Research article Special Issues

Some properties of $ n $-quasi-$ (m, q) $-isometric operators on a Banach space

  • Received: 25 July 2023 Revised: 14 November 2023 Accepted: 17 November 2023 Published: 23 November 2023
  • MSC : Primary 47B99, Secondary 47A05

  • In this paper, we introduced the class of $ n $-quasi-$ (m, q) $-isometric operators on a Banach space. Such a class seems to be a natural generalization of $ m $-isometric operators on Banach spaces and of $ n $-quasi-$ m $-isometric operators on Hilbert spaces. We started by giving some of their elementary properties and studying the products and the power of such operators. Next, we focused on the dynamic of a $ n $-quasi-$ m $-isometry. More precisely, we proved a result by characterizing the supercyclicity of such a class.

    Citation: Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba. Some properties of $ n $-quasi-$ (m, q) $-isometric operators on a Banach space[J]. AIMS Mathematics, 2023, 8(12): 31246-31257. doi: 10.3934/math.20231599

    Related Papers:

  • In this paper, we introduced the class of $ n $-quasi-$ (m, q) $-isometric operators on a Banach space. Such a class seems to be a natural generalization of $ m $-isometric operators on Banach spaces and of $ n $-quasi-$ m $-isometric operators on Hilbert spaces. We started by giving some of their elementary properties and studying the products and the power of such operators. Next, we focused on the dynamic of a $ n $-quasi-$ m $-isometry. More precisely, we proved a result by characterizing the supercyclicity of such a class.



    加载中


    [1] J. Agler, A disconjugacy theorem for Toeplitz operators, Am. J. Math., 112 (1990), 1–14. https://doi.org/10.2307/2374849 doi: 10.2307/2374849
    [2] J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, Ⅰ, Integ. Equat. Oper. Th., 21 (1995), 383–429. https://doi.org/10.1007/BF01222016 doi: 10.1007/BF01222016
    [3] J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, Ⅱ, Integ. Equat. Oper. Th., 23 (1995), 1–48. https://doi.org/10.1007/BF01261201 doi: 10.1007/BF01261201
    [4] J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, Ⅲ, Integ. Equat. Oper. Th., 24 (1996), 379–421. https://doi.org/10.1007/BF01191619 doi: 10.1007/BF01191619
    [5] T. Bermúdez, A. Martinon, E. Negrin, Weighted shift operators which are $m$-isometries, Integ. Equat. Oper. Th., 68 (2010), 301–312. https://doi.org/10.1007/s00020-010-1801-z doi: 10.1007/s00020-010-1801-z
    [6] T. Bermúdez, C. D. Mendoza, A. Martinón, Powers of $m$-isometries, Stud. Math., 208 (2012), 249–255.
    [7] T. Bermúdez, A. Martinón, J. A. Noda, Products of $m$-isometries, Linear Algebra Appl., 438 (2013), 80–86. https://doi.org/10.1016/j.laa.2012.07.011 doi: 10.1016/j.laa.2012.07.011
    [8] T. Bermúdez, A. Martinón, V. Muller, J. A. Noda, Perturbation of $m$-isometries by nilpotent operators, Abstr. Appl. Anal., 2014 (2014), 1–6. https://doi.org/10.1155/2014/745479 doi: 10.1155/2014/745479
    [9] J. Shen, F. Zuo, Spectral properties of $k$-quasi-$2$-isomertic operators, J. Korean Soc. Math. Ed., 22 (2015), 275–283.
    [10] S. Mecheri, T. Prasad, On $n$-quasi-$m$-isometric operators, Asian-Eur. J. Math., 9 (2016). https://doi.org/10.1142/S179355711650073X
    [11] O. A. M. S. Ahmed, A. Saddi, K. Gherairi, Some results on higher orders quasi-isometries, Hacet. J. Math. Stat., 49 (2020), 1315–1333. https://doi.org/10.15672/hujms.532964 doi: 10.15672/hujms.532964
    [12] O. A. M. S. Ahmed, $m$-isometric operators on Banach spaces, Asian-Eur. J. Math., 3 (2010), 1–19. https://doi.org/10.1142/S1793557110000027 doi: 10.1142/S1793557110000027
    [13] F. Bayart, $m$-isometries on Banach spaces, Math. Nachr., 284 (2011), 2141–2147. https://doi.org/10.1002/mana.200910029 doi: 10.1002/mana.200910029
    [14] A. Pazy, Semigroups of linear operator and applications to partial differntial equations, New York: Springer-Verlag, 1983.
    [15] F. Bayart, E. Matheron, Dynamics of linear operators, New York: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511581113
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(814) PDF downloads(57) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog