Research article Special Issues

The core of the unit sphere of a Banach space

  • Received: 23 October 2023 Revised: 18 December 2023 Accepted: 02 January 2024 Published: 08 January 2024
  • MSC : 46B20

  • A geometric invariant or preserver is essentially a geometric property of the unit sphere of a real Banach space that remains invariant under the action of a surjective isometry onto the unit sphere of another real Banach space. A new geometric invariant of the unit ball of a real Banach space was introduced and analyzed in this manuscript: The core of the unit sphere. This geometric invariant consists of all points in the unit sphere of a real Banach space, which are contained in a unique maximal face. It is, in a geometrical sense, the opposite of fractal-like sets such as starlike sets. Classical geometric properties, such as smoothness and strict convexity, were employed to characterize the core of the unit sphere. Also, the core was related to a recently introduced new index: the index of strong rotundity. A characterization of the core in terms of the index of strong rotundity was provided. Finally, applications to longstanding open problems, such as Tingley's problem, were provided by presenting a new notion: Mazur-Ulam classes of Banach spaces.

    Citation: Almudena Campos-Jiménez, Francisco Javier García-Pacheco. The core of the unit sphere of a Banach space[J]. AIMS Mathematics, 2024, 9(2): 3440-3452. doi: 10.3934/math.2024169

    Related Papers:

  • A geometric invariant or preserver is essentially a geometric property of the unit sphere of a real Banach space that remains invariant under the action of a surjective isometry onto the unit sphere of another real Banach space. A new geometric invariant of the unit ball of a real Banach space was introduced and analyzed in this manuscript: The core of the unit sphere. This geometric invariant consists of all points in the unit sphere of a real Banach space, which are contained in a unique maximal face. It is, in a geometrical sense, the opposite of fractal-like sets such as starlike sets. Classical geometric properties, such as smoothness and strict convexity, were employed to characterize the core of the unit sphere. Also, the core was related to a recently introduced new index: the index of strong rotundity. A characterization of the core in terms of the index of strong rotundity was provided. Finally, applications to longstanding open problems, such as Tingley's problem, were provided by presenting a new notion: Mazur-Ulam classes of Banach spaces.



    加载中


    [1] A. Aizpuru, F. J. García-Pacheco, Rotundity in transitive and separable Banach spaces, Quaest. Math., 30 (2007), 85–96. https://doi.org/10.2989/160736007780205684 doi: 10.2989/160736007780205684
    [2] T. Banakh, Any isometry between the spheres of absolutely smooth 2-dimensional Banach spaces is linear, J. Math. Anal. Appl., 500 (2021), 125104. https://doi.org/10.1016/j.jmaa.2021.125104 doi: 10.1016/j.jmaa.2021.125104
    [3] T. Banakh, J. Cabello Sánchez, Every non-smooth 2-dimensional Banach space has the Mazur-Ulam property, Linear Algebra Appl., 625 (2021), 1–19. https://doi.org/10.1016/j.laa.2021.04.020 doi: 10.1016/j.laa.2021.04.020
    [4] P. Bandyopadhyay, D. Huang, B. L. Lin, S. L. Troyanski, Some generalizations of locally uniform rotundity, J. Math. Anal. Appl., 252 (2000), 906–916. https://doi.org/10.1006/jmaa.2000.7169 doi: 10.1006/jmaa.2000.7169
    [5] P. Bandyopadhyay, B. L. Lin, Some properties related to nested sequence of balls in Banach spaces, Taiwanese J. Math., 5 (2001), 19–34. https://doi.org/10.11650/twjm/1500574887 doi: 10.11650/twjm/1500574887
    [6] J. B. Guerrero, A. Rodríguez-Palacios, Transitivity of the norm on Banach spaces, Extracta Math., 17 (2002), 1–58.
    [7] A. Beurling, A. E. Livingston, A theorem on duality mappings in Banach spaces, Ark. Mat., 4 (1962), 405–411. https://doi.org/10.1007/BF02591622 doi: 10.1007/BF02591622
    [8] J. Blažek, Some remarks on the duality mapping, Acta Univ. Carolinae Math. Phys., 23 (1982), 15–19.
    [9] J. C. Sánchez, A reflection on Tingley's problem and some applications, J. Math. Anal. Appl., 476 (2019), 319–336. https://doi.org/10.1016/j.jmaa.2019.03.041 doi: 10.1016/j.jmaa.2019.03.041
    [10] A. Campos-Jiménez, F. J. García-Pacheco, Geometric invariants of surjective isometries between unit spheres, Mathematics, 9 (2021), 2346. https://doi.org/10.3390/math9182346 doi: 10.3390/math9182346
    [11] A. Campos-Jiménez, F. J. García-Pacheco, Compact convex sets free of inner points in infinite-dimensional topological vector spaces, Math. Nachr., 2023. https://doi.org/10.1002/mana.202200328
    [12] L. Cheng, Y. Dong, On a generalized Mazur-Ulam question: Extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl., 377 (2011), 464–470, https://doi.org/10.1016/j.jmaa.2010.11.025 doi: 10.1016/j.jmaa.2010.11.025
    [13] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414. https://doi.org/10.2307/1989630 doi: 10.2307/1989630
    [14] D. F. Cudia, The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc., 110 (1964), 284–314. https://doi.org/10.2307/1993705 doi: 10.2307/1993705
    [15] M. Cueto-Avellaneda, A. M. Peralta, On the Mazur-Ulam property for the space of Hilbert-space-valued continuous functions, J. Math. Anal. Appl., 479 (2019), 875–902. https://doi.org/10.1016/j.jmaa.2019.06.056 doi: 10.1016/j.jmaa.2019.06.056
    [16] M. Cueto-Avellaneda, A. M. Peralta, The Mazur-Ulam property for commutative von Neumann algebras, Linear Multilinear A., 68 (2020), 337–362. https://doi.org/10.1080/03081087.2018.1505823 doi: 10.1080/03081087.2018.1505823
    [17] M. M. Day, Normed linear spaces, Berlin, Heidelberg: Springer, 1973. https://doi.org/10.1007/978-3-662-09000-8
    [18] J. Diestel, Geometry of Banach spaces–selected topics, Berlin, Heidelberg: Springer, 1975, https://doi.org/10.1007/BFb0082079
    [19] G. G. Ding, The isometric extension of the into mapping from a $ \mathcal{L}^{\infty}(\Gamma)$-type space to some Banach space, Illinois J. Math., 51 (2007), 445–453. https://doi.org/10.1215/ijm/1258138423 doi: 10.1215/ijm/1258138423
    [20] X. N. Fang, J. H. Wang, Extension of isometries between the unit spheres of normed space $E$ and $C(\Omega)$, Acta Math. Sin., 22 (2006), 1819–1824. https://doi.org/10.1007/s10114-005-0725-z doi: 10.1007/s10114-005-0725-z
    [21] X. Fang, J. Wang, Extension of isometries on the unit sphere of $l^p(\Gamma)$ space, Sci. China Math., 53 (2010), 1085–1096. https://doi.org/10.1007/s11425-010-0028-4 doi: 10.1007/s11425-010-0028-4
    [22] V. Ferenczi, C. Rosendal, Non-unitarisable representations and maximal symmetry, J. Inst. Math. Jussieu, 16 (2017), 421–445. https://doi.org/10.1017/S1474748015000195 doi: 10.1017/S1474748015000195
    [23] F. J. Fernández-Polo, J. J. Garcés, A. M. Peralta, I. Villanueva, Tingley's problem for spaces of trace class operators, Linear Algebra Appl., 529 (2017), 294–323. https://doi.org/10.1016/j.laa.2017.04.024 doi: 10.1016/j.laa.2017.04.024
    [24] F. J. García-Pacheco, Relative interior and closure of the set of inner points, Quaest. Math., 43 (2020), 761–772. https://doi.org/10.2989/16073606.2019.1605421 doi: 10.2989/16073606.2019.1605421
    [25] F. J. García-Pacheco, A solution to the Faceless problem, J. Geom. Anal., 30 (2020), 3859–3871. https://doi.org/10.1007/s12220-019-00220-4 doi: 10.1007/s12220-019-00220-4
    [26] F. J. García-Pacheco, Asymptotically convex Banach spaces and the index of rotundity problem, Proyecciones, 31 (2012), 91–101, https://doi.org/10.4067/S0716-09172012000200001 doi: 10.4067/S0716-09172012000200001
    [27] F. J. García-Pacheco, B. Zheng, Geometric properties on non-complete spaces, Quaest. Math., 34 (2011), 489–511. https://doi.org/10.2989/16073606.2011.640746 doi: 10.2989/16073606.2011.640746
    [28] F. J. García-Pacheco, Advances on the Banach-Mazur conjecture for rotations, J. Nonlinear Convex Anal., 16 (2015), 761–765.
    [29] F. J. García-Pacheco, The index of strong rotundity, AIMS Mathematics, 8 (2023), 20477–20486. https://doi.org/10.3934/math.20231043. doi: 10.3934/math.20231043
    [30] F. J. García-Pacheco, S. Moreno-Pulido, E. Naranjo-Guerra, A. Sánchez-Alzola, Non-linear inner structure of topological vector spaces, Mathematics, 9 (2021), 466. https://doi.org/10.3390/math9050466 doi: 10.3390/math9050466
    [31] F. J. García-Pacheco, E. Naranjo-Guerra, Inner structure in real vector spaces, Georgian Math. J., 27 (2020), 361–366. https://doi.org/10.1515/gmj-2018-0048 doi: 10.1515/gmj-2018-0048
    [32] V. Kadets, M. Martín, Extension of isometries between unit spheres of finite-dimensional polyhedral Banach spaces, J. Math. Anal. Appl., 396 (2012), 441–447. https://doi.org/10.1016/j.jmaa.2012.06.031 doi: 10.1016/j.jmaa.2012.06.031
    [33] J. Lindenstrauss, On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J., 10 (1963), 241–252, https://doi.org/10.1307/mmj/1028998906 doi: 10.1307/mmj/1028998906
    [34] R. Liu, On extension of isometries between unit spheres of $\ell^{\infty}(\Gamma)$-type space and a Banach space $E$, J. Math. Anal. Appl., 333 (2007), 959–970. https://doi.org/10.1016/j.jmaa.2006.11.044 doi: 10.1016/j.jmaa.2006.11.044
    [35] P. Mankiewicz, On extension of isometries in normed linear spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 20 (1972), 367–371.
    [36] S. Mazur, Über konvexe mengen in linearem normietcn Räumen, Stud. Math., 4 (1933), 70–84. https://doi.org/10.4064/sm-4-1-70-84 doi: 10.4064/sm-4-1-70-84
    [37] S. Mazur, S. Ulam, Sur les transformations isometriques d'espaces vectoriels, normes, C. R. Acad. Sci. Paris, 194 (1932), 946–948.
    [38] R. E. Megginson, An introduction to Banach space theory, New York, NY: Springer, 1998. https://doi.org/10.1007/978-1-4612-0603-3
    [39] A. M. Peralta, On the unit sphere of positive operators, Banach J. Math. Anal., 13 (2019), 91–112, https://doi.org/10.1215/17358787-2018-0017 doi: 10.1215/17358787-2018-0017
    [40] A. M. Peralta, R. Tanaka, A solution to Tingley's problem for isometries between the unit spheres of compact $\rm C^*$-algebras and $\rm JB^*$-triples, Sci. China Math., 62 (2019), 553–568, https://doi.org/10.1007/s11425-017-9188-6 doi: 10.1007/s11425-017-9188-6
    [41] D. N. Tan, Extension of isometries on unit sphere of $L^\infty$, Taiwanese J. Math., 15 (2011), 819–827. https://doi.org/10.11650/twjm/1500406236 doi: 10.11650/twjm/1500406236
    [42] R. Tanaka, A further property of spherical isometries, B. Aust. Math. Soc., 90 (2014), 304–310. https://doi.org/10.1017/S0004972714000185 doi: 10.1017/S0004972714000185
    [43] R. Tanaka, On the frame of the unit ball of Banach spaces, Cent. Eur. J. Math., 12 (2014), 1700–1713. https://doi.org/10.2478/s11533-014-0437-7 doi: 10.2478/s11533-014-0437-7
    [44] R. Tanaka, The solution of Tingley's problem for the operator norm unit sphere of complex $n\times n$ matrices, Linear Algebra Appl., 494 (2016), 274–285. https://doi.org/10.1016/j.laa.2016.01.020 doi: 10.1016/j.laa.2016.01.020
    [45] R. Tanaka, Tingley's problem on finite von Neumann algebras, J. Math. Anal. Appl., 451 (2017), 319–326. https://doi.org/10.1016/j.jmaa.2017.02.013 doi: 10.1016/j.jmaa.2017.02.013
    [46] D. Tingley, Isometries of the unit sphere, Geometriae Dedicata, 22 (1987), 371–378. https://doi.org/10.1007/BF00147942 doi: 10.1007/BF00147942
    [47] R. S. Wang, Isometries between the unit spheres of $C_0(\Omega)$ type spaces, Acta Math. Sci., 14 (1994), 82–89, https://doi.org/10.1016/S0252-9602(18)30093-6 doi: 10.1016/S0252-9602(18)30093-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(799) PDF downloads(69) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog