In this paper, we introduced the class of $ n $-quasi-$ (m, q) $-isometric operators on a Banach space. Such a class seems to be a natural generalization of $ m $-isometric operators on Banach spaces and of $ n $-quasi-$ m $-isometric operators on Hilbert spaces. We started by giving some of their elementary properties and studying the products and the power of such operators. Next, we focused on the dynamic of a $ n $-quasi-$ m $-isometry. More precisely, we proved a result by characterizing the supercyclicity of such a class.
Citation: Khadija Gherairi, Zayd Hajjej, Haiyan Li, Hedi Regeiba. Some properties of $ n $-quasi-$ (m, q) $-isometric operators on a Banach space[J]. AIMS Mathematics, 2023, 8(12): 31246-31257. doi: 10.3934/math.20231599
In this paper, we introduced the class of $ n $-quasi-$ (m, q) $-isometric operators on a Banach space. Such a class seems to be a natural generalization of $ m $-isometric operators on Banach spaces and of $ n $-quasi-$ m $-isometric operators on Hilbert spaces. We started by giving some of their elementary properties and studying the products and the power of such operators. Next, we focused on the dynamic of a $ n $-quasi-$ m $-isometry. More precisely, we proved a result by characterizing the supercyclicity of such a class.
[1] | J. Agler, A disconjugacy theorem for Toeplitz operators, Am. J. Math., 112 (1990), 1–14. https://doi.org/10.2307/2374849 doi: 10.2307/2374849 |
[2] | J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, Ⅰ, Integ. Equat. Oper. Th., 21 (1995), 383–429. https://doi.org/10.1007/BF01222016 doi: 10.1007/BF01222016 |
[3] | J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, Ⅱ, Integ. Equat. Oper. Th., 23 (1995), 1–48. https://doi.org/10.1007/BF01261201 doi: 10.1007/BF01261201 |
[4] | J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, Ⅲ, Integ. Equat. Oper. Th., 24 (1996), 379–421. https://doi.org/10.1007/BF01191619 doi: 10.1007/BF01191619 |
[5] | T. Bermúdez, A. Martinon, E. Negrin, Weighted shift operators which are $m$-isometries, Integ. Equat. Oper. Th., 68 (2010), 301–312. https://doi.org/10.1007/s00020-010-1801-z doi: 10.1007/s00020-010-1801-z |
[6] | T. Bermúdez, C. D. Mendoza, A. Martinón, Powers of $m$-isometries, Stud. Math., 208 (2012), 249–255. |
[7] | T. Bermúdez, A. Martinón, J. A. Noda, Products of $m$-isometries, Linear Algebra Appl., 438 (2013), 80–86. https://doi.org/10.1016/j.laa.2012.07.011 doi: 10.1016/j.laa.2012.07.011 |
[8] | T. Bermúdez, A. Martinón, V. Muller, J. A. Noda, Perturbation of $m$-isometries by nilpotent operators, Abstr. Appl. Anal., 2014 (2014), 1–6. https://doi.org/10.1155/2014/745479 doi: 10.1155/2014/745479 |
[9] | J. Shen, F. Zuo, Spectral properties of $k$-quasi-$2$-isomertic operators, J. Korean Soc. Math. Ed., 22 (2015), 275–283. |
[10] | S. Mecheri, T. Prasad, On $n$-quasi-$m$-isometric operators, Asian-Eur. J. Math., 9 (2016). https://doi.org/10.1142/S179355711650073X |
[11] | O. A. M. S. Ahmed, A. Saddi, K. Gherairi, Some results on higher orders quasi-isometries, Hacet. J. Math. Stat., 49 (2020), 1315–1333. https://doi.org/10.15672/hujms.532964 doi: 10.15672/hujms.532964 |
[12] | O. A. M. S. Ahmed, $m$-isometric operators on Banach spaces, Asian-Eur. J. Math., 3 (2010), 1–19. https://doi.org/10.1142/S1793557110000027 doi: 10.1142/S1793557110000027 |
[13] | F. Bayart, $m$-isometries on Banach spaces, Math. Nachr., 284 (2011), 2141–2147. https://doi.org/10.1002/mana.200910029 doi: 10.1002/mana.200910029 |
[14] | A. Pazy, Semigroups of linear operator and applications to partial differntial equations, New York: Springer-Verlag, 1983. |
[15] | F. Bayart, E. Matheron, Dynamics of linear operators, New York: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511581113 |