Research article

Global stability and optimal vaccination control of SVIR models

  • Received: 29 October 2023 Revised: 24 December 2023 Accepted: 29 December 2023 Published: 08 January 2024
  • MSC : 92C60, 92D30

  • Vaccination is widely acknowledged as an affordable and cost-effective approach to guard against infectious diseases. It is important to take vaccination rate, vaccine effectiveness, and vaccine-induced immune decline into account in epidemic dynamical modeling. In this paper, an epidemic dynamical model of vaccination is developed. This model provides a framework of the infectious disease transmission dynamics model through qualitative and quantitative analysis. The result shows that the system may have multiple equilibria. We used the next-generation operator approach to calculate the maximum spectral radius, that is, basic reproduction number $ {R_{vac}} $. Next, by dividing the model into infected and uninfected subjects, we can prove that the disease-free equilibrium is globally asymptotically stable when $ {R_{vac}} < 1 $, provided certain assumptions are satisfied. When $ {R_{vac}} > 1 $, there exists a unique endemic equilibrium. Using geometric methods, we calculate the second compound matrix and demonstrate the Lozinskii measure $ \bar q \leqslant 0 $, which is equivalent to the unique endemic equilibrium, which is globally asymptotically stable. Then, using center manifold theory, we justify the existence of forward bifurcation. As the vaccination rate decreases, the likelihood of forward bifurcation increases. We also theoretically show the presence of Hopf bifurcation. Then, we performed sensitivity analysis and found that increasing the vaccine effectiveness rate can curb the propagation of disease effectively. To examine the influence of vaccination on disease control, we chose the vaccination rate as the optimal vaccination control parameter, using the Pontryagin maximum principle, and we found that increasing vaccination rates reduces the number of infected individuals. Finally, we ran a numerical simulation to finalize the theoretical results.

    Citation: Xinjie Zhu, Hua Liu, Xiaofen Lin, Qibin Zhang, Yumei Wei. Global stability and optimal vaccination control of SVIR models[J]. AIMS Mathematics, 2024, 9(2): 3453-3482. doi: 10.3934/math.2024170

    Related Papers:

  • Vaccination is widely acknowledged as an affordable and cost-effective approach to guard against infectious diseases. It is important to take vaccination rate, vaccine effectiveness, and vaccine-induced immune decline into account in epidemic dynamical modeling. In this paper, an epidemic dynamical model of vaccination is developed. This model provides a framework of the infectious disease transmission dynamics model through qualitative and quantitative analysis. The result shows that the system may have multiple equilibria. We used the next-generation operator approach to calculate the maximum spectral radius, that is, basic reproduction number $ {R_{vac}} $. Next, by dividing the model into infected and uninfected subjects, we can prove that the disease-free equilibrium is globally asymptotically stable when $ {R_{vac}} < 1 $, provided certain assumptions are satisfied. When $ {R_{vac}} > 1 $, there exists a unique endemic equilibrium. Using geometric methods, we calculate the second compound matrix and demonstrate the Lozinskii measure $ \bar q \leqslant 0 $, which is equivalent to the unique endemic equilibrium, which is globally asymptotically stable. Then, using center manifold theory, we justify the existence of forward bifurcation. As the vaccination rate decreases, the likelihood of forward bifurcation increases. We also theoretically show the presence of Hopf bifurcation. Then, we performed sensitivity analysis and found that increasing the vaccine effectiveness rate can curb the propagation of disease effectively. To examine the influence of vaccination on disease control, we chose the vaccination rate as the optimal vaccination control parameter, using the Pontryagin maximum principle, and we found that increasing vaccination rates reduces the number of infected individuals. Finally, we ran a numerical simulation to finalize the theoretical results.



    加载中


    [1] World Health Organization: Worldwide measles deaths climb 50% from 2016 to 2019 claiming over 207 500 lives in 2019, 2020. Available from: https://www.who.int/news/item/12-11-2020-worldwide-measles-deaths-climb-50-from-2016-to-2019-claiming-over-207-500-lives-in-2019.
    [2] World Health Organization: Mpox outbreak 2022- global, 2023. Available from: https://www.who.int/emergencies/situations/monkeypox-oubreak-2022.
    [3] World Health Organization: Weekly epidemiological update on COVID-19-8 June 2023, 2023. Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---8-june-2023.
    [4] World Health Organization: How do vaccines work?, 2020. Available from: https://www.who.int/news-room/feature-stories/detail/how-do-vaccines-work.
    [5] World Health Organization: Measles, 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/measles.
    [6] World Health Organization: Mpox (monkeypox), 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/monkeypox.
    [7] Our World in Data: Coronavirus (COVID-19) Vaccinations, 2023. Available from: https://ourworldindata.org/covid-vaccinations.
    [8] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics—I, B. Math. Biol., 53 (1991), 33–55. https://doi.org/10.1007/bf02464423 doi: 10.1007/bf02464423
    [9] Z. E. Ma, J. Li, Dynamical modeling and analysis of epidemics, Singapore: Stallion Press, 2009. https://doi.org/10.1142/6799
    [10] X. C. Duan, S. L. Yuan, X. Z. Li, Global stability of an SVIR model with age of vaccination, Appl. Math. Comput., 226 (2014), 528–540. https://doi.org/10.1016/j.amc.2013.10.073 doi: 10.1016/j.amc.2013.10.073
    [11] X. N. Liu, Y. Takeuchi, S. Iwami, SVIR epidemic models with vaccination strategies, J. Theor. Biol., 253 (2008), 1–11. https://doi.org/10.1016/j.jtbi.2007.10.014 doi: 10.1016/j.jtbi.2007.10.014
    [12] P. H. Guzzi, F. Petrizzelli, T. Mazza, Disease spreading modeling and analysis: A survey, Brief. Bioinform., 23 (2022), bbac230. https://doi.org/10.1093/bib/bbac230
    [13] F. Petrizzelli, P. H. Guzzi, T. Mazza, Beyond COVID-19 Pandemic: Topology-aware optimization of vaccination strategy for minimizing virus spreading, Comput. Struct. Biotec. J., 20 (2022), 2664–2671. https://doi.org/10.1016/j.csbj.2022.05.040 doi: 10.1016/j.csbj.2022.05.040
    [14] X. T. Han, H. Liu, X. F. Lin, Y. M. Wei, M. Ming, Dynamic analysis of a VSEIR model with vaccination efficacy and immune decline, Adv. Math. Phys., 2022 (2022), 7596164. https://doi.org/10.1155/2022/7596164 doi: 10.1155/2022/7596164
    [15] H. Liu, X. T. Han, X. F. Lin, X. J. Zhu, Y. M. Wei, Impact of vaccine measures on the transmission dynamics of COVID-19, Plos One, 18 (2023), e0290640. https://doi.org/10.1371/journal.pone.0290640
    [16] H. T. Song, R. F. Wang, S. Q. Liu, Z. Jin, D. H. He, Global stability and optimal control for a COVID-19 model with vaccination and isolation delays, Results Phys., 42 (2022), 106011. https://doi.org/10.1016/j.rinp.2022.106011 doi: 10.1016/j.rinp.2022.106011
    [17] J. P. Zhang, X. Y. Ma, Z. Jin, Stability analysis of an HIV/AIDS epidemic model with sexual transmission in a patchy environment, J. Biol. Dynam., 17 (2023), 2227216. https://doi.org/10.1080/17513758.2023.2227216 doi: 10.1080/17513758.2023.2227216
    [18] Y. Chen, J. P. Zhang, Z. Jin, Transmission model and optimal control strategy of the fifth wave of COVID-19 in hong kong with age-heterogeneity, Nonlinear Dynam., 111 (2023), 20485–20510. https://doi.org/10.1007/s11071-023-08895-9 doi: 10.1007/s11071-023-08895-9
    [19] S. Li, Samreen, S. Ullah, S. A. Alqahtani, S. M. Tag, A. Akgül, Mathematical assessment of Monkeypox with asymptomatic infection: Prediction and optimal control analysis with real data application, Results Phys., 51 (2023), 106726. https://doi.org/10.1016/j.rinp.2023.106726 doi: 10.1016/j.rinp.2023.106726
    [20] N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, B. Math. Biol., 70 (2008), 1272–1296. https://doi.org/10.1007/s11538-008-9299-0 doi: 10.1007/s11538-008-9299-0
    [21] F. Ndaïrou, I. Area, J. J. Nieto, D. F. M. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos Soliton. Fract., 135 (2020), 109846. https://doi.org/10.1016/j.chaos.2020.109846 doi: 10.1016/j.chaos.2020.109846
    [22] S. K. Biswas, U. Ghosh, S. Sarkar, Mathematical model of zika virus dynamics with vector control and sensitivity analysis, Infect. Dis. Mode., 5 (2020), 23–41. https://doi.org/10.1016/j.idm.2019.12.001 doi: 10.1016/j.idm.2019.12.001
    [23] Y. Li, L. W. Wang, L. Y. Pang, S. H. Liu, The data fitting and optimal control of a hand, foot and mouth disease (HFMD) model with stage structure, Appl. Math. Comput., 276 (2017), 61–74. https://doi.org/10.1016/j.amc.2015.11.090 doi: 10.1016/j.amc.2015.11.090
    [24] X. W. Wang, H. J. Peng, B. Y. Shi, D. H. Jiang, S. Zhang, B. S. Chen, Optimal vaccination strategy of a constrained time-varying SEIR epidemic model, Commun. Nonlinear Sci., 67 (2019), 37–48. https://doi.org/10.1016/j.cnsns.2018.07.003 doi: 10.1016/j.cnsns.2018.07.003
    [25] J. M. Guo, X. F. Luo, J. Zhang, M. T. Li, A mathematical model for ovine brucellosis during dynamic transportation of sheep, and its applications in Jalaid Banner and Ulanhot city, Mathematics, 10 (2022), 3436. https://doi.org/10.3390/math10193436 doi: 10.3390/math10193436
    [26] M. Kirkilionis, S. Walcher, On comparison systems for ordinary differential equations, J. Math. Anal. Appl., 299 (2004), 157–173. https://doi.org/10.1016/j.jmaa.2004.06.025 doi: 10.1016/j.jmaa.2004.06.025
    [27] P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [28] Z. S. Shuai, P. Driessche, Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math., 73 (2013), 1513–1532. https://doi.org/10.1137/120876642 doi: 10.1137/120876642
    [29] L. M. Cai, Z. Q. Li, X. Y. Song, Global analysis of an epidemic model with vaccination, J. Appl. Math. Comput., 57 (2018), 605–628. https://doi.org/10.1007/s12190-017-1124-1 doi: 10.1007/s12190-017-1124-1
    [30] C. C. Chavez, Z. L. Feng, W. Z. Huang, On the computation of R0 and its role on global stability, Mathematical approaches for emerging and re-emerging infection diseases: An introduction, 125 (2002), 31–65.
    [31] A. Khan, R. Zarin, G. Hussain, N. A. Ahmad, M. H. Mohd, A. Yusuf, Stability analysis and optimal control of covid-19 with convex incidence rate in Khyber Pakhtunkhawa (Pakistan), Results Phys., 20 (2021), 103703. https://doi.org/10.1016/j.rinp.2020.103703 doi: 10.1016/j.rinp.2020.103703
    [32] M. Y. Li, J. R. Graef, L. C. Wang, J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160 (1999), 191–213. https://doi.org/10.1016/S0025-5564(99)00030-9 doi: 10.1016/S0025-5564(99)00030-9
    [33] M. Y. Li, J. Muldowney, A geometric approach to Global-Stability problems, SIAM J. Math. Anal., 27 (1996). https://doi.org/10.1137/S0036141094266449
    [34] H. Pourbashash, S. S. Pilyugin, C. McCluskey, P. D. Leenheer, Global analysis of within host virus models with cell-to-cell viral transmission, Discrete Contin. Dyn. Syst. Ser. B., 19 (2014). 3341–3357. https://doi.org/10.3934/dcdsb.2014.19.3341
    [35] P. Viriyapong, W. Ridbamroong, Global stability analysis and optimal control of measles model with vaccination and treatment, J. Appl. Math. Comput., 62 (2020), 207–237. https://doi.org/10.1007/s12190-019-01282-x doi: 10.1007/s12190-019-01282-x
    [36] Y. Z. Bai, X. Q. Mu, Global asymptotic stability of a generalized sirs epidemic model with transfer from infectious to susceptible, J. Appl. Anal. Comput., 8 (2018), 402–412. https://doi.org/10.11948/2018.402 doi: 10.11948/2018.402
    [37] A. Kumar, P. K. Srivastava, R. P. Gupta, Nonlinear dynamics of infectious diseases via information-induced vaccination and saturated treatment, Math. Comput. Simulat., 157 (2019), 77–99. https://doi.org/10.1016/j.matcom.2018.09.024 doi: 10.1016/j.matcom.2018.09.024
    [38] L. Perko, Differential Equations and Dynamical Systems, New York:Springer-Verlag, 2000. https://doi.org/10.1007/978-1-4613-0003-8
    [39] C. C. Chavez, B. J. Song, Dynamical models of tuberculosis and their applications. Math. Biosci. Eng., 1 (2004), 361–404. https://doi.org/10.3934/mbe.2004.1.361
    [40] X. Y. Zhou, J. A. Cui, Analysis of stability and bifurcation for an SEIV epidemic model with vaccination and nonlinear incidence rate, Nonlinear Dynam., 63 (2011), 639–653. https://doi.org/10.1007/s11071-010-9826-z
    [41] H. W. Berhe, O. D. Makinde, D. M. Theuri, Parameter estimation and sensitivity analysis of dysentery diarrhea epidemic model, J. Appl. Math., 2019 (2019), 8465747. https://doi.org/10.1155/2019/8465747 doi: 10.1155/2019/8465747
    [42] M. H. A. Biswas, L. T. Paiva, M. D. Pinho, A SEIR model for control of infectious diseases with constraints, Math. Biosci. Eng., 11 (2014), 761–784. https://doi.org/10.3934/MBE.2014.11.761 doi: 10.3934/MBE.2014.11.761
    [43] X. W. Wang, H. J, Peng, S. Zhang, B. S. Chen, W. X. Zhong, A symplectic pseudospectral method for nonlinear optimal control problems with inequality constraints, ISA Transactions, 68 (2017), 335–352. https://doi.org/10.1016/j.isatra.2017.02.018 doi: 10.1016/j.isatra.2017.02.018
    [44] S. Lenhart, J. T. Workman, Optimal control applied to biological models, 1st, New York: Chapman and Hall/CRC, 2007. https://doi.org/10.1201/9781420011418
    [45] L. Y. Pang, S. G. Ruan, S. H. Liu, Z. Zhao, X. A. Zhang, Transmission dynamics and optimal control of measles epidemics, Appl. Math. Comput., 256 (2015), 131–147. https://doi.org/10.1016/j.amc.2014.12.096 doi: 10.1016/j.amc.2014.12.096
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(995) PDF downloads(94) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog