Research article

Approximate analytical solutions for the blood ethanol concentration system and predator-prey equations by using variational iteration method

  • Received: 25 December 2022 Revised: 03 April 2023 Accepted: 16 May 2023 Published: 06 June 2023
  • MSC : 41A10, 65N12, 65N35

  • Simulation and numerical study for the blood ethanol concentration system (BECS) and the Lotka-Volterra system, i.e., predator-prey equations (PPEs) (both of fractional order in the Caputo sense) by employing a development accurate variational iteration method are presented in this work. By assessing the absolute error, and the residual error function, we can confirm the given procedure is effective and accurate. The outcomes demonstrate that the proposed technique is a suitable tool for simulating such models and can be extended to simulate other models.

    Citation: M. Adel, M. M. Khader, Hijaz Ahmad, T. A. Assiri. Approximate analytical solutions for the blood ethanol concentration system and predator-prey equations by using variational iteration method[J]. AIMS Mathematics, 2023, 8(8): 19083-19096. doi: 10.3934/math.2023974

    Related Papers:

  • Simulation and numerical study for the blood ethanol concentration system (BECS) and the Lotka-Volterra system, i.e., predator-prey equations (PPEs) (both of fractional order in the Caputo sense) by employing a development accurate variational iteration method are presented in this work. By assessing the absolute error, and the residual error function, we can confirm the given procedure is effective and accurate. The outcomes demonstrate that the proposed technique is a suitable tool for simulating such models and can be extended to simulate other models.



    加载中


    [1] M. M. Khader, M. Inc, M. Adel, M. Ali, Numerical solutions to the fractional-order wave equation, Int. J. Mod. Phys. C, 34 (2023), 2350067. http://doi.org/10.1142/S0129183123500675 doi: 10.1142/S0129183123500675
    [2] T. Muhammad, H. Ahmad, U. Farooq, A. Akgül, Computational investigation of magnetohydrodynamics boundary of Maxwell fluid across nanoparticle-filled sheet, Al-Salam J. Eng. Technol., 2 (2023), 88–97. https://doi.org/10.55145/ajest.2023.02.02.011 doi: 10.55145/ajest.2023.02.02.011
    [3] I. Ahmad, H. Ahmad, M. Inc, S. W. Yao, B. Almohsen, Application of local meshless method for the solution of two term time fractional-order multi-dimensional PDE arising in heat and mass transfer, Therm. Sci., 24 (2020), 95–105. https://doi.org/10.2298/TSCI20S1095A doi: 10.2298/TSCI20S1095A
    [4] M. N. Khan, I. Ahmad, A. Akgül, H. Ahmad, P. Thounthong, Numerical solution of time-fractional coupled Korteweg-de Vries and Klein-Gordon equations by local meshless method, Pramana, 95 (2021), 6. https://doi.org/10.1007/s12043-020-02025-5 doi: 10.1007/s12043-020-02025-5
    [5] N. Sweilam, S. M. Al-Mekhlafi, R. G. Salama, T. A. Assiri, Numerical simulation for a hybrid variable-order multi-vaccination COVID-19 mathematical model, Symmetry, 15 (2023), 869. https://doi.org/10.3390/sym15040869 doi: 10.3390/sym15040869
    [6] N. H. Sweilam, T. A. Assiri, M. M. Abou Hasan, Optimal control problem of variable-order delay system of advertising procedure: numerical treatment, Discrete Contin. Dyn. Syst., 15 (2022), 1247–1268. https://doi.org/10.3934/dcdss.2021085 doi: 10.3934/dcdss.2021085
    [7] M. Adel, M. M. Khader, T. A. Assiri, W. Kaleel, Numerical simulation for COVID-19 model using a multidomain spectral relaxation technique, Symmetry, 15 (2023), 931. https://doi.org/10.3390/sym15040931 doi: 10.3390/sym15040931
    [8] A. Akgül, H. Ahmad, Reproducing kernel method for Fangzhu's oscillator for water collection from air, Math. Methods Appl. Sci., 2020. https://doi.org/10.1002/mma.6853 doi: 10.1002/mma.6853
    [9] T. A. Sulaiman, A. Yusuf, S. Abdel-Khalek, M. Bayram, H. Ahmad, Nonautonomous complex wave solutions to the (2+1)-dimensional variable-coefficients nonlinear chiral Schrödinger equation, Results Phys., 19 (2020), 103604. https://doi.org/10.1016/j.rinp.2020.103604 doi: 10.1016/j.rinp.2020.103604
    [10] F. Wang, K. Zheng, I. Ahmad, H. Ahmad, Gaussian radial basis functions method for linear and nonlinear convection-diffusion models in physical phenomena, Open Phys., 19 (2021), 69–76. https://doi.org/10.1515/phys-2021-0011 doi: 10.1515/phys-2021-0011
    [11] S. Wen, M. E. Islam, M. Ali, I. Mustafa, M. Adel, M. Osman, Analysis of parametric effects in the wave profile of the variant Boussinesq equation through two analytical approaches, Open Phys., 20 (2022), 778–794. https://doi.org/10.1515/phys-2022-0071 doi: 10.1515/phys-2022-0071
    [12] M. Adel, N. H. Sweilam, M. M. Khader, S. M. Ahmed, H. Ahmad, T. Botmart, Numerical simulation using the non-standard weighted average FDM for 2Dim variable-order Cable equation, Results Phys., 39 (2022), 105682. https://doi.org/10.1016/j.rinp.2022.105682 doi: 10.1016/j.rinp.2022.105682
    [13] T. Zhang, L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072. https://doi.org/10.1016/j.aml.2019.106072 doi: 10.1016/j.aml.2019.106072
    [14] T. Zhang, J. Zhou, Y. Liao, Exponentially stable periodic oscillation and Mittag-Leffler stabilization for fractional-order impulsive control neural networks with piecewise Caputo derivatives, IEEE Trans. Cybern., 52 (2022), 9670–9683. https://doi.org/10.1109/TCYB.2021.3054946 doi: 10.1109/TCYB.2021.3054946
    [15] T. Zhang, Y. Li, Global exponential stability of discrete-time almost automorphic Caputo-Fabrizio BAM fuzzy neural networks via exponential Euler technique, Knowl. Based Syst., 246 (2022), 108675. https://doi.org/10.1016/j.knosys.2022.108675 doi: 10.1016/j.knosys.2022.108675
    [16] T. Zhang, Y. Li, Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations, Appl. Math. Lett., 124 (2022), 107709. https://doi.org/10.1016/j.aml.2021.107709 doi: 10.1016/j.aml.2021.107709
    [17] M. A. Khan, S. Ullah, K. O. Okosun, K. Shah, A fractional order pine wilt disease model with Caputo-Fabrizio derivative, Adv. Differ. Equations, 2018 (2018), 410. https://doi.org/10.1186/s13662-018-1868-4 doi: 10.1186/s13662-018-1868-4
    [18] M. Shakeel, I. Hussain, H. Ahmad, I. Ahmad, P. Thounthong, Y. F. Zhang, Meshless technique for the solution of time-fractional partial differential equations having real-world applications, J. Funct. Spaces, 2020 (2020), 8898309. https://doi.org/10.1155/2020/8898309 doi: 10.1155/2020/8898309
    [19] H. Ahmad, T. A. Khan, P. S. Stanimirović, Y. M. Chu, I. Ahmad, Modified variational iteration algorithm-Ⅱ: convergence and applications to diffusion models, Complexity, 2020 (2020), 8841718. https://doi.org/10.1155/2020/8841718 doi: 10.1155/2020/8841718
    [20] M. Adel, M. M. Khader, S. Algelany, High-dimensional chaotic Lorenz system: numerical treated using Changhee polynomials of the Appell type, Fractal Fract., 7 (2023), 398. https://doi.org/10.3390/fractalfract7050398 doi: 10.3390/fractalfract7050398
    [21] Y. F. Ibrahim, S. E. A. El-Bar, M. M. Khader, M. A. Adel, Studying and simulating the fractional Covid-19 model using an efficient spectral collocation approach, Fractal Fract., 7 (2023), 307. https://doi.org/10.3390/fractalfract7040307 doi: 10.3390/fractalfract7040307
    [22] M. N. Khan, I. Ahmad, H. Ahmad, A radial basis function collocation method for space-dependent inverse heat problems, J. Appl. Comput. Mech., 6 (2020), 1187–1199. https://doi.org/10.22055/JACM.2020.32999.2123 doi: 10.22055/JACM.2020.32999.2123
    [23] M. Adel, H. M. Srivastava, M. M. Khader, Implementation of an accurate method for the analysis and simulation of electrical R-L circuits, Math. Meth. Appl. Sci., 46 (2023), 8362–8371. https://doi.org/10.1002/mma.8062 doi: 10.1002/mma.8062
    [24] W. M. Abd-Elhameed, A. M. Alkerledri, Spectral solutions of linear and nonlinear BVPs using certain Jacobi polynomials generalizing third- and fourth-kinds of chebyshev polynomials, CMES Comput. Model. Eng. Sci., 126 (2021), 955–989. https://doi.org/10.32604/cmes.2021.013603 doi: 10.32604/cmes.2021.013603
    [25] A. Napoli, W. M. Abd-Elhameed, An innovative harmonic numbers operational matrix method for solving initial value problems, Calcolo, 54 (2017), 57–76. https://doi.org/10.1007/s10092-016-0176-1 doi: 10.1007/s10092-016-0176-1
    [26] J. H. He, A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci. Numer., 2 (1997), 230–235. https://doi.org/10.1016/S1007-5704(97)90007-1 doi: 10.1016/S1007-5704(97)90007-1
    [27] N. H. Sweilam, R. F. Al-Bar, Variational iteration method for coupled nonlinear Schrödinger equations, Comput. Math. Appl., 54 (2007), 993–999. https://doi.org/10.1016/j.camwa.2006.12.068 doi: 10.1016/j.camwa.2006.12.068
    [28] J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng., 167 (1998), 57–68. https://doi.org/10.1016/S0045-7825(98)00108-X doi: 10.1016/S0045-7825(98)00108-X
    [29] Z. Odibat, S. Momani, The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics, Comput. Math. Appl., 58 (2009), 2199–2208. https://doi.org/10.1016/j.camwa.2009.03.009 doi: 10.1016/j.camwa.2009.03.009
    [30] N. H. Sweilam, M. M. Khader, Approximate solutions to the nonlinear vibrations of multiwalled carbon nanotubes using Adomian decomposition method, Appl. Math. Comput., 217 (2010), 495–505. https://doi.org/10.1016/j.amc.2010.05.082 doi: 10.1016/j.amc.2010.05.082
    [31] G. Jumarie, Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. application to merton's optimal portfolio, Comput. Math. Appl., 59 (2010), 1142–1164. https://doi.org/10.1016/j.camwa.2009.05.015 doi: 10.1016/j.camwa.2009.05.015
    [32] C. Ludwin, Blood alcohol content, Undergrad. J. Math. Model., 3 (2011), 1–10.
    [33] S. Qureshi, A. Yusuf, A. A. Shaikh, M. Inc, D. Baleanu, Fractional modeling of blood ethanol concentration system with real data application, Chaos, 29 (2019), 013143. https://doi.org/10.1063/1.5082907 doi: 10.1063/1.5082907
    [34] N. Samardzija, L. D. Greller, Explosive route to chaos through a fractal torus in a generalized Lotka-Volterra model, Bull. Math. Biol., 50 (1988), 465–491. https://doi.org/10.1007/BF02458847 doi: 10.1007/BF02458847
    [35] S. Momani, S. Abuasad, Application of He's variational iteration method to Helmholtz equation, Chaos Solitons Fract., 27 (2006), 1119–1123. https://doi.org/10.1016/j.chaos.2005.04.113 doi: 10.1016/j.chaos.2005.04.113
    [36] H. Jafari, A. Alipoor, A new method for calculating general Lagrange multiplier in the variational iteration method, Numer. Methods Partial Differ. Equations, 27 (2011), 996–1001. https://doi.org/10.1002/num.20567 doi: 10.1002/num.20567
    [37] H. Jafari, A. Kadem, D. Baleanu, Variational iteration method for a fractional-order Brusselator system, Abstr. Appl. Anal., 2014 (2014), 496323. https://doi.org/10.1155/2014/496323 doi: 10.1155/2014/496323
    [38] M. M. Khader, K. M. Saad, Numerical treatment for studying the blood ethanol concentration systems with different forms of fractional derivatives, Int. J. Mod. Phys. C, 31 (2020), 2050044. https://doi.org/10.1142/S0129183120500448 doi: 10.1142/S0129183120500448
    [39] H. M. El-Hawary, M. S. Salim, H. S. Hussien, Ultraspherical integral method for optimal control problems governed by ordinary differential equations, J. Glob. Optim., 25 (2003), 283–303. https://doi.org/10.1023/A:1022463810376 doi: 10.1023/A:1022463810376
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1316) PDF downloads(50) Cited by(18)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog