Research article Special Issues

Hamiltonian elliptic system involving nonlinearities with supercritical exponential growth

  • Received: 06 February 2023 Revised: 29 April 2023 Accepted: 07 May 2023 Published: 07 June 2023
  • MSC : 35J20, 35J47, 35J50, 26D10

  • In this paper, we deal with the existence of nontrivial solutions to the following class of strongly coupled Hamiltonian systems:

    $ \begin{equation*} \quad \left\{ \begin{array}{rclll} -{\rm div} \big(w(x)\nabla u\big) \ = \ g(x,v),&\ & x \in B_1(0), \\[5pt] - {\rm div}\big(w(x) \nabla v\big)\ = \ f(x,u),&\ & x \in B_1(0), \\[5pt] u = v = 0&\ & x \in \partial B_1(0), \end{array} \right. \end{equation*} $

    where $ w(x) = \big(\log 1/|x|\big)^{\gamma} $, $ 0\leq\gamma < 1 $, and the nonlinearities $ f $ and $ g $ possess exponential growth ranges above the exponential critical hyperbola. Our approach is based on Trudinger-Moser type inequalities for weighted Sobolev spaces and variational methods.

    Citation: Yony Raúl Santaria Leuyacc. Hamiltonian elliptic system involving nonlinearities with supercritical exponential growth[J]. AIMS Mathematics, 2023, 8(8): 19121-19141. doi: 10.3934/math.2023976

    Related Papers:

  • In this paper, we deal with the existence of nontrivial solutions to the following class of strongly coupled Hamiltonian systems:

    $ \begin{equation*} \quad \left\{ \begin{array}{rclll} -{\rm div} \big(w(x)\nabla u\big) \ = \ g(x,v),&\ & x \in B_1(0), \\[5pt] - {\rm div}\big(w(x) \nabla v\big)\ = \ f(x,u),&\ & x \in B_1(0), \\[5pt] u = v = 0&\ & x \in \partial B_1(0), \end{array} \right. \end{equation*} $

    where $ w(x) = \big(\log 1/|x|\big)^{\gamma} $, $ 0\leq\gamma < 1 $, and the nonlinearities $ f $ and $ g $ possess exponential growth ranges above the exponential critical hyperbola. Our approach is based on Trudinger-Moser type inequalities for weighted Sobolev spaces and variational methods.



    加载中


    [1] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the N-Laplacian, Ann. Scuola Norm.-Sci., 3 (1990), 393–413.
    [2] Adimurthi, S. L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of $\mathbb{R}^2$ involving critical exponent, Ann. Scuola Norm.-Sci., 4 (1990), 481–504.
    [3] F. S. B. Albuquerque, J. M. do Ó, E. S. Medeiros, On a class of Hamiltonian systems involving unbounded or decaying potential in dimension two, Math. Nachr., 289 (2016), 1568–1584. https://doi.org/10.1002/mana.201400203 doi: 10.1002/mana.201400203
    [4] A. Alvino, V. Ferone, G. Trombetti, Moser-type inequalities in Lorentz spaces, Potential Anal., 5 (1996), 273–299. https://doi.org/10.1007/BF00282364 doi: 10.1007/BF00282364
    [5] T. Bartsh, M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Am. Math. Soc., 123 (1995), 3555–3561.
    [6] D. Bonheure, E. M. dos Santos, H. Tavares, Hamiltonian elliptic systems: A guide to variational frameworks, Port. Math., 71 (2014), 301–395. https://doi.org/10.4171/PM/1954 doi: 10.4171/PM/1954
    [7] H. Brézis, Elliptic equations with limiting Sobolev exponents, Commun. Pure Appl. Math., 3 (1986), S17–S39. https://doi.org/10.1002/cpa.3160390704 doi: 10.1002/cpa.3160390704
    [8] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405
    [9] H. Brezis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Commun. Part. Diff. Eq., 5 (1980), 773–789. https://doi.org/10.1080/03605308008820154 doi: 10.1080/03605308008820154
    [10] D. B. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $ \mathbb{R}^2$, Commun. Part. Diff. Equ., 1 (1992), 407–435. https://doi.org/10.1080/03605309208820848 doi: 10.1080/03605309208820848
    [11] A. Capozzi, D. Fortunato, G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. I. H. Poincaré C, 2 (1985), 463–470.
    [12] M. Calanchi, B. Ruf, On a Trudinger-Moser type inequality with logarithmic weights, J. Differ. Equ., 258 (2015), 1967–1989. https://doi.org/10.1016/j.jde.2014.11.019 doi: 10.1016/j.jde.2014.11.019
    [13] M. Calanchi, B. Ruf, F. Sani, Elliptic equations in dimension 2 with double exponential nonlinearities, Nonlinear Differ. Equ. Appl., 24 (2017), 29. https://doi.org/10.1007/s00030-017-0453-y doi: 10.1007/s00030-017-0453-y
    [14] D. Cassani, C. Tarsi, A Moser-type inequalities in Lorentz-Sobolev spaces for unbounded domains in $ \mathbb{R}^N$, Asymptot. Anal., 64 (2009), 29–51. https://doi.org/10.3233/ASY-2009-0934 doi: 10.3233/ASY-2009-0934
    [15] D. Cassani, C. Tarsi, Existence of solitary waves for supercritical Schrödinger systems in dimension two, Calc. Var. Partial Dif., 54 (2015), 1673–1704. https://doi.org/10.1007/s00526-015-0840-3 doi: 10.1007/s00526-015-0840-3
    [16] D. G. de Figueiredo, J. M. do Ó, B. Ruf, An Orlicz-space approach to superlinear elliptic systems, J. Funct. Anal., 343 (2005), 471–496. https://doi.org/10.1016/j.jfa.2004.09.008 doi: 10.1016/j.jfa.2004.09.008
    [17] D. G. de Figueiredo, D. L. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc., 243 (1994), 99–116. https://doi.org/10.2307/2154523 doi: 10.2307/2154523
    [18] D. G. de Figueiredo, J. M. do Ó, B. Ruf, Critical and subcritical elliptic systems in dimension two, Indiana Univ. Math. J., 53 (2004), 1037–1054. Available from: https://www.jstor.org/stable/24903530.
    [19] D. G. de Figueiredo, O. H. Miyagaki, R. Ruf, Elliptic equations in $ \mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var., 3 (1995), 139–153. https://doi.org/10.1007/BF01205003 doi: 10.1007/BF01205003
    [20] J. Hulshof, R. Vandervorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32–58. https://doi.org/10.1006/jfan.1993.1062 doi: 10.1006/jfan.1993.1062
    [21] O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Springer-Verlag, Paris, 1993.
    [22] A. Kufner, Weighted Sobolev spaces, Leipzig Teubner-Texte zur Mathematik, 1980.
    [23] Y. R. S. Leuyacc, A class of Schrödinger elliptic equations involving supercritical exponential growth, Bound Value Probl., 39 (2023). https://doi.org/10.1186/s13661-023-01725-2 doi: 10.1186/s13661-023-01725-2
    [24] Y. R. S. Leuyacc, A nonhomogeneous Schrödinger equation involving nonlinearity with exponential critical growth and potential which can vanish at infinity, Results Appl. Math., 17 (2023). https://doi.org/10.1016/j.rinam.2022.100348 doi: 10.1016/j.rinam.2022.100348
    [25] Y. Leuyacc, S. Soares, On a Hamiltonian system with critical exponential growth, Milan J. Math., 87 (2019), 105–140. https://doi.org/10.1007/s00032-019-00294-3 doi: 10.1007/s00032-019-00294-3
    [26] Q. Liu, W. Zou, The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the $L^2$-subcritical and $L^2$-supercritical cases, Adv. Nonlinear Anal., 11 (2022). 1531–1551. https://doi.org/10.1515/anona-2022-0252 doi: 10.1515/anona-2022-0252
    [27] Q. Li, J. Nie, W. Zhang, Existence and asymptotics of normalized ground states for a Sobolev critical Kirchhoff equation, J. Geom. Anal., 33 (2023), 126. https://doi.org/10.1007/s12220-022-01171-z doi: 10.1007/s12220-022-01171-z
    [28] G. Lu, H. Tang, Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces, Adv. Nonlinear Stud., 16 (2016), 581–601. https://doi.org/10.1515/ans-2015-5046 doi: 10.1515/ans-2015-5046
    [29] E. Mitidieri, A Rellich type identity and applications, Commun. Part. Diff. Equ., 18 (1993), 125–151. https://doi.org/10.1080/03605309308820923 doi: 10.1080/03605309308820923
    [30] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077–1092.
    [31] Q. A. Ngô, V. H. Nguyen, Supercritical Moser-Trudinger inequalities and related elliptic problems, Calc. Var. Partial Dif., 59 (2020), 69. https://doi.org/10.1007/s00526-020-1705-y doi: 10.1007/s00526-020-1705-y
    [32] S. Pohožaev, The Sobolev embedding in the special case $pl = n$, Moscow. Energet. Inst., 1965,158–170. doi: 10.4067/S0716-09172019000200325
    [33] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., Amer. Math. Soc., Providence, RI, 1986.
    [34] B. Ruf, Lorentz spaces and nonlinear elliptic systems, Contributions to nonlinear analysis, Basel, Birkhäuser, 2006,471–489.
    [35] Y. R. Santaria-Leuyacc, Nonlinear elliptic equations in dimension two with potentials which can vanish at infinity, Proyecciones, 38 (2019), 325–351. https://doi.org/10.4067/S0716-09172019000200325 doi: 10.4067/S0716-09172019000200325
    [36] Y. R. Santaria-Leuyacc, Supercritical Trudinger-Moser inequalities with logarithmic weights in dimension two, AIMS Math., 8 (2023), 18354–18372. https://doi.org/10.3934/math.2023933 doi: 10.3934/math.2023933
    [37] Y. R. Santaria-Leuyacc, Standing waves for quasilinear Schrödinger equations involving double exponential growth, AIMS Math., 8 (2023), 1682–1695. https://doi.org/10.3934/math.2023086 doi: 10.3934/math.2023086
    [38] S. H. M. Soares, Y. R. S. Leuyacc, Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity, Commun. Contemp. Math., 20 (2018), 1750053. https://doi.org/10.1142/S0219199717500535 doi: 10.1142/S0219199717500535
    [39] S. H. M. Soares, Y. R. S. Leuyacc, Singular Hamiltonian elliptic systems with critical exponential growth in dimension two, Math. Nachr., 292 (2019), 137–158. https://doi.org/10.1002/mana.201700215 doi: 10.1002/mana.201700215
    [40] M. de Souza, J. M. do Ó, Hamiltonian elliptic systems in $ \mathbb{R}^2$ with subcritical and critical exponential growth, Ann. Mat. Pura Appl., 195 (2016), 935–956. https://doi.org/10.1007/s10231-015-0498-7 doi: 10.1007/s10231-015-0498-7
    [41] M. de Souza, On a singular Hamiltonian elliptic systems involving critical growth in dimension two, Commun. Pure Appl. Anal., 11 (2012), 1859–1874. https://doi.org/10.3934/cpaa.2012.11.1859 doi: 10.3934/cpaa.2012.11.1859
    [42] M. de Souza, J. M do Ó, On singular Trudinger-Moser type inequalities for unbounded domains and their best exponents, Potential Anal., 38 (2013), 1091–1101. https://doi.org/10.1007/s11118-012-9308-7 doi: 10.1007/s11118-012-9308-7
    [43] N. Trudinger, On embedding into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473–483.
    [44] V. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR, 138 (1961), 805–808.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(708) PDF downloads(53) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog