Processing math: 51%
Research article Special Issues

The core of the unit sphere of a Banach space

  • Received: 23 October 2023 Revised: 18 December 2023 Accepted: 02 January 2024 Published: 08 January 2024
  • MSC : 46B20

  • A geometric invariant or preserver is essentially a geometric property of the unit sphere of a real Banach space that remains invariant under the action of a surjective isometry onto the unit sphere of another real Banach space. A new geometric invariant of the unit ball of a real Banach space was introduced and analyzed in this manuscript: The core of the unit sphere. This geometric invariant consists of all points in the unit sphere of a real Banach space, which are contained in a unique maximal face. It is, in a geometrical sense, the opposite of fractal-like sets such as starlike sets. Classical geometric properties, such as smoothness and strict convexity, were employed to characterize the core of the unit sphere. Also, the core was related to a recently introduced new index: the index of strong rotundity. A characterization of the core in terms of the index of strong rotundity was provided. Finally, applications to longstanding open problems, such as Tingley's problem, were provided by presenting a new notion: Mazur-Ulam classes of Banach spaces.

    Citation: Almudena Campos-Jiménez, Francisco Javier García-Pacheco. The core of the unit sphere of a Banach space[J]. AIMS Mathematics, 2024, 9(2): 3440-3452. doi: 10.3934/math.2024169

    Related Papers:

    [1] Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba . Some properties of n-quasi-(m,q)-isometric operators on a Banach space. AIMS Mathematics, 2023, 8(12): 31246-31257. doi: 10.3934/math.20231599
    [2] Hadi Obaid Alshammari . Higher order hyperexpansivity and higher order hypercontractivity. AIMS Mathematics, 2023, 8(11): 27227-27240. doi: 10.3934/math.20231393
    [3] Soon-Mo Jung, Jaiok Roh . Local stability of isometries on 4-dimensional Euclidean spaces. AIMS Mathematics, 2024, 9(7): 18403-18416. doi: 10.3934/math.2024897
    [4] Lijun Ma, Shuxia Liu, Zihong Tian . The binary codes generated from quadrics in projective spaces. AIMS Mathematics, 2024, 9(10): 29333-29345. doi: 10.3934/math.20241421
    [5] Anas Al-Masarwah, Abd Ghafur Ahmad . Subalgebras of type (α, β) based on m-polar fuzzy points in BCK/BCI-algebras. AIMS Mathematics, 2020, 5(2): 1035-1049. doi: 10.3934/math.2020072
    [6] Uğur Gözütok, Hüsnü Anıl Çoban . Detecting isometries and symmetries of implicit algebraic surfaces. AIMS Mathematics, 2024, 9(2): 4294-4308. doi: 10.3934/math.2024212
    [7] Yang Zhang, Shuxia Liu, Liwei Zeng . A symplectic fission scheme for the association scheme of rectangular matrices and its automorphisms. AIMS Mathematics, 2024, 9(11): 32819-32830. doi: 10.3934/math.20241570
    [8] Yuqi Sun, Xiaoyu Wang, Jing Dong, Jiahong Lv . On stability of non-surjective (ε,s)-isometries of uniformly convex Banach spaces. AIMS Mathematics, 2024, 9(8): 22500-22512. doi: 10.3934/math.20241094
    [9] Su-Dan Wang . The q-WZ pairs and divisibility properties of certain polynomials. AIMS Mathematics, 2022, 7(3): 4115-4124. doi: 10.3934/math.2022227
    [10] Peiying Huang, Yiyuan Zhang . H-Toeplitz operators on the Dirichlet type space. AIMS Mathematics, 2024, 9(7): 17847-17870. doi: 10.3934/math.2024868
  • A geometric invariant or preserver is essentially a geometric property of the unit sphere of a real Banach space that remains invariant under the action of a surjective isometry onto the unit sphere of another real Banach space. A new geometric invariant of the unit ball of a real Banach space was introduced and analyzed in this manuscript: The core of the unit sphere. This geometric invariant consists of all points in the unit sphere of a real Banach space, which are contained in a unique maximal face. It is, in a geometrical sense, the opposite of fractal-like sets such as starlike sets. Classical geometric properties, such as smoothness and strict convexity, were employed to characterize the core of the unit sphere. Also, the core was related to a recently introduced new index: the index of strong rotundity. A characterization of the core in terms of the index of strong rotundity was provided. Finally, applications to longstanding open problems, such as Tingley's problem, were provided by presenting a new notion: Mazur-Ulam classes of Banach spaces.



    This paper considers a fractional coupled system on an infinite interval involving the Erdélyi-Kober derivative:

    {Dγ,δ1βu(x)+F(x,u(x),v(x))=0,x(0,+),Dγ,δ2βv(x)+G(x,u(x),v(x))=0,x(0,+),limx0xβ(2+γ)Iδ1+γ,2δ1u(x)=0,limxxβ(1+γ)Iδ1+γ,2δ1u(x)=0,limx0xβ(2+γ)Iδ2+γ,2δ2v(x)=0,limxxβ(1+γ)Iδ2+γ,2δ2v(x)=0, (1.1)

    where δ1,δ2(1,2], γ(2,1), and β>0. Dγ,δ1β, Dγ,δ2β are Erdélyi-Kober fractional derivatives (EKFDs for short), and Iδ1+γ,2δ1,Iδ2+γ,2δ2 are the Erdélyi-Kober fractional integrals. F,G are continuous functions. We discuss the existence of positive solutions for (1.1).

    During the past several decades, fractional equations have been studied widely; see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] for instance. From the literature, we can see that there are many fractional derivatives used in differential equations. Among these various definitions, the widely used ones are the Riemann-Liouville and Caputo fractional derivatives, in many works. To generalize the Riemann-Liouville fractional derivative, Erdélyi-Kober defined a new fractional derivative, and we call it the Erdélyi-Kober fractional derivative. Moreover, the Erdélyi-Kober operator is very useful; we can refer to [6,9,14,15,16,17] and the references therein. The Erdélyi-Kober operator is a fractional integration operation which was given by Arthur Erdélyi and Hermann Kober in 1940 [23]. Some of these definitions and results were given in Samko et al. [3], Kiryakova [19], and McBride [20].

    Nowadays, the theory of fractional operators in the Erdélyi-Kober frame has attracted much interest from researchers. The study of fractional systems is also very important, as these systems appear in various applications, especially in biological sciences. Recently, some problems of Erdélyi-Kober type fractional differential equations on infinite intervals received widespread attention from many scholars; see [8,21,22] for example.

    Recently, in [8], the authors investigated the following equation:

    {(Dϑ,σθu)(x)+F(u(x))=0,0x<,limt0xθ(2σ)Iσ+ϑ,2σu(x)=0,limt+xθ(2σ)Iσ+ϑ,2σu(x)=0,

    where σ(1,2), ϑ(1,2), θ>0, and F is a given continuous function, Dϑ,σθ denotes the EKFD, and Iσ+ϑ,2σ denotes the Erdélyi-Kober fractional integral. The authors studied the existence and nonexistence of positive solutions for this problem by utilizing a fixed point result which uses the strongly positive-like operators and eigenvalue criteria.

    In [9], the authors studied a fractional coupled system:

    {cDϱu(τ)=F(τ,u(τ),z(τ),cDς1z(τ),Iξz(τ)),τ[0,T]:=K,2<ϱ3,1<ς1<2,cDςz(τ)=G(τ,u(τ),cDϱ1u(τ),Iζu(τ),z(τ),τ[0,T]:=K,2<ς3,1<ϱ1<2,u(0)=ϕ1(z),u(0)=ε1z(k1),u(T)=γρϑρ(ϖ+v)Γ(ϖ)ϑ0σρv+ρ1z(σ)(ϑρσρ)1ϖdσ:=γJv,ϖρv(ϑ),z(0)=ϕ2(u),z(0)=ε2z(k2),z(T)=δvφv(θ+ω)Γ(θ)φ0σvω+υ1u(σ)(φvσv)1θdσ:=δJω,θvu(φ),

    where cDϱ,cDς1,cDς,cDϱ1 are the Liouville-Caputo fractional derivatives of order 2<ϱ,ς3, 1<ς1,ϱ1<2. Iξ,Iζ are the Riemann-Liouville fractional integrals of order 1<ξ,ζ<2. Jυ,ϖρ,Jω,θv are the Erdélyi-Kober fractional integrals of order ϖ,θ>0, with v,ω>0, ρ, ϑ(,+). F,G:K×(,+)4(,+) and ϕ1,ϕ2:C(K,(,+))(,+) are continuous functions. γ,δ,ε1,ε2 are positive real constants. The existence result was given by the Leray-Schauder alternative, and the uniqueness result was obtained due to Banach's fixed-point theorem. By the same methods, Arioua and Titraoui [18] studied system (1.1). Moreover, In [10], Arioua and Titraoui also investigated a new fractional problem involving the Erdélyi-Kober derivative. Inspired by the above articles, we use different methods to consider the fractional coupled system involving Erdélyi-Kober derivative (1.1). We employ the Guo-Krasnosel'skii fixed point theorem to discuss (1.1) in a special Banach space, and we also use the monotone iterative technique to study this system. Some existence results of positive solutions for system (1.1) are obtained, including the existence results of at least two positive solutions.

    Definition 2.1. (see [2]) Let α(,+). Cnα, nN, denotes a set of all functions f(t),t>0, with f(t)=tpf1(t) with p>α and f1Cn[0,).

    Definition 2.2. (see [1,2]) For a function uCα, the σ-order right-hand Erdélyi-Kober fractional integral is

    (Iγ,σβu)(t)=βtβ(γ+σ)Γ(σ)t0sβ(γ+1)1u(s)(tβsβ)1σds,σ,β>0,γ(,+),

    in which, Γ is the Euler gamma function.

    Definition 2.3. (see [2]) Let n1<δn,nN, and for uCα, the σ-order right-hand Erdélyi-Kober fractional derivative is

    (Dγ,σβu)(t)=nj=1(γ+j+tβddt)(Iγ+σ,nσβu)(t),

    where

    nj=1(γ+j+tβddt)(Iγ+σ,nσβu)=(γ+1+tβddt)(γ+n+tβddt)(Iγ+σ,nσβu).

    Lemma 2.1. (see [10]) Let 1<σ2, 2<γ<1, β>0, and hC2α, with 0sβ(γ+m)1h(τ)dτ<, m=1,2. The fractional problem

    {Dγ,σβu(x)+h(x)=0,x>0,limx0xβ(2+γ)Iσ+γ,2δu(x)=0,limxxβ(1+γ)Iσ+γ,2σu(x)=0,

    has a unique solution given by u(x)=0Gσ(x,s)sβ(γ+1)1h(s)ds, where

    Gσ(x,s)={βΓ(σ)[xβ(γ+1)xβ(δ+γ)(xβsβ)σ1],0<sx<,βΓ(σ)xβ(γ+1),0<xs<. (2.1)

    Lemma 2.2. (see [10]) For 1<σ2, 2<γ<1, and β>0, the function Gσ, defined in (2.1), has the following properties:

    (i) Gσ(x,s)1+xβ(1+γ)>0, for x,s>0;

    (ii) Gσ(x,s)1+xβ(1+γ)βΓ(σ), for x,s>0;

    (iii) for 0<τλxτ and s>τλ2, where λ>1,τ>0, we have

    Gσ(x,s)1+xβ(1+γ)β(σ1)τβ(1+γ)Γ(σ)λβ(1γ)(1+τβ(1+γ))=βp(τ)Γ(σ),

    where p(τ)=(σ1)τβ(1+γ)λβ(1+γ)(1+τβ(1+γ)).

    Lemma 2.3. (see [18]) Let 0<σ1,σ21 and F,GC2α with

    0sβ(γ+m)1F(s,u(s),v(s))ds<,m=1,2,
    0sβ(γ+m)1G(s,u(s),v(s))ds<,m=1,2.

    Then, (1.1) has a unique solution given by

    u(x)=0Gσ1(x,s)sβ(γ+1)1F(s,u(s),v(s))ds,
    v(x)=0Gσ2(x,s)sβ(γ+1)1G(s,u(s),v(s))ds,

    where

    Gσ1(x,s)={βΓ(σ1)[xβ(γ+1)xβ(σ1+γ)(xβsβ)σ11],0<sx<,βΓ(σ1)xβ(γ+1),0<xs<, (2.2)
    Gσ2(x,s)={βΓ(σ2)[xβ(γ+1)xβ(σ2+γ)(xβsβ)σ21],0<sx<,βΓ(σ2)xβ(γ+1),0<xs<. (2.3)

    The following result is our main tool.

    Lemma 2.4. (Guo-Krasnosel'skii fixed point theorem; see [37]) P is a cone in a Banach space E, and D1 and D2 are bounded open sets in E with θD1, ¯D1D2. A:P(¯D2D1)P is a completely continuous operator. Consider the following conditions (ⅰ), (ⅱ):

    (i) Aww for wPD1, Aww for wPD2;

    (ii) Aww for wPD1, Aww for wPD2.

    If one of the preceding conditions (ⅰ), (ⅱ) holds, then A has at least one fixed point in P(¯D2D1).

    Next, we present some hypotheses that will play an important role in the subsequent discussion:

    (H1) F,G:(0,+)×(,+)×(,+)(0,+) are continuous and nondecreasing with respect to the second, third variables on (0,+).

    (H2) For (x,u,v)(0,+)×(,+)×(,+),

    F1(x,u,v)=xβ(1+γ)1F(x,(1+xβ(1+γ))u,(1+xβ(1+γ))v),
    F2(x,u,v)=xβ(1+γ)1G(x,(1+xβ(1+γ))u,(1+xβ(1+γ))v),

    such that

    F1(x,u,v)φ1(x)ω1(u)+ψ1(x)ω2(v),
    F2(x,u,v)φ2(x)~ω1(u)+ψ2(x)~ω2(v),

    with ωi,~ωiC((0,+),(0,+)) nondecreasing and φi,ψiL1(0,+), i=1,2.

    (H3) There are positive functions qi,˜qi,i=1,2, with

    qi=0(1+xβ(1+γ))qi(x)dx<,
    ˜qi=0(1+xβ(1+γ))˜qi(x)dx<,

    such that

    xβ(γ+1)1F(x,u,v)F(x,˜u,˜v)∣≤q1(x)u˜u+˜q1(x)v˜v,
    xβ(γ+1)1G(x,u,v)G(x,˜u,˜v)∣≤q2(x)u˜u+˜q2(t)v˜v,

    for any u,v,˜u,˜v(,+) and x(0,+).

    (H4) F,G:(0,+)×(0,+)×(0,+)(0,+) are continuous, such that

    xβ(1+γ)1F(x,u,v)=a1(x)F1(x,u,v),
    xβ(1+γ)1G(x,u,v)=a2(x)G1(x,u,v),

    where a1,a2L1((0,+),(0,+)), F1,G1C((0,+)×(0,+)×(0,+),(0,+)), 0<ττλa1(x)dx<, 0<ττλa2(x)dx<, with τ>0, λ>1. Moreover, xβ(1+γ)1F(x,u,v), xβ(1+γ)1G(x,u,v):[0,+)×(0,+)×(0,+)[0,+) also are continuous.

    Remark 2.1. These conditions ensure the continuity and integrability of nonlinear terms in an infinite interval, which play a very important role in the proof of completely continuity for the relevant integral operators.

    In this section, we use two Banach spaces defined by

    X={uC((0,+),(,+))limx0u(x)1+xβ(1+γ) and limt+u(x)1+xβ(1+γ) exist},

    with the norm

    uX=supx>0u(x)1+xβ(1+γ),

    and

    Y={vC((0,+),(,+))limx0v(x)1+xβ(1+γ) and limx+v(x)1+xβ(1+γ) exist},

    with the norm

    vY=supx>0v(x)1+xβ(1+γ).

    So, (X×Y,(u,v)X×Y) is a Banach space, with the norm (u,v)X×Y=uX+vY.

    Lemma 3.1. If F,G are continuous, then (u,v)X×Y is a solution of system (1.1)(u,v)X×Y is a solution of the following equations:

    {u(x)=0Gσ1(x,s)sβ(γ+1)1F(s,u(s),v(s))ds,v(x)=0Gσ2(x,s)sβ(γ+1)1G(s,u(s),v(s))ds.

    For (u,v)X×Y, we define an operator A:X×YX×Y as follows:

    A(u,v)(x)=(A1(u,v)(x),A2(u,v)(x)),

    where

    A1(u,v)(x)=0Gσ1(x,s)sβ(γ+1)1F(s,u(s),v(s))ds,
    A2(u,v)(x)=0Gσ2(x,s)sβ(γ+1)1G(s,u(s),v(s))ds,

    with Gσi(x,s),i=1,2, given by (2.2) and (2.3).

    Remark 3.1. Let σ1,σ2,β,γ,λ,τR, such that 1<σ1,σ22,β>0,2<γ<1,λ>1,τ>0. If (H2) and (H4) hold, then for (u,v)X×Y with u(x),v(x)>0,

    0sβ(γ+1)1F(s,u(s),v(s))dsητλ2sβ(γ+1)1F(s,u(s),v(s))ds,
    0sβ(γ+1)1G(s,u(s),v(s))dsητλ2sβ(γ+1)1G(s,u(s),v(s))ds,

    where η=max{η1,η2} with η1=1+ιϱ1(λ21),η2=1+ιϱ2(λ21)>1, ϱ1,ϱ2,ι,ι>0.

    Proof. By (H4), for x[τλ2,τ], we know that there exist two constants ϱ1,ϱ2>0, such that

    xβ(γ+1)1F(s,u,v)ϱ1,xβ(γ+1)1G(s,u,v)ϱ2,u,v(0,+).

    So, for (u,v)X×Y with u(x),v(x)>0,

    τλ2sβ(γ+1)1F(s,u(s),v(s))dsττλ2sβ(γ+1)1F(s,u(s),v(s))dsτ(λ21)λ2ϱ1,
    τλ2sβ(γ+1)1G(s,u(s),v(s))dsττλ2sβ(γ+1)1G(s,u(s),v(s))dsτ(λ21)λ2ϱ2,

    and hence,

    λ2τ(λ21)ϱ1τλ2sβ(γ+1)1F(s,u(s),v(s))ds1,
    λ2τ(λ21)ϱ2τλ2sβ(γ+1)1G(s,u(s),v(s))ds1.

    By (H4), we know that there exist two constants ι,ι>0, such that

    xβ(γ+1)1F(x,u(x),v(x))ι,xβ(γ+1)1G(x,u(x),v(x))ι,for  x[0,τλ2].

    Thus,

    τλ20sβ(γ+1)1F(s,u(s),v(s))dsιτλ2,
    τλ20sβ(γ+1)1G(s,u(s),v(s))dsιτλ2.

    Therefore, we can obtain

    0sβ(γ+1)1F(s,u(s),v(s))ds=τλ20sβ(γ+1)1F(s,u(s),v(s))ds+τλ2sβ(γ+1)1F(s,u(s),v(s))dsιτλ2+τλ2sβ(γ+1)1F(s,u(s),v(s))ds(1+ιϱ1(λ21))τλ2sβ(γ+1)1F(s,u(s),v(s))ds=η1τλ2sβ(γ+1)1F(s,u(s),v(s))ds.

    Similarly,

    0sβ(γ+1)1G(s,u(s),v(s))ds(1+ιϱ2(λ21))τλ2sβ(γ+1)1G(s,u(s),v(s))ds=η2τλ2sβ(γ+1)1G(s,u(s),v(s))ds.

    Take η=max{η1,η2}, and thus

    0sβ(γ+1)1F(s,u(s),v(s))dsητλ2sβ(γ+1)1F(s,u(s),v(s))ds,
    0sβ(γ+1)1G(s,u(s),v(s))dsητλ2sβ(γ+1)1G(s,u(s),v(s))ds,

    hold.

    Define two cones

    K1={uXu(x)>0,x>0;minx[τλ,τ]u(x)1+xβ(1+γ)p(τ)ηuX},
    K2={vYv(x)>0,x>0;minx[τλ,τ]v(x)1+xβ(1+γ)p(τ)ηvY}.

    Obviously, K1×K2={(u,v)X×Yu(x)>0,v(x)>0,x>0;  minx[τλ,τ]u(x)1+xβ(1+γ)p(τ)ηuX,minx[τλ,τ]v(x)1+xβ(1+γ)p(τ)ηvY} is also a cone. For convenience, we first list the following definitions:

    F0=lim(u,v)(0+,0+)supx>0F1(t,(1+xβ(1+γ))u,(1+xβ(1+γ))v)u+v,
    f=lim(u,v)(+,+)infx>0F1(x,(1+xβ(1+γ))u,(1+xβ(1+γ))v)u+v,
    f0=lim(u,v)(0+,0+)infx>0F1(x,(1+xβ(1+γ))u,(1+xβ(1+γ))v)u+v,
    F=lim(u,v)(+,+)supx>0F1(t,(1+xβ(1+γ))u,(1+xβ(1+γ))v)u+v,
    G0=lim(u,v)(0+,0+)supx>0G1(x,(1+xβ(1+γ))u,(1+xβ(1+γ))v)u+v,
    g=lim(u,v)(+,+)infx>0G1(x,(1+xβ(1+γ))u,(1+xβ(1+γ))v)u+v,
    g0=lim(u,v)(0+,0+)infx>0G1(x,(1+xβ(1+γ))u,(1+xβ(1+γ))v)u+v,
    G=lim(u,v)(+,+)supx>0G1(x,(1+xβ(1+γ))u,(1+xβ(1+γ))v)u+v.

    Lemma 4.1. If assumptions (H1) and (H2) hold, then A:K1×K2K1×K2 is completely continuous.

    Proof. First, we show A:K1×K2K1×K2. By (H1) and (H2), for (u,v)K1×K2,

    A1(u,v)X=supt>0|A1(u,v)(x)|1+xβ(1+γ)=supx>00Gσ1(x,s)1+xβ(1+γ)sβ(γ+1)1F(s,u(s),v(s))dsβΓ(σ1)0sβ(γ+1)1F(s,u(s),v(s))ds=βΓ(σ1)0sβ(γ+1)1F(s,(1+sβ(1+γ))u(s)1+sβ(1+γ),(1+sβ(1+γ))v(s)1+sβ(1+γ))ds=βΓ(σ1)0F1(s,u(s)1+sβ(1+γ),v(s)1+sβ(1+γ))βΓ(σ1)[ω1(uX)0φ1(s)ds+ω2(vY)0ψ1(s)ds]<+.

    Similarly,

    A2(u,v)YβΓ(σ1)[~ω1(uX)0φ2(s)ds+~ω2(vY)0ψ2(s)ds]<+.

    By (H1) and Lemma 2.2, for (u,v)K1×K2, we have A1(u,v)(x)>0,A2(u,v)(x)>0,x>0. From Lemma 2.2 and Remark 3.1, for x[τλ,τ],τ>0, and λ>1,

    |A1(u,v)(x)|1+xβ(1+γ)=0Gσ1(x,s)1+xβ(1+γ)sβ(γ+1)1F(s,u(s),v(s))ds=τλ20Gσ1(x,s)1+xβ(1+γ)sβ(γ+1)1F(s,u(s),v(s))ds+0τλ2Gσ1(x,s)1+xβ(1+γ)sβ(γ+1)1F(s,u(s),v(s))ds0τλ2Gσ1(t,s)1+tβ(1+γ)sβ(γ+1)1F(s,u(s),v(s))dsβp(τ)Γ(σ1)0τλ2sβ(γ+1)1F(s,u(s),v(s))dsβp(τ)ηΓ(σ1)0sβ(γ+1)1F(s,u(s),v(s))dsp(τ)ηA1(u,v)X.

    So, A1(u,v)(x)1+xβ(1+γ)p(τ)ηA1(u,v)X. Similarly, A2(u,v)(x)1+xβ(1+γ)p(τ)ηA2(u,v)Y. Therefore,

    minx[τλ,τ]A1(u,v)(x)1+xβ(1+γ)p(τ)ηA1(u,v)X,
    minx[τλ,τ]A2(u,v)(x)1+xβ(1+γ)p(τ)ηA2(u,v)Y.

    That is, A:K1×K2K1×K2 is true.

    Second, it will give a simply prove that A is continuous. Let D={(u,v)|(u,v)K1×K2,(u,v)X×YK,K>0}, a bounded subset in K1×K2. Let (un,vn)D be a sequence that converges to (u,v) in K1×K2. Then (un,vn)X×YK. From Lemma 2.2,

    A1(un,vn)A1(u,v)X=supx>0A1(un,vn)(x)A1(u,v)(x)1+xβ(1+γ)βΓ(σ1)0sβ(γ+1)1F(s,un(s),vn(s))ds0sβ(γ+1)1F(s,u(s),v(s))dsβΓ(σ1)0sβ(γ+1)1(F(s,un(s),vn(s))F(s,u(s),v(s)))ds.

    By (H2),

    sβ(γ+1)1F(s,un(s),vn(s))=sβ(γ+1)1F(s,(1+sβ(1+γ))un(s)1+sβ(1+γ),(1+sβ(1+γ))vn(s)1+sβ(1+γ))=F1(s,un(s)1+sβ(1+γ),vn(s)1+sβ(1+γ))φ1(s)ω1(unX)+ψ1(s)ω2(vnY)L1(0,).

    By the continuity of sβ(γ+1)1F(s,u(s),v(s)) and the Lebesgue dominated convergence theorem,

    0sβ(γ+1)1F(s,un(s),vn(s))ds0sβ(γ+1)1F(s,u(s),v(s))ds,n.

    Therefore, A1(un,vn)A1(u,v)X0,n. Similarly, A2(un,vn)A2(u,v)Y0,n.

    So, A(un,vn)A(u,v)X×Y0,n. That is, A is continuous in D. In the end, we know that A(D) is relatively compact on (0,) and is equi-convergent at by [18]. Therefore, A:K1×K2K1×K2 is completely continuous.

    Theorem 4.1. Assume that (H2) and (H4) hold. If F0=0,G0=0,f=,g=, then the system (1.1) has at least one positive solution.

    Proof. We divide the proof into several steps.

    Step 1. A:K1×K2K1×K2 is completely continuous. This result easily follows from Lemma 4.1.

    Step 2. We show that there exist R1>0 and D1={(u,v)X×Y,(u,v)X×Y<R1} such that A(u,v)X×Y(u,v)X×Y, (u,v)(K1×K2)D1.

    Because F0=0,G0=0, we choose R1>0, such that

    F1(x,(1+xβ(1+γ))u,(1+xβ(1+γ))v)ϵ1(u+v),
    G1(x,(1+xβ(1+γ))u,(1+xβ(1+γ))v)ϵ2(u+v),

    for 0<u+vR1,x>0, where ϵ1,ϵ2>0 satisfy

    ϵ112Γ(σ1)β0a1(s)ds,ϵ212Γ(σ2)β0a2(s)ds.

    So, for (u,v)K1×K2 and (u,v)X×Y=R1, by Lemma 2.2,

    A1(u,v)(x)1+xβ(1+γ)=0Gσ1(x,s)1+xβ(1+γ)sβ(γ+1)1F(s,u(s),v(s))dsβΓ(σ1)0sβ(γ+1)1F(s,u(s),v(s))ds,
    A2(u,v)(x)1+xβ(1+γ)=0Gσ2(x,s)1+xβ(1+γ)sβ(γ+1)1G(s,u(s),v(s))dsβΓ(σ2)0sβ(γ+1)1G(s,u(s),v(s))ds.

    By (H_{4}) ,

    \begin{eqnarray*} \frac{A_{1}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}&\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, u(s), v(s))ds \\ & = &\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, (1+s^{-\beta(1+\gamma)})\frac{u(s)}{1+s^{-\beta(1+\gamma)}}, (1+s^{-\beta(1+\gamma)})\frac{v(s)} {1+s^{-\beta(1+\gamma)}})ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)\epsilon_{1}\frac{u(s)+v(s)}{1+s^{-\beta(1+\gamma)}}ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}\epsilon_{1}\|(u, v)\|_{X\times Y}\int_0^\infty a_{1}(s)ds \\ &\leq&\frac{1}{2}\|(u, v)\|_{X\times Y}. \end{eqnarray*}

    Similarly,

    \begin{eqnarray*} \frac{A_{2}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}&\leq&\frac{\beta}{\Gamma(\sigma_{2})}\epsilon_{2}\|(u, v)\|_{X\times Y}\int_0^\infty a_{2}(s)ds \\ &\leq&\frac{1}{2}\|(u, v)\|_{X\times Y}. \end{eqnarray*}

    Therefore,

    \|A(u, v)\|_{X\times Y}\leq\|(u, v)\|_{X\times Y}, \ for \ (u, v)\in K_{1}\times K_{2}, \ and \ \|(u, v)\|_{X\times Y} = R_{1}.

    Let D_{1} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < R_{1}\}. Then,

    \|A(u, v)\|_{X\times Y}\leq\|(u, v)\|_{X\times Y}, \ for \ (u, v)\in (K_{1}\times K_{2})\cap\partial D_{1}.

    Step 3. We show that there exist R_2 > 0 and D_{2} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < R_{2}\} such that

    \|A(u, v)\|_{X\times Y}\geq\|(u, v)\|_{X\times Y}, \ for \ (u, v)\in (K_{1}\times K_{2})\cap\partial D_{2}.

    Because f_{\infty} = \infty, g_{\infty}^{\ast} = \infty , there exists R > 0 , such that

    F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\geq m_{1}(u+v),
    G_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\geq m_{2}(u+v),

    for u+v\geq R, x > 0 , where m_{1}, m_{2} > 0 satisfy

    m_{1}\geq \frac{1}{2}\frac{\eta_{1}\eta\Gamma(\sigma_{1})}{\beta p^{2}(\tau)\int_\tau^\frac{\tau}{\lambda}a_{1}(s)ds}, m_{2}\geq \frac{1}{2}\frac{\eta_{2}\eta\Gamma(\sigma_{2})}{\beta p^{2}(\tau)\int_\tau^\frac{\tau}{\lambda}a_{2}(s)ds}, \eta = \max\{\eta_{1}, \eta_{2}\}.

    Let R_{2}\geq\max\{R_{1}, \frac{\eta R}{p(\tau)}\} , and D_{2} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < R_{2}\} . Then, D_{1}\subset D_{2} .

    Thus, for \ (u, v)\in K_{1}\times K_{2} , \|(u, v)\|_{X\times Y} = R_{2} , we have

    \frac{u(x)}{1+x^{-\beta(1+\gamma)}}\geq \min\limits_{x\in [\frac{\tau}{\lambda}, \tau]}\frac{u(x)}{1+x^{-\beta(1+\gamma)}}\geq\frac{p(\tau)}{\eta_{1}}\|u\|_{X},
    \frac{v(x)}{1+x^{-\beta(1+\gamma)}}\geq \min\limits_{x\in [\frac{\tau}{\lambda}, \tau]}\frac{v(x)}{1+x^{-\beta(1+\gamma)}}\geq\frac{p(\tau)}{\eta_{2}}\|v\|_{Y}.

    So,

    \begin{eqnarray*} \frac{u(x)+v(x)}{1+x^{-\beta(1+\gamma)}}&\geq&\frac{p(\tau)}{\eta_{1}}\|u\|_{X}+\frac{p(\tau)}{\eta_{2}}\|v\|_{Y}\geq \frac{p(\tau)}{\eta}(\|u\|_{X}+\|v\|_{Y})\\ & = &\frac{p(\tau)}{\eta}\|(u, v)\|_{X\times Y} = \frac{p(\tau)}{\eta}R_{2}\geq R. \end{eqnarray*}

    By (H_{4}) , for x\in [\frac{\tau}{\lambda}, \tau] , we can obtain

    \begin{eqnarray*} \frac{A_{1}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}&\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty s^{\beta(\gamma+1)-1}F(s, u(s), v(s))ds \\ & = &\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, u(s), v(s))ds \\ & = &\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, (1+s^{-\beta(1+\gamma)})\frac{u(s)}{1+s^{-\beta(1+\gamma)}}, (1+s^{-\beta(1+\gamma)})\frac{v(s)} {1+s^{-\beta(1+\gamma)}})ds \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}m_{1}\int_0^\infty a_{1}(s)\frac{u(s)+v(s)}{1+s^{-\beta(1+\gamma)}}ds \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}m_{1}\int_0^\infty a_{1}(s)ds\frac{p(\tau)}{\eta_{1}}\|u\|_{X}+\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}m_{1}\int_0^\infty a_{1}(s)ds\frac{p(\tau)}{\eta_{2}}\|v\|_{Y} \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}m_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{p(\tau)}{\eta_{1}}\|u\|_{X}+\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}m_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{p(\tau)}{\eta_{2}}\|v\|_{Y} \\ & = &\frac{\beta p^{2}(\tau)}{\eta_{1}\Gamma(\sigma_{1})}m_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds(\frac{1}{\eta_{1}}\|u\|_{X}+\frac{1}{\eta_{2}}\|v\|_{Y}) \\ &\geq&\frac{\beta p^{2}(\tau)}{\eta_{1}\Gamma(\sigma_{1})}m_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{1}{\eta}\|(u, v)\|_{X\times Y} \\ &\geq&\frac{1}{2}\|(u, v)\|_{X\times Y}. \end{eqnarray*}

    Similarly, \frac{A_{2}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}\geq \frac{1}{2}\|(u, v)\|_{X\times Y} . Therefore,

    \|A(u, v)\|_{X\times Y}\geq\|(u, v)\|_{X\times Y}, \ for \ (u, v)\in (K_{1}\times K_{2})\cap\partial D_{2}.

    Finally, by Lemma 2.4, A has a fixed point in (K_{1}\times K_{1})\cap\partial(\overline{D_{2}}\backslash D_{1}) . So, (1.1) has at least one positive solution.

    Theorem 4.2. Assume that (H_{2}) and (H_{4}) hold. If f_{0} = \infty, g_{0}^{\ast} = \infty, F_{\infty} = 0, G_{\infty}^{\ast} = 0, then (1.1) has at least one positive solution.

    Proof. We divide the proof into several steps.

    Step 1. A:K_{1}\times K_{2}\rightarrow K_{1}\times K_{2} is completely continuous. This result easily follows from Lemma 4.1.

    Step 2. We show that there exist r_1 > 0 and D_{1} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < r_{1}\} such that

    \|A(u, v)\|_{X\times Y}\geq\|(u, v)\|_{X\times Y}, \ for \ (u, v)\in (K_{1}\times K_{2})\cap\partial D_{1}.

    Because f_{0} = \infty, g_{0}^{\ast} = \infty , there exists r_{1} > 0 such that

    F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\geq M_{1}(u+v),
    G_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\geq M_{2}(u+v),

    for 0 < u+v\leq r_{1}, x > 0 , where M_{1}, M_{2} > 0 , satisfy

    M_{1}\geq \frac{1}{2}\frac{\eta_{1}\eta\Gamma(\sigma_{1})}{\beta p^{2}(\tau)\int_\tau^\frac{\tau}{\lambda}a_{1}(s)ds}, M_{2}\geq \frac{1}{2}\frac{\eta_{2}\eta\Gamma(\sigma_{2})}{\beta p^{2}(\tau)\int_\tau^\frac{\tau}{\lambda}a_{2}(s)ds}, \eta = \max\{\eta_{1}, \eta_{2}\}.

    Let D_{1} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < r_{1}\} . So, for (u, v)\in K_{1}\times K_{2} with \|(u, v)\|_{X\times Y} = r_{1} , and x\in [\frac{\tau}{\lambda}, \tau] , then by (H_{4}) ,

    \begin{eqnarray*} \frac{A_{1}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}&\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty s^{\beta(\gamma+1)-1}F(s, u(s), v(s))ds \\ & = &\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, u(s), v(s))ds \\ & = &\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, (1+s^{-\beta(1+\gamma)})\frac{u(s)}{1+s^{-\beta(1+\gamma)}}, (1+s^{-\beta(1+\gamma)})\frac{v(s)} {1+s^{-\beta(1+\gamma)}})ds \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_0^\infty a_{1}(s)\frac{u(s)+v(s)}{1+s^{-\beta(1+\gamma)}}ds \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_0^\infty a_{1}(s)ds\frac{p(\tau)}{\eta_{1}}\|u\|_{X}+\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_0^\infty a_{1}(s)ds\frac{p(\tau)}{\eta_{2}}\|v\|_{Y} \\ &\geq&\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{p(\tau)}{\eta_{1}}\|u\|_{X}+\frac{\beta p(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{p(\tau)}{\eta_{2}}\|v\|_{Y} \\ & = &\frac{\beta p^{2}(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds(\frac{1}{\eta_{1}}\|u\|_{X}+\frac{1}{\eta_{2}}\|v\|_{Y}) \\ &\geq&\frac{\beta p^{2}(\tau)}{\eta_{1}\Gamma(\sigma_{1})}M_{1}\int_\tau^\frac{\tau}{\lambda} a_{1}(s)ds\frac{1}{\eta}\|(u, v)\|_{X\times Y} \\ &\geq&\frac{1}{2}\|(u, v)\|_{X\times Y}. \end{eqnarray*}

    Similarly, \frac{A_{2}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}\geq \frac{1}{2}\|(u, v)\|_{X\times Y} . Thus,

    \|A(u, v)\|_{X\times Y}\geq\|(u, v)\|_{X\times Y}, \ for \ (u, v)\in (K_{1}\times K_{2})\cap\partial D_{1}.

    Step 3. We show that there exist r_2 > 0 and D_{2} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < r_{2}\} such that

    \|A(u, v)\|_{X\times Y}\leq\|(u, v)\|_{X\times Y}\ \mbox{for}\ (u, v)\in (K_{1}\times K_{2})\cap\partial D_{2}.

    Because F_{\infty} = 0, G_{\infty}^{\ast} = 0 , there exists r > 0 , such that

    F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\leq \epsilon_{1}(u+v),
    G_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\leq \epsilon_{2}(u+v),

    for u+v > r, x > 0 , where \epsilon_{1}, \epsilon_{2} > 0 satisfy

    \epsilon_{1}\leq \frac{1}{2}\frac{\Gamma(\sigma_{1})}{\beta\int_0^\infty a_{1}(s)ds}, \epsilon_{2}\leq \frac{1}{2}\frac{\Gamma(\sigma_{2})}{\beta\int_0^\infty a_{2}(s)ds}.

    Let D_{2} = \{(u, v)\in X\times Y, \|(u, v)\|_{X\times Y} < r_{2}\}, where r_{2} > \max\{r_{1}, r\} . Then D_{1}\subset D_{1} . We define two functions U_{1}, U_{2} as follows:

    U_{1}:(-\infty, +\infty)\rightarrow (-\infty, +\infty), U_{1}(a) = \sup\limits_{0 < u+v\leq a}\sup\limits_{x > 0}F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v),
    U_{2}:(-\infty, +\infty)\rightarrow (-\infty, +\infty), U_{2}(a) = \sup\limits_{0 < u+v\leq a}\sup\limits_{x > 0}G_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v).

    For (u, v)\in K_{1}\times K_{2} and \|(u, v)\|_{X\times Y} = r_{2} ,

    \begin{eqnarray*} U_{1}(r_{2})& = &\sup\limits_{0 < u+v\leq r_{2}}\sup\limits_{x > 0}F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\\ &\leq&\epsilon_{1}\sup\limits_{0 < u+v\leq r_{2}}(u+v) = \epsilon_{1}r_{2} = \epsilon_{1}\|(u, v)\|_{X\times Y}, \end{eqnarray*}
    \begin{eqnarray*} U_{2}(r_{2})& = &\sup\limits_{0 < u+v\leq r_{2}}\sup\limits_{x > 0}G_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)\\ &\leq&\epsilon_{2}\sup\limits_{0 < u+v\leq r_{2}}(u+v) = \epsilon_{2}r_{2} = \epsilon_{2}\|(u, v)\|_{X\times Y}. \end{eqnarray*}

    By Lemma 2.2 and (H_{4}) ,

    \begin{eqnarray*} \frac{A_{1}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}&\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty s^{\beta(\gamma+1)-1}F(s, u(s), v(s))ds\\ & = &\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, u(s), v(s))ds\\ & = &\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)F_{1}(s, (1+s^{-\beta(1+\gamma)})\frac{u(s)}{1+s^{-\beta(1+\gamma)}}, (1+s^{-\beta(1+\gamma)})\frac{v(s)} {1+s^{-\beta(1+\gamma)}})ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)\sup\limits_{0 < u+v\leq r_{2}}\sup\limits_{x > 0}F_{1}(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v)ds\\ & = &\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)U_{1}(r_{2})ds\\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty a_{1}(s)ds\epsilon_{1}\|(u, v)\|_{X\times Y}\\ &\leq&\frac{1}{2}\|(u, v)\|_{X\times Y}. \end{eqnarray*}

    Similarly, \frac{A_{2}(u, v)(x)}{1+x^{-\beta(1+\gamma)}}\leq\frac{1}{2}\|(u, v)\|_{X\times Y} . Therefore, \|A(u, v)\|_{X\times Y}\leq\|(u, v)\|_{X\times Y} , for (u, v)\in (K_{1}\times K_{2})\cap\partial D_{2} . Finally, by Lemma 2.4, A has a fixed point in (K_{1}\times K_{1})\cap\partial(\overline{D_{2}}\backslash D_{1}) . So, the system (1.1) has at least one positive solution.

    In the section, we obtain the multiplicity of positive solution of (1.1) by using the monotone iterative technique.

    Theorem 5.1. If (H_{1}) and (H_{2}) hold, then (1.1) has two positive solutions (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) satisfying 0\leq\|(u^{\ast}, v^{\ast})\|_{X\times Y}\leq \Upsilon and 0\leq\|(w^{\ast}, z^{\ast})\|_{X\times Y}\leq \Upsilon , where \Upsilon is a positive preset constant. Moreover, \lim\limits_{n\rightarrow \infty}(u_{n}, v_{n}) = (u^{\ast}, v^{\ast}) and \lim\limits_{n\rightarrow \infty}(w_{n}, z_{n}) = (w^{\ast}, z^{\ast}) , where (u_{n}, v_{n}) and (w_{n}, z_{n}) are given by

    \begin{align} \begin{array}{ll} (u_{n}(x), v_{n}(x)) = (A_{1}(u_{n-1}, v_{n-1})(x), A_{2}(u_{n-1}, v_{n-1})(x)), n = 1, 2, \ldots, \end{array} \end{align} (5.1)

    with

    (u_{0}(x), v_{0}(x)) = (\Upsilon_{1}[1+x^{-\beta(\gamma+1)}], \Upsilon_{2}[1+x^{-\beta(\gamma+1)}]), \Upsilon_{1}, \Upsilon_{2} > 0, \Upsilon_{1}+\Upsilon_{2}\leq\Upsilon,

    and

    \begin{align} \begin{array}{ll} (w_{n}(x), z_{n}(x)) = (A_{1}(w_{n-1}, z_{n-1})(x), A_{2}(w_{n-1}, z_{n-1})(x)), n = 1, 2, \ldots, \end{array} \end{align} (5.2)

    with (w_{0}(x), z_{0}(x)) = (0, 0) . In addition,

    \begin{align} \begin{array}{ll} (w_{0}(x), z_{0}(x))\leq(w_{1}(x), z_{1}(x))\leq\cdots\leq(w_{n}(x), z_{n}(x))\leq\cdots\leq(w^{\ast}, z^{\ast})\leq(u^{\ast}, v^{\ast})\\ \leq\cdots\leq(u_{n}(x), v_{n}(x))\leq\cdots\leq(u_{1}(x), v_{1}(x))\leq(u_{0}(x), v_{0}(x)). \end{array} \end{align} (5.3)

    Proof. First, from Lemma 4.1, A(K_{1}\times K_{2})\subset K_{1}\times K_{2} for (u, v)\in K_{1}\times K_{2} . Let

    \Upsilon_{1} = \frac{\beta}{\Gamma(\sigma_{1})}[\omega_{1}(\Upsilon)\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\Upsilon)\int_0^\infty \psi_{1}(s)ds] < \infty,
    \Upsilon_{2} = \frac{\beta}{\Gamma(\sigma_{2})}[\widetilde{\omega_{1}}(\Upsilon)\int_0^\infty \varphi_{2}(s)ds+\widetilde{\omega_{2}}(\Upsilon)\int_0^\infty \psi_{2}(s)ds] < \infty,

    and \Upsilon\geq\Upsilon_{1}+\Upsilon_{2} with D_{\Upsilon} = \{(u, v)\in K_{1}\times K_{2}:\|(u, v)\|_{X\times Y}\leq\Upsilon\} . For any (u, v)\in D_{\Upsilon} , from (H_{2}) and Lemma 2.2,

    \begin{eqnarray*} \|A_{1}(u, v)\|_{X}& = &\sup\limits_{x > 0}\frac{|A_{1}(u, v)(x)|}{1+x^{-\beta(1+\gamma)}}\\ & = &\sup\limits_{x > 0}\mid\int_0^\infty \frac{G_{\sigma_{1}}(x, s)}{1+t^{-\beta(1+\gamma)}}s^{\beta(\gamma+1)-1}F(s, u(s), v(s))ds\mid \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty \mid s^{\beta(\gamma+1)-1}F(s, u(s), v(s))ds\mid \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}[\omega_{1}(\frac{\mid u(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\frac{\mid v(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \psi_{1}(s)ds]\\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}[\omega_{1}(\|u\|_{X})\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\|v\|_{Y})\int_0^\infty \psi_{1}(s)ds]\\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}[\omega_{1}(\Upsilon)\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\Upsilon)\int_0^\infty \psi_{1}(s)ds] = \Upsilon_{1}. \end{eqnarray*}

    Similarly, \|A_{2}(u, v)\|_{Y}\leq\Upsilon_{2} for (u, v)\in D_{\Upsilon} . Thus,

    \|A(u, v)\|_{X\times Y} = \|A_{1}(u, v)\|_{X}+\|A_{2}(u, v)\|_{Y}\leq\Upsilon_{1}+\Upsilon_{2}\leq\Upsilon.

    That is, A(D_{\Upsilon})\subset D_{\Upsilon} . We construct two sequences as follows:

    (u_{n}, v_{n}) = A(u_{n-1}, v_{n-1}), (w_{n}, z_{n}) = A(w_{n-1}, z_{n-1}), \ \ n = 1, 2, 3, \ldots.

    Obviously, (u_{0}(x), v_{0}(x)), (w_{0}(x), z_{0}(x))\in D_{\Upsilon} . Because A(D_{\Upsilon})\subset D_{\Upsilon} , (u_{n}, v_{n}), (w_{n}, z_{n})\in D_{\Upsilon}, n = 1, 2, \ldots . We need to show that there exist (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) satisfying \lim\limits_{n\rightarrow \infty}(u_{n}, v_{n}) = (u^{\ast}, v^{\ast}) and \lim\limits_{n\rightarrow \infty}(w_{n}, z_{n}) = (w^{\ast}, z^{\ast}) which are two monotone sequences for approximating positive solutions of the system (1.1).

    For x\in(0, +\infty), (u_{n}, v_{n})\in D_{\Upsilon} , from Lemma 2.2 and (5.1),

    \begin{eqnarray*} u_{1}(x)& = &A_{1}(u_{0}, v_{0})(x) = \int_0^\infty G_{\sigma_{1}}(x, s)s^{\beta(\gamma+1)-1}F(s, u_{0}(s), v_{0}(s))ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}\int_0^\infty (1+t^{-\beta(1+\gamma)})s^{\beta(\gamma+1)-1}F(s, u_{0}(s), v_{0}(s))ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}(1+x^{-\beta(1+\gamma)})[\omega_{1}(\frac{\mid u_{0}(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\frac{\mid v_{0}(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \psi_{1}(s)ds] \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}(1+x^{-\beta(1+\gamma)})[\omega_{1}(\|u_{0}\|_{X})\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\|v_{0}\|_{Y})\int_0^\infty \psi_{1}(s)ds] \\ &\leq&\frac{\beta}{\Gamma(\sigma_{1})}(1+x^{-\beta(1+\gamma)})[\omega_{1}(\Upsilon)\int_0^\infty \varphi_{1}(s)ds+\omega_{2}(\Upsilon)\int_0^\infty \psi_{1}(s)ds] \\ & = &(1+x^{-\beta(1+\gamma)})\Upsilon_{1} = u_{0}(x) \end{eqnarray*}

    and

    \begin{eqnarray*} v_{1}(x) = A_{2}(u_{0}, v_{0})(x)& = &\int_0^\infty G_{\sigma_{2}}(x, s)s^{\beta(\gamma+1)-1}G(s, u_{0}(s), v_{0}(s))ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{2})}\int_0^\infty (1+x^{-\beta(1+\gamma)})s^{\beta(\gamma+1)-1}G(s, u_{0}(s), v_{0}(s))ds \\ &\leq&\frac{\beta}{\Gamma(\sigma_{2})}(1+t^{-\beta(1+\gamma)})[\widetilde{\omega_{1}}(\frac{\mid u_{0}(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \varphi_{2}(s)ds+\widetilde{\omega_{2}}(\frac{\mid v_{0}(s)\mid}{1+s^{-\beta(1+\gamma)}})\int_0^\infty \psi_{2}(s)ds] \\ &\leq&\frac{\beta}{\Gamma(\sigma_{2})}(1+t^{-\beta(1+\gamma)})[\widetilde{\omega_{1}}(\|u_{0}\|_{X})\int_0^\infty \varphi_{2}(s)ds+\widetilde{\omega_{2}}(\|v_{0}\|_{Y})\int_0^\infty \psi_{2}(s)ds] \\ &\leq&\frac{\beta}{\Gamma(\sigma_{2})}(1+x^{-\beta(1+\gamma)})[\widetilde{\omega_{1}}(\Upsilon)\int_0^\infty \varphi_{2}(s)ds+\widetilde{\omega_{2}}(\Upsilon)\int_0^\infty \psi_{2}(s)ds] \\ & = &(1+x^{-\beta(1+\gamma)})\Upsilon_{2} = v_{0}(x), \end{eqnarray*}

    that is,

    (u_{1}(x), v_{1}(x)) = (A_{1}(u_{0}, v_{0})(x), A_{2}(u_{0}, v_{0})(x))\leq((1+x^{-\beta(1+\gamma)})\Upsilon_{1}, (1+x^{-\beta(1+\gamma)})\Upsilon_{2}) = (u_{0}(x), v_{0}(x)).

    So, by the condition (H_{1}) ,

    (u_{2}(x), v_{2}(x)) = (A_{1}(u_{1}, v_{1})(x), A_{2}(u_{1}, v_{1})(x))\leq(A_{1}(u_{0}, v_{0})(x), A_{2}(u_{0}, v_{0})(x)) = (u_{1}(x), v_{1}(x)).

    For x\in(0, +\infty) , the sequences \{(u_{n}, v_{n})\}_{n = 0}^{\infty} satisfy (u_{n+1}(x), v_{n+1}(x))\leq(u_{n}(x), v_{n}(x)) . By the iterative sequences (u_{n+1}, v_{n+1}) = A(u_{n}, v_{n}) and the complete continuity of the operator A , (u_{n}, v_{n})\rightarrow (u^{\ast}, v^{\ast}) , and A(u^{\ast}, v^{\ast}) = (u^{\ast}, v^{\ast}) .

    Similarly, for the sequences \{(w_{n}, z_{n})\}_{n = 0}^{\infty} , we have

    \begin{eqnarray*} (w_{1}(x), z_{1}(x))& = &(A_{1}(w_{0}, z_{0})(x), A_{2}(w_{0}, z_{0})(x))\\ & = &(\int_0^\infty G_{\sigma_{1}}(x, s)s^{\beta(\gamma+1)-1}F(s, w_{0}(s), z_{0}(s))ds, \int_0^\infty G_{\sigma_{2}}(x, s)s^{\beta(\gamma+1)-1}G(s, w_{0}(s), z_{0}(s))ds)\\ &\geq&(0, 0) = (w_{0}(x), z_{0}(x)). \end{eqnarray*}

    Then, by the condition (H_{1}) ,

    (w_{2}(x), z_{2}(x)) = (A_{1}(w_{1}, z_{1})(x), A_{2}(w_{1}, z_{1})(x))\geq(A_{1}(w_{0}, z_{0})(x), A_{2}(w_{0}, z_{0})(x)) = (w_{1}(x), z_{1}(x)).

    Analogously, for x\in(0, +\infty) , we have (w_{n+1}(x), z_{n+1}(x))\geq(w_{n}(x), z_{n}(x)) . By the iterative sequences (w_{n+1}, z_{n+1}) = A(w_{n}, z_{n}) and the complete continuity of the operator A , (w_{n}, z_{n})\rightarrow (w^{\ast}, z^{\ast}) , and A(w^{\ast}, z^{\ast}) = (w^{\ast}, z^{\ast}) .

    Finally, we prove that (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) are the minimal and maximal positive solutions of (1.1). Assume that (\varsigma(x), \mu(x)) is any positive solution of (1.1). Then, A(\varsigma(x), \mu(x)) = (\varsigma(x), \mu(x)) , and

    (w_{0}(x), z_{0}(x)) = (0, 0)\leq(\varsigma(x), \mu(x))\leq((1+x^{-\beta(1+\gamma)})\Upsilon_{1}, (1+x^{-\beta(1+\gamma)})\Upsilon_{2}) = (u_{0}(x), v_{0}(x)).

    Therefore,

    (w_{1}(x), z_{1}(x)) = (A_{1}(w_{0}, z_{0})(x), A_{2}(w_{0}, z_{0})(x))\leq(\varsigma(x), \mu(x))\leq(A_{1}(u_{0}, v_{0})(x), A_{2} (u_{0}, v_{0})(x)) = (u_{1}(x), v_{1}(x)).

    That is, (w_{1}(x), z_{1}(x))\leq(\varsigma(x), \mu(x))\leq(u_{n}(x), v_{n}(x)) . So, (5.3) holds. By (H_{1}) , (0, 0) is not a solution of (1.1). From (5.1), (w^{\ast}, z^{\ast}) and (u^{\ast}, v^{\ast}) are two extreme positive solutions of (1.1), which can be constructed via limitS of two monotone iterative sequences in (5.1) and (5.2).

    Example 6.1. We consider the following system:

    \begin{align} \begin{cases} D_{1}^{-\frac{3}{2}, \frac{5}{3}}u(x)+x^{\frac{3}{2}}(\frac{u}{1+x^{\frac{1}{2}}})^{2}e^{-x}+x^{\frac{3}{2}} (\frac{v}{1+x^{\frac{1}{2}}})^{2}e^{-x} = 0, t\in (0, +\infty), \\ D_{1}^{-\frac{3}{2}, \frac{3}{2}}v(x)+x^{\frac{5}{2}}e^{-2x^{2}}(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u} {1+x^{\frac{1}{2}}})^{2}) +x^{\frac{5}{2}}e^{-2x^{2}}(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}), x\in (0, +\infty), \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{\frac{1}{6}, \frac{1}{3}}u(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{\frac{1}{6}, \frac{1}{3}}u(x) = 0, \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{0, \frac{1}{2}}v(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{0, \frac{1}{2}}v(x) = 0, \end{cases} \end{align} (6.1)

    where \sigma_{1} = \frac{5}{3}, \sigma_{2} = \frac{3}{2}, \gamma = -\frac{3}{2}, \beta = 1 ,

    F(x, u, v) = x^{\frac{3}{2}}e^{-x}[(\frac{u}{1+x^{\frac{1}{2}}})^{2}+(\frac{v}{1+x^{\frac{1}{2}}})^{2}],
    G(x, u, v) = x^{\frac{5}{2}}e^{-2x^{2}}[(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}) +(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2})].

    First, for F_{1}(x, u, v) = x^{\beta(1+\gamma)-1}F(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = e^{-x}(u^{2}, v^{2}) , we choose \omega_{1}(u) = u^{2}\in C((0, +\infty), (0, +\infty)) , \omega_{2}(v) = v^{2}\in C((0, +\infty), (0, +\infty)) , and \varphi_{1}(x) = \psi_{1}(x) = e^{-x}\in L^{1}(0, +\infty) . Then,

    \mid F_{1}(x, u, v)\mid\leq\varphi_{1}(x)\omega_{1}(\mid u\mid)+\psi_{1}(t)\omega_{2}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty).

    Similarly, for F_{2}(x, u, v) = x^{\beta(1+\gamma)-1}G(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = xe^{-2x^{2}}[u^{2}\ln(u^{2}+1)+ v^{2}\ln(v^{2}+1)] , we choose \widetilde{\omega_{1}}(u) = u^{2}\ln(u^{2}+1)\in C((0, +\infty), (0, +\infty)) , \widetilde{\omega_{2}}(v) = v^{2}\ln(v^{2}+1)\in C((0, +\infty), (0, +\infty)) , and \varphi_{2}(x) = \psi_{2}(x) = xe^{-2x^{2}}\in L^{1}(0, +\infty) . Then,

    \mid F_{2}(x, u, v)\mid\leq\varphi_{2}(x)\widetilde{\omega_{1}}(\mid u\mid)+\psi_{2}(x)\widetilde{\omega_{2}}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty).

    So, the condition (H_{2}) holds. Obviously, F, G:(0, +\infty)\times(0, +\infty)\times(0, +\infty)\rightarrow (0, +\infty) are continuous.

    x^{-\frac{3}{2}}F(x, u, v) = e^{-x}[(\frac{u}{1+x^{\frac{1}{2}}})^{2}+(\frac{v}{1+x^{\frac{1}{2}}})^{2}] = a_{1}(x)F_{1}(x, u, v),
    x^{-\frac{3}{2}}G(x, u, v) = xe^{-2x^{2}}[(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}) +(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2})] = a_{2}(x)G_{1}(x, u, v),

    where a_{1}(x) = e^{-x}, a_{2}(x) = xe^{-2x^{2}} , F_{1}(x, u, v) = (\frac{u}{1+x^{\frac{1}{2}}})^{2}+(\frac{v}{1+x^{\frac{1}{2}}})^{2} , G_{1}(t, u, v) = (\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}) +(\frac{u}{1+x^{\frac{1}{2}}})^{2}\ln(1+(\frac{u}{1+x^{\frac{1}{2}}})^{2}) . So, x^{-\frac{3}{2}}f(x, u, v), x^{-\frac{3}{2}}G(x, u, v):[0, +\infty)\times(0, +\infty)\times(0, +\infty)\rightarrow [0, +\infty) are continuous. Hence, the condition (H_{4}) holds. Finally,

    F_{0} = \lim\limits_{(u, v)\rightarrow (0^{+}, 0^{+})} \frac{u^{2}+v^{2}}{u+v} = 0, G_{0}^{\ast} = \lim\limits_{(u, v)\rightarrow (0^{+}, 0^{+})} \frac{u^{2}\ln(u^{2}+1)+v^{2}\ln(v^{2}+1)}{u+v} = 0,
    f_{\infty} = \lim\limits_{(u, v)\rightarrow (+\infty, +\infty)} \frac{u^{2}+v^{2}}{u+v} = \infty, g_{\infty}^{\ast} = \lim\limits_{(u, v)\rightarrow (+\infty, +\infty)} \frac{u^{2}\ln(u^{2}+1)+v^{2}\ln(v^{2}+1)}{u+v} = \infty.

    Therefore, from Theorem 4.1, (6.1) has at least one positive solution (u(x), v(x)) . Further,

    \begin{cases} u(x) = \frac 3{2\Gamma(\frac 23)}[x^{\frac 12}\int_0^\infty s^{-\frac 32}F(s, u(s), v(s))ds-x^{-\frac 83}\int_x^\infty (x-s)^{\frac 23}s^{-\frac 32}F(s, u(s), v(s))ds], \\ v(x) = \frac 2{\sqrt{\pi}}[x^{\frac 12}\int_0^\infty s^{-\frac 32}G(s, u(s), v(s))ds-\int_x^\infty (x-s)^{\frac 12}s^{-\frac 32}G(s, u(s), v(s))ds]. \end{cases}

    Example 6.2. We consider the following system:

    \begin{align} \begin{cases} D_{1}^{-\frac{3}{2}, \frac{3}{2}}u(x)+x^{\frac{5}{2}}e^{-2x^{2}+1}[\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}]+ x^{\frac{5}{2}}e^{-2x^{2}+1} [\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\pi] = 0, x\in (0, +\infty), \\ D_{1}^{-\frac{3}{2}, \frac{7}{6}}v(x)+x^{\frac{3}{2}}e^{-x}[\arctan(\ln((\frac{u}{1+x^{\frac{1}{2}}})^{2}+1))+\frac{3}{2}\pi]+ x^{\frac{3}{2}}e^{-x} [\arctan(\ln((\frac{v}{1+x^{\frac{1}{2}}})^{2}+1))+1], x\in (0, +\infty), \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{0 \frac{1}{2}}u(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{0, \frac{1}{2}}u(x) = 0, \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{-\frac{1}{3}, \frac{5}{6}}v(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{-\frac{1}{3}, \frac{5}{6}}v(x) = 0, \end{cases} \end{align} (6.2)

    where \sigma_{1} = \frac{3}{2}, \sigma_{2} = \frac{7}{6}, \gamma = -\frac{3}{2}, \beta = 1 ,

    F(x, u, v) = x^{\frac{5}{2}}e^{-2x^{2}+1}[\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}]+x^{\frac{5}{2}}e^{-2x^{2}+1} [\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}],
    G(x, u, v) = x^{\frac{3}{2}}e^{-x}[\arctan(\ln((\frac{u}{1+x^{\frac{1}{2}}})^{2}+1))+\frac{3}{2}\pi]+x^{\frac{3}{2}}e^{-x} [\arctan(\ln((\frac{v}{1+x^{\frac{1}{2}}})^{2}+1))+1].

    First, for

    F_{1}(x, u, v) = x^{\beta(1+\gamma)-1}F(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = xe^{-2x^{2}+1}[\arctan u^{2}+\frac{1}{\pi}+\arctan v^{2}+\pi],

    we choose \omega_{1}(u) = \arctan u^{2}+\frac{1}{\pi}\in C((0, +\infty), (0, +\infty)), \omega_{2}(v) = \arctan v^{2}+\pi\in C((0, +\infty), (0, +\infty)) , and \varphi_{1}(x) = \psi_{1}(x) = xe^{-2x^{2}+1}\in L^{1}(0, +\infty) . Then,

    \mid F_{1}(x, u, v)\mid\leq\varphi_{1}(x)\omega_{1}(\mid u\mid)+\psi_{1}(x)\omega_{2}(\mid v\mid), \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty).

    Similarly, for

    F_{2}(x, u, v) = x^{\beta(1+\gamma)-1}g(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = e^{-x}[\arctan(\ln(u^{2}+1))+ \frac{3}{2}\pi+\arctan(\ln(v^{2}+1))+1],

    we choose \widetilde{\omega_{1}}(u) = \arctan(\ln(u^{2}+1))+\frac{3}{2}\pi\in C((0, +\infty), (0, +\infty)) , \widetilde{\omega_{2}}(v) = \arctan(\ln(v^{2}+1))+1\in C((0, +\infty), (0, +\infty)) , and \varphi_{2}(x) = \psi_{2}(x) = e^{-x}\in L^{1}(0, +\infty) . Then,

    \mid F_{2}(x, u, v)\mid\leq\varphi_{2}(x)\widetilde{\omega_{1}}(\mid u\mid)+\psi_{2}(x)\widetilde{\omega_{2}}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty).

    That is, (H_{2}) holds. Second, F, G:(0, +\infty)\times(0, +\infty)\times(0, +\infty)\rightarrow (0, +\infty) are continuous. And

    x^{-\frac{3}{2}}F(x, u, v) = xe^{-2x^{2}+1}[\arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}+\arctan(\frac{v} {1+x^{\frac{1}{2}}})^{2}+\pi] = a_{1}(x)F_{1}(x, u, v),
    x^{-\frac{3}{2}}G(x, u, v) = e^{-x}[\arctan(\ln((\frac{u}{1+x^{\frac{1}{2}}})^{2}+1))+\frac{3}{2}\pi+\arctan(\ln((\frac{v} {1+x^{\frac{1}{2}}})^{2}+1))+1] = a_{2}(x)G_{1}(x, u, v),

    where a_{1}(x) = xe^{-2x^{2}+1}, a_{2}(x) = e^{-x} , F_{1}(x, u, v) = \arctan(\frac{u}{1+x^{\frac{1}{2}}})^{2}+\frac{1}{\pi}+\arctan(\frac{v}{1+x^{\frac{1}{2}}})^{2}+\pi , G_{1}(x, u, v) = \arctan(\ln((\frac{u}{1+x^{\frac{1}{2}}})^{2}+1))+\frac{3}{2}\pi+\arctan(\ln((\frac{v}{1+x^{\frac{1}{2}}})^{2}+1))+1 . So, x^{-\frac{3}{2}}F(x, u, v), x^{-\frac{3}{2}}G(x, u, v):[0, +\infty)\times(0, +\infty)\times(0, +\infty)\rightarrow [0, +\infty) are continuous. That is, (H_{4}) holds. In addition,

    f_{0} = \lim\limits_{(u, v)\rightarrow (0^{+}, 0^{+})} \frac{\arctan u^{2}+\frac{1}{\pi}+\arctan v^{2}+\pi}{u+v} = \infty,
    g_{0}^{\ast} = \lim\limits_{(u, v)\rightarrow (0^{+}, 0^{+})} \frac{\arctan(\ln(u^{2}+1))+\frac{3}{2}\pi+\arctan(\ln(v^{2}+1))+1}{u+v} = \infty,
    F_{\infty} = \lim\limits_{(u, v)\rightarrow (+\infty, +\infty)} \frac{\arctan u^{2}+\frac{1}{\pi}+\arctan v^{2}+\pi}{u+v} = 0,
    G_{\infty}^{\ast} = \lim\limits_{(u, v)\rightarrow (+\infty, +\infty)} \frac{\arctan(\ln(u^{2}+1))+\frac{3}{2}\pi+\arctan(\ln(v^{2}+1))+1}{u+v} = 0.

    Therefore, from Theorem 4.2, (6.2) has at least one positive solution (u(x), v(x)) . Further,

    \begin{cases} u(x) = \frac 2{\sqrt{\pi}}[x^{\frac 12}\int_0^\infty s^{-\frac 32}F(s, u(s), v(s))ds-\int_x^\infty (x-s)^{\frac 12}s^{-\frac 32}F(s, u(s), v(s))ds], \\ v(x) = \frac 6{\Gamma(\frac 16)}[x^{\frac 12}\int_0^\infty s^{-\frac 32}G(s, u(s), v(s))ds-x^{\frac 13}\int_x^\infty (x-s)^{\frac 16}s^{-\frac 32}G(s, u(s), v(s))ds]. \end{cases}

    Example 6.3. We consider the following system:

    \begin{align} \begin{cases} D_{1}^{-\frac{3}{2}, \frac{5}{3}}u(x)+x^{\frac{3}{2}}\frac{e^{-x}}{3}\mid\frac{u}{1+x^{\frac{1}{2}}}\mid+ x^{\frac{5}{2}}\ln(\mid\frac{v}{1+x^{\frac{1}{2}}}\mid+1)\frac{e^{-2x^{2}+1}}{10} = 0, x\in (0, +\infty), \\ D_{1}^{-\frac{3}{2}, \frac{3}{2}}v(x)+x^{\frac{5}{2}}e^{-2x^{2}+1}\arctan(\mid\frac{u}{1+x^{\frac{1}{2}}}\mid+ \frac{1}{\sqrt{\pi}})+x^{\frac{5}{2}}\frac{e^{-2x^{2}+1}}{5} \mid\frac{v}{1+x^{\frac{1}{2}}}\mid = 0, x\in (0, +\infty), \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{\frac{1}{6}, \frac{1}{3}}u(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{\frac{1}{6}, \frac{1}{3}}u(x) = 0, \\ \lim\nolimits_{x\rightarrow 0} x^{\frac{1}{2}}I^{0, \frac{1}{2}}v(x) = 0, \lim\nolimits_{x\rightarrow \infty} x^{-\frac{1}{2}}I^{0, \frac{1}{2}}v(x) = 0, \end{cases} \end{align} (6.3)

    where \sigma_{1} = \frac{5}{3}, \sigma_{2} = \frac{3}{2}, \gamma = -\frac{3}{2}, \beta = 1 ,

    F(x, u, v) = x^{\frac{3}{2}}\frac{e^{-x}}{3}\mid\frac{u}{1+x^{\frac{1}{2}}}\mid+x^{\frac{5}{2}}\ln(\mid\frac{v} {1+x^{\frac{1}{2}}}\mid+1)\frac{e^{-2x^{2}+1}}{10},
    G(x, u, v) = x^{\frac{5}{2}}e^{-2x^{2}+1}\arctan(\mid\frac{u}{1+x^{\frac{1}{2}}}\mid+\frac{1}{\sqrt{\pi}})+ x^{\frac{5}{2}}\frac{e^{-2x^{2}+1}}{5} \mid\frac{v}{1+x^{\frac{1}{2}}}\mid.

    Obviously, F, G:(0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty)\rightarrow (0, +\infty) are continuous and nondecreasing with respect to the second and the third variables on (0, +\infty) . That is, (H_{1}) holds. Next,

    F_{1}(x, u, v) = x^{\beta(1+\gamma)-1}F(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = \frac{e^{-x}}{3}\mid u\mid+x\frac{e^{-2x^{2}+1}}{10}\ln(\mid v\mid+1).

    We choose \omega_{1}(u) = \mid u\mid\in C((0, +\infty), (0, +\infty)) , \omega_{2}(v) = \ln(\mid v\mid+1)\in C((0, +\infty), (0, +\infty)) , and \varphi_{1}(x) = \frac{e^{-x}}{3}, \psi_{1}(x) = \frac{xe^{-2x^{2}+1}}{10}\in L^{1}(0, +\infty) . Then,

    \mid F_{1}(x, u, v)\mid\leq\varphi_{1}(x)\omega_{1}(\mid u\mid)+\psi_{1}(x)\omega_{2}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty).

    Similarly, for

    F_{2}(x, u, v) = x^{\beta(1+\gamma)-1}G(x, (1+x^{-\beta(1+\gamma)})u, (1+x^{-\beta(1+\gamma)})v) = xe^{-2x^{2}+1}\arctan(\mid u\mid+\frac{1}{\sqrt{\pi}})+x\frac{e^{-2x^{2}+1}}{5}\mid v\mid,

    we choose \widetilde{\omega_{1}}(u) = \arctan(\mid u\mid+\frac{1}{\sqrt{\pi}})\in C((0, +\infty), (0, +\infty)) , \widetilde{\omega_{2}}(v) = \mid v\mid\in C((0, +\infty), (0, +\infty)) , and \varphi_{2}(x) = xe^{-2x^{2}+1}, \psi_{2}(x) = x\frac{e^{-2x^{2}+1}}{5}\in L^{1}(0, +\infty) . Then,

    \mid F_{2}(x, u, v)\mid\leq\varphi_{2}(x)\widetilde{\omega_{1}}(\mid u\mid)+\psi_{2}(x)\widetilde{\omega_{2}}(\mid v\mid), \ \ (0, +\infty)\times(-\infty, +\infty)\times(-\infty, +\infty).

    That is, (H_{2}) holds. Therefore, from Theorem 5.1, (6.3) has two positive solutions (u^{\ast}, v^{\ast}) and (w^{\ast}, z^{\ast}) with (0, 0)\leq (u^{\ast}(x), v^{\ast}(x)), (w^{\ast}(x), z^{\ast}(x))\leq ((1+x^{\frac 12})\Upsilon_{1}, (1+x^{\frac 12})\Upsilon_{2}) , where \Upsilon_{1}+\Upsilon_{2}\leq \Upsilon , and \Upsilon satisfies

    \frac{95.58}{191.86}\Upsilon-0.69\arctan (\Upsilon+0.56)\geq \frac 1{36}.

    This paper studies the Erdélyi-Kober fractional coupled system (1.1), where the variable is in an infinite interval. We give some proper conditions and set a special Banach space. We obtain the existence of at least one positive solution for (1.1) by using the Guo-Krasnosel'skii fixed point theorem, and we get the existence of at least two positive solutions for (1.1) by using the monotone iterative technique. Our methods and results are different from ones in [18]. Moreover, we give three examples to show the plausibility of our main results. For future work, we intend to use other fixed point theorems to solve some Erdélyi-Kober fractional differential equations.

    The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.

    This paper is supported by the Fundamental Research Program of Shanxi Province (202303021221068).

    The authors declare that they have no competing interests.



    [1] A. Aizpuru, F. J. García-Pacheco, Rotundity in transitive and separable Banach spaces, Quaest. Math., 30 (2007), 85–96. https://doi.org/10.2989/160736007780205684 doi: 10.2989/160736007780205684
    [2] T. Banakh, Any isometry between the spheres of absolutely smooth 2-dimensional Banach spaces is linear, J. Math. Anal. Appl., 500 (2021), 125104. https://doi.org/10.1016/j.jmaa.2021.125104 doi: 10.1016/j.jmaa.2021.125104
    [3] T. Banakh, J. Cabello Sánchez, Every non-smooth 2-dimensional Banach space has the Mazur-Ulam property, Linear Algebra Appl., 625 (2021), 1–19. https://doi.org/10.1016/j.laa.2021.04.020 doi: 10.1016/j.laa.2021.04.020
    [4] P. Bandyopadhyay, D. Huang, B. L. Lin, S. L. Troyanski, Some generalizations of locally uniform rotundity, J. Math. Anal. Appl., 252 (2000), 906–916. https://doi.org/10.1006/jmaa.2000.7169 doi: 10.1006/jmaa.2000.7169
    [5] P. Bandyopadhyay, B. L. Lin, Some properties related to nested sequence of balls in Banach spaces, Taiwanese J. Math., 5 (2001), 19–34. https://doi.org/10.11650/twjm/1500574887 doi: 10.11650/twjm/1500574887
    [6] J. B. Guerrero, A. Rodríguez-Palacios, Transitivity of the norm on Banach spaces, Extracta Math., 17 (2002), 1–58.
    [7] A. Beurling, A. E. Livingston, A theorem on duality mappings in Banach spaces, Ark. Mat., 4 (1962), 405–411. https://doi.org/10.1007/BF02591622 doi: 10.1007/BF02591622
    [8] J. Blažek, Some remarks on the duality mapping, Acta Univ. Carolinae Math. Phys., 23 (1982), 15–19.
    [9] J. C. Sánchez, A reflection on Tingley's problem and some applications, J. Math. Anal. Appl., 476 (2019), 319–336. https://doi.org/10.1016/j.jmaa.2019.03.041 doi: 10.1016/j.jmaa.2019.03.041
    [10] A. Campos-Jiménez, F. J. García-Pacheco, Geometric invariants of surjective isometries between unit spheres, Mathematics, 9 (2021), 2346. https://doi.org/10.3390/math9182346 doi: 10.3390/math9182346
    [11] A. Campos-Jiménez, F. J. García-Pacheco, Compact convex sets free of inner points in infinite-dimensional topological vector spaces, Math. Nachr., 2023. https://doi.org/10.1002/mana.202200328
    [12] L. Cheng, Y. Dong, On a generalized Mazur-Ulam question: Extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl., 377 (2011), 464–470, https://doi.org/10.1016/j.jmaa.2010.11.025 doi: 10.1016/j.jmaa.2010.11.025
    [13] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414. https://doi.org/10.2307/1989630 doi: 10.2307/1989630
    [14] D. F. Cudia, The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc., 110 (1964), 284–314. https://doi.org/10.2307/1993705 doi: 10.2307/1993705
    [15] M. Cueto-Avellaneda, A. M. Peralta, On the Mazur-Ulam property for the space of Hilbert-space-valued continuous functions, J. Math. Anal. Appl., 479 (2019), 875–902. https://doi.org/10.1016/j.jmaa.2019.06.056 doi: 10.1016/j.jmaa.2019.06.056
    [16] M. Cueto-Avellaneda, A. M. Peralta, The Mazur-Ulam property for commutative von Neumann algebras, Linear Multilinear A., 68 (2020), 337–362. https://doi.org/10.1080/03081087.2018.1505823 doi: 10.1080/03081087.2018.1505823
    [17] M. M. Day, Normed linear spaces, Berlin, Heidelberg: Springer, 1973. https://doi.org/10.1007/978-3-662-09000-8
    [18] J. Diestel, Geometry of Banach spaces–selected topics, Berlin, Heidelberg: Springer, 1975, https://doi.org/10.1007/BFb0082079
    [19] G. G. Ding, The isometric extension of the into mapping from a \mathcal{L}^{\infty}(\Gamma)-type space to some Banach space, Illinois J. Math., 51 (2007), 445–453. https://doi.org/10.1215/ijm/1258138423 doi: 10.1215/ijm/1258138423
    [20] X. N. Fang, J. H. Wang, Extension of isometries between the unit spheres of normed space E and C(\Omega), Acta Math. Sin., 22 (2006), 1819–1824. https://doi.org/10.1007/s10114-005-0725-z doi: 10.1007/s10114-005-0725-z
    [21] X. Fang, J. Wang, Extension of isometries on the unit sphere of l^p(\Gamma) space, Sci. China Math., 53 (2010), 1085–1096. https://doi.org/10.1007/s11425-010-0028-4 doi: 10.1007/s11425-010-0028-4
    [22] V. Ferenczi, C. Rosendal, Non-unitarisable representations and maximal symmetry, J. Inst. Math. Jussieu, 16 (2017), 421–445. https://doi.org/10.1017/S1474748015000195 doi: 10.1017/S1474748015000195
    [23] F. J. Fernández-Polo, J. J. Garcés, A. M. Peralta, I. Villanueva, Tingley's problem for spaces of trace class operators, Linear Algebra Appl., 529 (2017), 294–323. https://doi.org/10.1016/j.laa.2017.04.024 doi: 10.1016/j.laa.2017.04.024
    [24] F. J. García-Pacheco, Relative interior and closure of the set of inner points, Quaest. Math., 43 (2020), 761–772. https://doi.org/10.2989/16073606.2019.1605421 doi: 10.2989/16073606.2019.1605421
    [25] F. J. García-Pacheco, A solution to the Faceless problem, J. Geom. Anal., 30 (2020), 3859–3871. https://doi.org/10.1007/s12220-019-00220-4 doi: 10.1007/s12220-019-00220-4
    [26] F. J. García-Pacheco, Asymptotically convex Banach spaces and the index of rotundity problem, Proyecciones, 31 (2012), 91–101, https://doi.org/10.4067/S0716-09172012000200001 doi: 10.4067/S0716-09172012000200001
    [27] F. J. García-Pacheco, B. Zheng, Geometric properties on non-complete spaces, Quaest. Math., 34 (2011), 489–511. https://doi.org/10.2989/16073606.2011.640746 doi: 10.2989/16073606.2011.640746
    [28] F. J. García-Pacheco, Advances on the Banach-Mazur conjecture for rotations, J. Nonlinear Convex Anal., 16 (2015), 761–765.
    [29] F. J. García-Pacheco, The index of strong rotundity, AIMS Mathematics, 8 (2023), 20477–20486. https://doi.org/10.3934/math.20231043. doi: 10.3934/math.20231043
    [30] F. J. García-Pacheco, S. Moreno-Pulido, E. Naranjo-Guerra, A. Sánchez-Alzola, Non-linear inner structure of topological vector spaces, Mathematics, 9 (2021), 466. https://doi.org/10.3390/math9050466 doi: 10.3390/math9050466
    [31] F. J. García-Pacheco, E. Naranjo-Guerra, Inner structure in real vector spaces, Georgian Math. J., 27 (2020), 361–366. https://doi.org/10.1515/gmj-2018-0048 doi: 10.1515/gmj-2018-0048
    [32] V. Kadets, M. Martín, Extension of isometries between unit spheres of finite-dimensional polyhedral Banach spaces, J. Math. Anal. Appl., 396 (2012), 441–447. https://doi.org/10.1016/j.jmaa.2012.06.031 doi: 10.1016/j.jmaa.2012.06.031
    [33] J. Lindenstrauss, On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J., 10 (1963), 241–252, https://doi.org/10.1307/mmj/1028998906 doi: 10.1307/mmj/1028998906
    [34] R. Liu, On extension of isometries between unit spheres of \ell^{\infty}(\Gamma)-type space and a Banach space E, J. Math. Anal. Appl., 333 (2007), 959–970. https://doi.org/10.1016/j.jmaa.2006.11.044 doi: 10.1016/j.jmaa.2006.11.044
    [35] P. Mankiewicz, On extension of isometries in normed linear spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 20 (1972), 367–371.
    [36] S. Mazur, Über konvexe mengen in linearem normietcn Räumen, Stud. Math., 4 (1933), 70–84. https://doi.org/10.4064/sm-4-1-70-84 doi: 10.4064/sm-4-1-70-84
    [37] S. Mazur, S. Ulam, Sur les transformations isometriques d'espaces vectoriels, normes, C. R. Acad. Sci. Paris, 194 (1932), 946–948.
    [38] R. E. Megginson, An introduction to Banach space theory, New York, NY: Springer, 1998. https://doi.org/10.1007/978-1-4612-0603-3
    [39] A. M. Peralta, On the unit sphere of positive operators, Banach J. Math. Anal., 13 (2019), 91–112, https://doi.org/10.1215/17358787-2018-0017 doi: 10.1215/17358787-2018-0017
    [40] A. M. Peralta, R. Tanaka, A solution to Tingley's problem for isometries between the unit spheres of compact \rm C^*-algebras and \rm JB^*-triples, Sci. China Math., 62 (2019), 553–568, https://doi.org/10.1007/s11425-017-9188-6 doi: 10.1007/s11425-017-9188-6
    [41] D. N. Tan, Extension of isometries on unit sphere of L^\infty, Taiwanese J. Math., 15 (2011), 819–827. https://doi.org/10.11650/twjm/1500406236 doi: 10.11650/twjm/1500406236
    [42] R. Tanaka, A further property of spherical isometries, B. Aust. Math. Soc., 90 (2014), 304–310. https://doi.org/10.1017/S0004972714000185 doi: 10.1017/S0004972714000185
    [43] R. Tanaka, On the frame of the unit ball of Banach spaces, Cent. Eur. J. Math., 12 (2014), 1700–1713. https://doi.org/10.2478/s11533-014-0437-7 doi: 10.2478/s11533-014-0437-7
    [44] R. Tanaka, The solution of Tingley's problem for the operator norm unit sphere of complex n\times n matrices, Linear Algebra Appl., 494 (2016), 274–285. https://doi.org/10.1016/j.laa.2016.01.020 doi: 10.1016/j.laa.2016.01.020
    [45] R. Tanaka, Tingley's problem on finite von Neumann algebras, J. Math. Anal. Appl., 451 (2017), 319–326. https://doi.org/10.1016/j.jmaa.2017.02.013 doi: 10.1016/j.jmaa.2017.02.013
    [46] D. Tingley, Isometries of the unit sphere, Geometriae Dedicata, 22 (1987), 371–378. https://doi.org/10.1007/BF00147942 doi: 10.1007/BF00147942
    [47] R. S. Wang, Isometries between the unit spheres of C_0(\Omega) type spaces, Acta Math. Sci., 14 (1994), 82–89, https://doi.org/10.1016/S0252-9602(18)30093-6 doi: 10.1016/S0252-9602(18)30093-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1236) PDF downloads(73) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog