The aerodynamics analysis has grown in relevance for wind energy projects; this mechanism is focused on elucidating aerodynamic characteristics to maximize accuracy and practicability via the modelling of chaos in a wind turbine system's permanent magnet synchronous generator using short-memory methodologies. Fractional derivatives have memory impacts and are widely used in numerous practical contexts. Even so, they also require a significant amount of storage capacity and have inefficient operations. We suggested a novel approach to investigating the fractional-order operator's Lyapunov candidate that would do away with the challenging task of determining the indication of the Lyapunov first derivative. Next, a short-memory fractional modelling strategy is presented, followed by short-memory fractional derivatives. Meanwhile, we demonstrate the dynamics of chaotic systems using the Lyapunov function. Predictor-corrector methods are used to provide analytical results. It is suggested to use system dynamics to reduce chaotic behaviour and stabilize operation; the benefit of such a framework is that it can only be used for one state of the hybrid power system. The key variables and characteristics, i.e., the modulation index, pitch angle, drag coefficients, power coefficient, air density, rotor angular speed and short-memory fractional differential equations are also evaluated via numerical simulations to enhance signal strength.
Citation: Abdulaziz Khalid Alsharidi, Saima Rashid, S. K. Elagan. Short-memory discrete fractional difference equation wind turbine model and its inferential control of a chaotic permanent magnet synchronous transformer in time-scale analysis[J]. AIMS Mathematics, 2023, 8(8): 19097-19120. doi: 10.3934/math.2023975
The aerodynamics analysis has grown in relevance for wind energy projects; this mechanism is focused on elucidating aerodynamic characteristics to maximize accuracy and practicability via the modelling of chaos in a wind turbine system's permanent magnet synchronous generator using short-memory methodologies. Fractional derivatives have memory impacts and are widely used in numerous practical contexts. Even so, they also require a significant amount of storage capacity and have inefficient operations. We suggested a novel approach to investigating the fractional-order operator's Lyapunov candidate that would do away with the challenging task of determining the indication of the Lyapunov first derivative. Next, a short-memory fractional modelling strategy is presented, followed by short-memory fractional derivatives. Meanwhile, we demonstrate the dynamics of chaotic systems using the Lyapunov function. Predictor-corrector methods are used to provide analytical results. It is suggested to use system dynamics to reduce chaotic behaviour and stabilize operation; the benefit of such a framework is that it can only be used for one state of the hybrid power system. The key variables and characteristics, i.e., the modulation index, pitch angle, drag coefficients, power coefficient, air density, rotor angular speed and short-memory fractional differential equations are also evaluated via numerical simulations to enhance signal strength.
[1] | E. Muljadi, C. P. Butterfield, P. Migliore, Variable speed operation of generators with rotor-speed feedback in wind power applications, J. Sol. Energy. Eng., 118 (1996), 270–277. https://doi.org/10.1115/1.2871793 doi: 10.1115/1.2871793 |
[2] | S. A. de la Salle, D. Reardon, W. E. Leithead, M. J. Grimble, Review of wind turbine control, Int. J. Control, 52 (1990), 1295–1310. https://doi.org/10.1080/00207179008953597 doi: 10.1080/00207179008953597 |
[3] | L. Ren, F. Liu, Y. Jia, Active disturbance rejection control for chaotic permanent magnet synchronous generator for wind power system, Proceedings of the 31st Chinese Control Conference, China: Hefei, 2012, 6878–6882. |
[4] | M. Messadi, A. Mellit, K. Kemih, M. Ghanes, Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system, Chin. Phys. B, 24 (2015), 010502. https://doi.org/10.1088/1674-1056/24/1/010502 doi: 10.1088/1674-1056/24/1/010502 |
[5] | C. H. Lin, Dynamic control for permanent magnet synchronous generator system using novel modified recurrent wavelet neural network, Nonlinear Dyn., 77 (2014), 1261–1284. https://doi.org/10.1007/s11071-014-1376-3 doi: 10.1007/s11071-014-1376-3 |
[6] | F. Salas, F. Gordillo, J. Aracil, R. Reginatto, Codimension-two bifurcations in indirect field oriented control of induction motor drives, Int. J. Bifurcat. Chaos, 18 (2008), 779–792. https://doi.org/10.1142/S0218127408020641 doi: 10.1142/S0218127408020641 |
[7] | C. Pezeshki, S. Elgar, R. C. Krishna, Bispectral analysis of possessing chaotic motion, J. Sound Vib., 137 (1990), 357–368. https://doi.org/10.1016/0022-460X(90)90804-9 doi: 10.1016/0022-460X(90)90804-9 |
[8] | K. Miller, B. Ross, Fractional difference calculus, Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, Nihon University, Koriyama, Japan, 1989,139–152. |
[9] | G. C. Wu, D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dyn., 75 (2014), 283–287. https://doi.org/10.1007/s11071-013-1065-7 doi: 10.1007/s11071-013-1065-7 |
[10] | H. G. Sun, W. Chen, H. Wei, Y. Q. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193 (2011), 185–192. https://doi.org/10.1140/epjst/e2011-01390-6 doi: 10.1140/epjst/e2011-01390-6 |
[11] | H. Zhang, F. Liu, M. S. Phanikumar, M. M. Meerschaert, A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model, Comput. Math. Appl., 66 (2013), 693–701. https://doi.org/10.1016/j.camwa.2013.01.031 doi: 10.1016/j.camwa.2013.01.031 |
[12] | S. G. Samko, B. Ross, Integration and differentiation to a variable fractional order, Integr. Transf. Spec. Funct., 1 (1993), 277–300. https://doi.org/10.1080/10652469308819027 doi: 10.1080/10652469308819027 |
[13] | C. F. Lorenzo, T. T. Hartley, Initialization, conceptualization, and application in the generalized fractional calculus, Crit. Rev. Biomed. Eng., 35 (2007), 477–553. https://doi.org/10.1615/CritRevBiomedEng.v35.i6.10 doi: 10.1615/CritRevBiomedEng.v35.i6.10 |
[14] | G. C. Wu, Z. G. Deng, D. Baleanu, D. Q. Zeng, New variable-order fractional chaotic systems for fast image encryption, Chaos, 29 (2019), 083103. https://doi.org/10.1063/1.5096645 doi: 10.1063/1.5096645 |
[15] | N. V. Kuznetsov, G. A. Leonov, T. N. Mokaev, A. Prasad, M. D. Shrimali, Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system, Nonlinear Dyn., 92 (2018), 267–285. https://doi.org/10.1007/s11071-018-4054-z doi: 10.1007/s11071-018-4054-z |
[16] | G. A. Leonov, N. V. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits, Int. J. Bifurcat. Chaos, 23 (2013), 1330002. https://doi.org/10.1142/S0218127413300024 doi: 10.1142/S0218127413300024 |
[17] | L. E. Ramirez, C. F. Coimbra, A variable order constitutive relation for viscoelasticity, Ann. Phys., 519 (2007), 543–552. https://doi.org/10.1002/andp.200751907-803 doi: 10.1002/andp.200751907-803 |
[18] | H. Zhou, C. Wang, Z. Duan, M. Zhang, J. Liu, Timebased fractional derivative approach to creep constitutive model of salt rock, Sci. Sin. Phys. Mech. Astron., 42 (2012), 310–318. |
[19] | Y. F. Pu, W. X. Wang, J. L. Zhou, Y. Y. Wang, H. D. Jia, Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation, Sci. China Ser. F: Inf. Sci., 51 (2008), 1319–1339. https://doi.org/10.1007/s11432-008-0098-x doi: 10.1007/s11432-008-0098-x |
[20] | M. Bohner, A. Peterson, Dynamic equations on time scales: an introduction with applications, Birkhäuser, Boston, 2001. |
[21] | C. Goodrich, A. Peterson, Discrete fractional calculus, Springer, 2015. |
[22] | L. Guo, X. L. Zhao, X. M. Gu, Y. L. Zhao, Y. B. Zheng, T. Z. Huang, Three-dimensional fractional total variation regularized tensor optimized model for image deblurring, Appl. Math. Comput., 404 (2021), 126224. https://doi.org/10.1016/j.amc.2021.126224 doi: 10.1016/j.amc.2021.126224 |
[23] | L. Ren, J. Mou, S. Banerjee, Y. Zhang, A hyperchaotic map with a new discrete memristor model: design, dynamical analysis, implementation and application, Chaos, Solitons Fract., 167 (2023), 113024. https://doi.org/10.1016/j.chaos.2022.113024 doi: 10.1016/j.chaos.2022.113024 |
[24] | Y. Chen, J. Mou, H. Jahanshahi, Z. Wang, Y. Cao, A new mix chaotic circuit based on memristor–memcapacitor, Eur. Phys. J. Plus, 138 (2023), 78. https://doi.org/10.1140/epjp/s13360-023-03699-7 doi: 10.1140/epjp/s13360-023-03699-7 |
[25] | T. Ma, J. Mou, B. Li, S. Banerjee, H. Yan, Study on the complex dynamical behavior of the fractional-order Hopfield neural network system and its implementation, Fractal Fract., 6 (2022), 637. https://doi.org/10.3390/fractalfract6110637 doi: 10.3390/fractalfract6110637 |
[26] | K. A Abro, A. Atangana, Mathematical analysis of memristor through fractal-fractional differential operators: a numerical study, Math. Methods Appl. Sci., 43 (2020), 6378–6395. https://doi.org/10.1002/mma.6378 doi: 10.1002/mma.6378 |
[27] | U. A. Aziz, A. Mukarram, K. A. Abro, Electroosmotic slip flow of Oldroyd-B fluid between two plates with non-singular kernel, J. Comput. Appl. Math., 376 (2020), 112885. https://doi.org/10.1016/j.cam.2020.112885 doi: 10.1016/j.cam.2020.112885 |
[28] | Z. Li, J. B. Park, Y. H. Joo, B. Zhang, G. Chen, Bifurcations and chaos in a permanent-magnet synchronous motor, IEEE Trans. Circ. Syst. Ⅰ: Fundam. Theory Appl., 49 (2002), 383–387. https://doi.org/10.1109/81.989176 doi: 10.1109/81.989176 |
[29] | Z. Jing, C. Yu, G. Chen, Complex dynamics in a permanentmagnet synchronous motor model, Chaos, Solitons Fract., 22 (2004), 831–848. https://doi.org/10.1016/j.chaos.2004.02.054 doi: 10.1016/j.chaos.2004.02.054 |
[30] | J. G. Lu, G. Chen, A note on the fractional-order Chen system, Chaos, Solitons Fract., 27 (2006), 685–688. https://doi.org/10.1016/j.chaos.2005.04.037 doi: 10.1016/j.chaos.2005.04.037 |
[31] | S. Qureshi, A. Atangana, Mathematical analysis of dengue fever outbreak by novel fractional operators with field data, Phys. A: Stat. Mech. Appl., 526 (2019), 121127. https://doi.org/10.1016/j.physa.2019.121127 doi: 10.1016/j.physa.2019.121127 |
[32] | G. C. Wu, M. Luo, L. L. Huang, S. Banerjee, Short memory fractional differential equations for new memristor and neural network design, Nonlinear Dyn., 100 (2020), 3611–3623. https://doi.org/10.1007/s11071-020-05572-z doi: 10.1007/s11071-020-05572-z |
[33] | I. Podlubny, Fractional differential equation, San Diego: Academic Press, 1999. |
[34] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory an applications of fractional differential equations, Amsterdam: Elsevier Science B.V., 2006. |
[35] | N. R. O. Bastos, R. A. C. Ferreira, D. F. M. Torres, Discrete-time fractional variational problems, Signal Process., 91 (2011), 513–524. https://doi.org/10.1016/j.sigpro.2010.05.001 doi: 10.1016/j.sigpro.2010.05.001 |
[36] | D. Mozyrska, E. Girejko, Overview of fractional h-difference operators. In: A. Almeida, L. Castro, F. O. Speck, Advances in harmonic analysis and operator theory, Operator Theory: Advances and Applications, Vol. 229, Birkhäuser, Basel, 2013. |
[37] | T. Abdeljawad, R. Mert, D. F. Torres, Variable order Mittag-Leffler fractional operators on isolated time scales and application to the calculus of variations, In: Fractional derivatives with Mittag-Leffler kernel, Springer: Cham, Switzerland, 2019, 35–47. |
[38] | W. Deng, Short memory principle and a predictor–corrector approach for fractional differential equations, J. Comput. Appl. Math., 206 (2007), 174–188. https://doi.org/10.1016/j.cam.2006.06.008 doi: 10.1016/j.cam.2006.06.008 |
[39] | M. Al. Qurashi, S. Rashid, F. Jarad, E. Ali, R. H. Egami, Dynamic prediction modelling and equilibrium stability of a fractional discrete biophysical neuron model, Results Phys., 48 (2023), 106405. https://doi.org/10.1016/j.rinp.2023.106405 doi: 10.1016/j.rinp.2023.106405 |
[40] | Z. Wang, H. Xia, Y. X. Li, X. N. Song, A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system, Chinese Phys. B, 6 (2013), 010504. https://doi.org/10.1088/1674-1056/22/1/010504 doi: 10.1088/1674-1056/22/1/010504 |
[41] | F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 191 (2007), 12–20. https://doi.org/10.1016/j.amc.2006.08.162 doi: 10.1016/j.amc.2006.08.162 |
[42] | X. J. Yang, Advanced local fractional calculus and its applications, Singapore: World Science Publisher, 2012. |
[43] | H. G. Sun, W. Chen, Y. Q. Chen, Variable-order fractional differential operators in anomalous diffusion modeling, Phys. A, 388 (2009), 4586–4592. https://doi.org/10.1016/j.physa.2009.07.024 doi: 10.1016/j.physa.2009.07.024 |
[44] | M. D. Ortigueira, D. Valrio, J. T. Machado, Variable order fractional systems, Commun. Nonlinear Sci. Numer. Simul., 71 (2019), 231–243. https://doi.org/10.1016/j.cnsns.2018.12.003 doi: 10.1016/j.cnsns.2018.12.003 |
[45] | M. Feckan, Y. Zhou, J. R. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3050–3060. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017 |
[46] | I. Petras, Fractional-order memristor-based Chua's circuit, IEEE Trans. Circ. Syst. Ⅱ, Express Briefs, 57 (2010), 975–979. https://doi.org/10.1109/TCSII.2010.2083150 doi: 10.1109/TCSII.2010.2083150 |
[47] | W. Deng, Smoothness and stability of the solutions for nonlinear fractional differential equations, Nonlinear Anal., 72 (2010), 1768–1777. https://doi.org/10.1016/j.na.2009.09.018 doi: 10.1016/j.na.2009.09.018 |
[48] | M. S. Tavazoei, M. Haeri, Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems, IET Signal Process., 1 (2007), 171–181. |
[49] | I. Petras, A note on the fractional-order Volta's system, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 384–393. https://doi.org/10.1016/j.cnsns.2009.04.009 doi: 10.1016/j.cnsns.2009.04.009 |
[50] | G. C. Wu, D. Baleanu, Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps, Commun. Nonlinear Numer. Simul., 22 (2015), 95–100. https://doi.org/10.1016/j.cnsns.2014.06.042 doi: 10.1016/j.cnsns.2014.06.042 |
[51] | Y. Y. Hou, Controlling chaos in permanent magnet synchronous motor control system via fuzzy guaranteed cost controller, Abstr. Appl. Anal., 2012 (2012), 650863. https://doi.org/10.1155/2012/650863 doi: 10.1155/2012/650863 |
[52] | K. Rajagopal, A. Karthikeyan, P. Duraisamy, Chaos suppression in fractional order permanent magnet synchronous generator in wind turbine systems, Nonlinear Eng., 6 (2016), 79–87. https://doi.org/10.1515/nleng-2016-0059 doi: 10.1515/nleng-2016-0059 |
[53] | X. M. Gu, H. W. Sun, Y. L. Zhao, X. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270 |
[54] | R. Garrappa, A. Giusti, F. Mainardi, Variable-order fractional calculus: a change of perspective, Commun. Nonlinear Sci. Numer. Simul., 102 (2021), 105904. https://doi.org/10.1016/j.cnsns.2021.105904 doi: 10.1016/j.cnsns.2021.105904 |