In this paper, the boundedness and compactness of the inclusion mapping from $Q_p$ spaces into tent spaces $\mathcal{T}_{\frac{qp}{2}, s}^{q}$ are completely characterized when $q>2$. As an application, the boundedness of the Volterra integral operator $T_g$ from $Q_p$ to the space $\mathcal{LF}(q, q-2, \frac{qp}{2})$ is obtained. Moreover, the essential norm and compactness of $T_g$ are also investigated.
Citation: Ruishen Qian, Xiangling Zhu. Embedding of Qp spaces into tent spaces and Volterra integral operator[J]. AIMS Mathematics, 2021, 6(1): 698-711. doi: 10.3934/math.2021042
In this paper, the boundedness and compactness of the inclusion mapping from $Q_p$ spaces into tent spaces $\mathcal{T}_{\frac{qp}{2}, s}^{q}$ are completely characterized when $q>2$. As an application, the boundedness of the Volterra integral operator $T_g$ from $Q_p$ to the space $\mathcal{LF}(q, q-2, \frac{qp}{2})$ is obtained. Moreover, the essential norm and compactness of $T_g$ are also investigated.
[1] | A. Aleman, J. Cima, An integral operator on Hp and Hardy's inequality, J. Anal. Math. 85 (2001), 157-176. doi: 10.1007/BF02788078 |
[2] | A. Aleman, A. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J., 46 (1997), 337-356. |
[3] | P. Duren, Theory of Hp Spaces, Academic Press, New York, 1970. |
[4] | D. Girela, J. Peláez, Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal., 241 (2006), 334-358. doi: 10.1016/j.jfa.2006.04.025 |
[5] | P. Li, J. Liu, Z. Lou, Integral operators on analytic Morrey spaces, Sci. China Math., 57 (2014), 1961-1974. doi: 10.1007/s11425-014-4811-5 |
[6] | S. Li, J. Liu, C. Yuan, Embedding theorems for Dirichlet type spaces, Canad. Math. Bull., Available from: http://dx.doi.org/10.4153/S0008439519000201. |
[7] | S. Li, S. Stević, Riemann-Stieltjes operators between α-Bloch spaces and Besov spaces, Math. Nachr., 282 (2009), 899-911. doi: 10.1002/mana.200610778 |
[8] | S. Li, H. Wulan, Volterra type operators on QK spaces, Taiwanese J. Math., 14 (2010), 195-211. |
[9] | J. Liu, Z. Lou, Carleson measure for analytic Morrey spaces, Nonlinear Anal. Ser. A: Theory Methods Appl., 125 (2015), 423-443. doi: 10.1016/j.na.2015.05.016 |
[10] | J. Liu, Z. Lou, K. Zhu, Embedding of Möbius invariant function spaces into tent spaces, J. Geom. Anal., 27 (2017), 1013-1028. doi: 10.1007/s12220-016-9708-9 |
[11] | J. Pau, J. Peláez, Multipliers of Möbius invariant Qs spaces, Math. Z., 545 (2009), 545-555. |
[12] | J. Pau, R. Zhao, Carleson measures, Riemann-Stieltjes and multiplication operators on a general family of function spaces, Integral Equations Operator Theory, 78 (2014), 483-514. doi: 10.1007/s00020-014-2124-2 |
[13] | C. Pommerenke, Schlichte funktionen und analytische funktionen von beschränkten mittlerer Oszillation, Comm. Math. Helv., 52 (1977), 591-602. doi: 10.1007/BF02567392 |
[14] | R. Qian, S. Li, Volterra type operators on Morrey type spaces, Math. Inequal. Appl., 18 (2015), 1589-1599. |
[15] | R. Qian, X. Zhu, Embedding of Dirichlet type spaces $\mathcal{D}^p_{p-1 }$ into tent spaces and Volterra operators, Canad. Math. Bull., Available from: https://doi.org/10.4153/S0008439520000764. |
[16] | C. Shen, Z. Lou, S. Li, Embedding of BMOAlog into tent spaces and Volterra integral operators, Comput. Methods Funct. Theory, 20 (2020), 217-234. doi: 10.1007/s40315-020-00312-1 |
[17] | C. Shen, Z. Lou, S. Li, Volterra integral operators from $\mathcal{D}^p_{p-2+s}$ into F(pλ, pλ + sλ - 2, q), Math. Inequal. Appl., 23 (2020), 1087-1103. |
[18] | Y. Shi, S. Li, Essential norm of integral operators on Morrey type spaces, Math. Inequal. Appl., 19 (2016), 385-393. |
[19] | A. Siskakis, R. Zhao, A Volterra type operator on spaces of analytic functions, Contemp. Math., 232 (1999), 299-311. doi: 10.1090/conm/232/03406 |
[20] | M. Tjani, Compact Composition Operators on Some Möbius Invariant Banach Spaces, PhD dissertation, Michigan State University, 1996. |
[21] | J. Wang, The Carleson measure problem between analytic Morrey spaces, Canad. Math. Bull., 59 (2016), 878-890. doi: 10.4153/CMB-2016-013-9 |
[22] | J. Xiao, The Qp Carleson measure problem, Adv. Math., 217 (2008), 2075-2088. doi: 10.1016/j.aim.2007.08.015 |
[23] | J. Xiao, Holomorphic Q Classes, Springer, LNM 1767, Berlin, 2001. |
[24] | R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. No. 105 (1996), 56. |
[25] | K. Zhu, Operator Theory in Function Spaces, Second Edition, Math. Surveys and Monographs, 138 (2007). |