Md. Nasiuzzaman, A. Nurgali, Some approximation results on Bernstein-Schurer operators defined by (p, q)-integers, J. Inequal. Appl., 2015 (2015), 1-12. |
[42] | T. Pradhan, S. K. Paikray, B. B. Jena, et al. Statistical deferred weighted B-summability and its applications to associated approximation theorems, J. Inequal. Appl., 2018 (2018), 1-21. |
[43] | P. N. Sadjang, On the (p, q)-gamma and (p, q)-beta function, arXiv: 1506. 07394v1. |
[44] | H. M. Srivastava, B. B. Jena, S. K. Paikray, et al. A certain class of weighted statistical convergence and associated Korovkin type approximation theorems for trigonometric functions, Math. Methods Appl. Sci., 41 (2018), 671-683. |
[45] | H. M. Srivastava, B. B. Jena, S. K. Paikray, et al. Generalized equi-statistical convergence of the deferred Nörlund summability and its applications to associated approximation theorems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. (RACSAM), 112 (2018), 1487-1501. |
[46] | H. M. Srivastava, B. B. Jena, S. K. Paikray, et al. Deferred weighted A-statistical convergence based upon the (p, q)-Lagrange polynomials and its applications to approximation theorems, J. Appl. Anal., 24 (2018), 1-16. |
[47] | H. M. Srivastava, B. B. Jena, S. K. Paikray, et al. Statistically and relatively modular deferredweighted summability and Korovkin-type approximation theorems, Symmetry, 11 (2019), 1-20. |
[48] | H. M. Srivastava, B. B. Jena, S. K. Paikray, Deferred Cesàro statistical probability convergence and its applications to approximation theorems, J. Nonlinear Convex Anal., 20 (2019), 1777-1792. |
[49] | H. M. Srivastava, B. B. Jena, S. K. Paikray, A certain class of statistical probability convergence and its applications to approximation theorems, Appl. Anal. Discrete Math. (in press) 2019. |
[50] | H. M. Srivastava, H. L. Manocha, Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984. |
[51] | H. M. Srivastava, M. Mursaleen, A. Khan, Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Math. Comput. Model. 55 (2012), 2040-2051. |
[52] | H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74. |
[53] | O. V. Viskov, H. M. Srivastava, New approaches to certain identities involving differential operators, J. Math. Anal. Appl., 186 (1994), 1-10. |