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Abstract: In this paper, we deal with the existence of nontrivial solutions to the following class of
strongly coupled Hamiltonian systems:

−div
(
w(x)∇u

)
= g(x, v), x ∈ B1(0),

−div
(
w(x)∇v

)
= f (x, u), x ∈ B1(0),

u = v = 0 x ∈ ∂B1(0),

where w(x) =
(

log 1/|x|
)γ, 0 ≤ γ < 1, and the nonlinearities f and g possess exponential growth ranges

above the exponential critical hyperbola. Our approach is based on Trudinger-Moser type inequalities
for weighted Sobolev spaces and variational methods.
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1. Introduction

In the literature, the existence of nontrivial solutions for strongly coupled Hamiltonian systems has
been extensively studied by many authors [3, 6, 15–18, 20, 25, 29, 34, 38–41]. A Hamiltonian system is
a mathematical expression of the following form:{

−∆u = Hv(x, u, v), x ∈ Ω,

−∆v = Hu(x, u, v), x ∈ Ω,
(1.1)

where Ω is a smooth domain in RN , N ≥ 2, and H(x, u, v) is a nonlinear function.
In the case N ≥ 3. A classical model for H is given by H(x, u, v) = |u|p+1/(p + 1) + |v|q+1/(q + 1)
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and the maximal growth for the exponents p and q are related to the curve [17, 20, 29]:
1

p + 1
+

1
q + 1

=
N − 2

N
. (1.2)

If the couple (p, q) lies on (1.2), some features of noncompactness arises, this motivates one to
name (1.2) as the critical hyperbola, and we say that the nonlinearities Hv = |v|q−1v and Hu = |u|p−1u
possess critical growth; alternatively, if the couple (p, q) is below (1.2) the growth of the nonlinearities
are denominated subcritical. We want to point out that the critical hyperbola results from the borderline
between existence and nonexistence of solutions for (1.1) (see [6]).

In the case when N = 2, the critical hyperbola is not defined. Notice that, if Ω is a bounded domain
in RN , the Sobolev embeddings state W1,2

0 (Ω) ⊂ Lq(Ω) for all 1 ≤ q ≤ 2∗ = 2N/(N − 2) for N ≥ 3.
In dimension N = 2, one has 2∗ = +∞ and W1,2

0 (Ω) 1 L∞(Ω). Therefore, Hu and Hv may have
any arbitrary polynomial growth. It was shown independently by Yudovich [44] , Pohožaev [32], and
Trudinger [43] that the growth is of exponential type. More precisely, eαu2

∈ L1(Ω) for all u ∈ H1
0(Ω)

and α > 0. Furthermore, Moser [30] proved the existence of a positive constant C = C(α,Ω) such that

sup
u∈H1

0 (Ω)
‖∇u‖2≤1

∫
Ω

eαu2
dx

≤ C, α ≤ 4π,
= +∞, α > 4π.

(1.3)

From now on, the estimate of the type (1.3) will be referred to as the Trudinger-Moser inequality.
These inequalities have been extended in many directions (see [3, 10, 12, 14, 23, 25, 28, 31, 36, 42]
among others). The above results motivate us to say that the function f has subcritical exponential
growth if

lim
s→+∞

f (s)
eαs2 = 0, for all α > 0,

and critical exponential growth if there exists α0 > 0 such that

lim
s→+∞

f (s)
eαs2 =

0, α > α0,

+∞, α < α0.
(1.4)

Nonlinear equations considering nonlinearities involving subcritical and critical exponential growth
were treated by Adimurthi [1], Adimurthi-Yadava [2], de Figueiredo, Miyagaki, and Ruf [19] (see
also [10,12,24,31,35]). We recall that a nonlinear equation in a domain Ω ⊂ RN with N ≥ 3 a classical
assumption on the nonlinearity is given by | f (s)| ≤ c(1 + |s|q−1) , with 1 < q ≤ 2∗ = 2N/(N − 2)
(see [5,7,8,11,26,27] among others). If there exist positive constants k and s0 such that g1(s) ≤ g2(ks)
for s ≥ s0, we shall write g1(s) ≺ g2(s). Additionally, we shall say that g1 and g2 are equivalent and
write g1(s) ∼ g2(s) if g1(s) ≺ g2(s) and g2(s) ≺ g1(s). Therefore, f possesses critical exponential
growth if and only if f (s) ∼ e|s|

2
.

The existence of a nontrivial solution of the system (1.1) under Hv ∼ ev2
and Hu ∼ eu2

and
considering H1

0(Ω) × H1
0(Ω) as the setting space was proved by de Figueiredo, do Ó, and Ruf [18].

Now, we recall some facts about Lorentz-Sobolev spaces. Let 1 < r < +∞, 1 ≤ s < +∞ and Ω

subset of RN , the Lorentz space Lr,s(Ω) is the collection of all measurable and finite almost everywhere
functions on Ω such that ‖φ‖r,s < +∞, where

‖φ‖r,s =

(∫ +∞

0

[
φ∗(t)t1/r]s dt

t

)1/s

,
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where φ∗ denotes the spherically symmetric decreasing rearrangement of φ. In addition, if Ω is an
open bounded domain in RN , the Lorentz-Sobolev space W1

0 Lr,s(Ω) is defined to be the closure of the
compactly supported smooth functions on Ω, with respect to the quasinorm

‖u‖W1
0 Lr,s := ‖∇u‖r,s.

Brezis and Wainger [9] proposed the following Trudinger-Moser inequality version on Lorentz-
Sobolev spaces: If Ω be a bounded domain in R2 and s > 1, then eα|u|

s
s−1 belongs to L1(Ω) for all

u ∈ W1
0 L2,s(Ω) and α > 0. Furthermore, Alvino [4] proved the following refinement of (1.3), there

exists a positive constant C = C(Ω, s, α) such that

sup
u∈W1

0 L2,s(Ω)
‖∇u‖2,s≤1

∫
Ω

eα|u|
s

s−1 dx

≤ C, α ≤ (4π)s/(s−1),

= +∞, α > (4π)s/(s−1).
(1.5)

Ruf [34] showed that, if the setting space of the system (1.1) is given by the product space W1
0 L2,q(Ω)×

W1
0 L2,p(Ω), the maximal growth of the nonlinearities can be considered like Hu ∼ e|u|

p
and Hv ∼ e|v|

q

with p, q > 1 satisfying
1
p

+
1
q

= 1. (1.6)

In analogy to (1.2), the curve (1.6) is called exponential critical hyperbola. The existence of solutions
of the system (1.8) for p = q = 2 has been treated in many works [3, 18, 38, 40, 41] among others, and
the case where (p, q) lies on the exponential critical hyperbola given by (1.6) was studied in [15,25,39].

Trudinger-Moser type inequalities for radial Sobolev spaces with logarithmic weights were
considered by Calanchi and Ruf [12] . Denote by H1

0, rad(B1,w), the subspace of the radially symmetric
functions in the closure of C∞0 (B1) with respect to the norm

‖u‖ :=
( ∫

B1

|∇u|2w(x) dx
) 1

2
,

where
w(x) =

[
log

( 1
|x|

)]γ
, 0 ≤ γ < 1. (1.7)

Calanchi and Ruf [12] found that∫
B1

eα|u|
2

1−γ dx < +∞, for all u ∈ H1
0, rad(B1,w) and α > 0.

Furthermore, if α ≤ α∗γ = 2
[
2π(1 − γ)

] 2
2−γ , there exists a positive constant C such that

sup
‖u‖≤1

∫
B1

eα|u|
2

1−γ dx ≤ C.

The above results represent an increase in the maximal growth of the exponential type. For λ = 1,
the weight given by (1.7) allows us to consider double exponential growth, see [12, 13, 37] for more
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details. In this paper, we deal with the existence of solutions to the following Hamiltonian system:
−div

(
w(x)∇u

)
= g(x, v), x ∈ B1,

−div
(
w(x)∇v

)
= f (x, u), x ∈ B1,

u = v ≡ 0, x ∈ ∂B1,

(1.8)

where w is given by (1.7) and B1 denotes the unit open ball center at the origin in R2. In order to
use variational methods, we consider an associated functional defined on the space H1

0, rad(B1,w) ×
H1

0, rad(B1,w), which allows us to have nonlinearities of the form f (u) ∼ e|u|
2/(1−γ)

and g(v) ∼ e|v|
2/(1−γ)

.
We assume the following conditions on the nonlinerities f and g:

(H1) f , g ∈ C(B1 × R) and f (x, s) = g(x, s) = o(s) as s → 0+ and f (x, s) = g(x, s) = 0 for all x ∈ B1

and s ≤ 0 .
(H2) There exist constants µ > 2, ν > 2 and s0 > 0 such that

0 < µF(x, s) ≤ s f (x, s) and 0 < νG(x, s) ≤ sg(x, s), for all x ∈ B1 and s > s0,

where F(x, s) =
∫ s

0
f (x, t) dt and G(x, s) =

∫ s

0
g(x, t) dt.

(H3) There exist constants M > 0 and s1 > 0 such that

0 < F(x, s) ≤ M f (x, s) and 0 < G(x, s) ≤ Mg(x, s), for all x ∈ B1 and s > s1.

(H4) There exist constants α0 > 0 and β0 > 0 such that

lim
s→∞

f (x, s)
eαs2/(1−γ) =

0, α > α0,

+∞, α < α0,
and lim

s→∞

g(x, s)
eβs2/(1−γ) =

0, β > β0,

+∞, β < β0,

uniformly on x ∈ B1.
(H5) There exist constants p > 2 and Cp > 0 such that

f (x, s) ≥ Cpsp−1 and g(s) ≥ Cpsp−1, for all s ≥ 0,

where

Cp >
(p − 2)(p−2)/2(max{α0, β0})(p−2)(1−γ)/2S p

p

p(p−2)/2(α∗γ)(p−2)(1−γ)/2

and

S p := inf
0,u∈H1

0,rad(B1,w)

(∫
B1

w(x)|∇u|2 dx
)1/2

(∫
B1

|u|p dx
)1/p .

Setting the product space
E = H1

0, rad(B1,w) × H1
0, rad(B1,w),

which is a Hilbert space endowed with the inner product

〈(u, v), (φ, ψ)〉E =

∫
B1

w(x)
(
∇u∇φ + ∇v∇ψ

)
dx,
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for all (u, v), (φ, ψ) ∈ E, to which corresponds the norm

‖(u, v)‖ = ‖(u, v)‖E :=
(
‖u‖2 + ‖v‖2

)1/2
.

Additionally, we denote the dual space of E with its usual norm by E∗. We say that (u, v) ∈ E is a weak
solution of (1.8) if∫

B1

w(x)
(
∇u∇ψ + ∇v∇φ

)
dx =

∫
B1

( f (x, u)φ + g(x, v)ψ) dx, for all (φ, ψ) ∈ E. (1.9)

Under the assumption on f and g, we establish the Euler-Lagrange functional J : E → R defined
by

J(u, v) =

∫
B1

w(x)∇u∇v dx −
∫

B1

F(x, u) dx −
∫

B1

G(x, v) dx,

for all (u, v) ∈ E. Furthermore, using standard arguments [21] , J ∈ C1(E,R) and, for all (u, v),
(φ, ψ) ∈ E, it holds

J′(u, v)(φ, ψ) =

∫
B1

w(x)
(
∇u∇ψ + ∇v∇φ

)
dx −

∫
B1

f (x, u)φ dx −
∫

B1

g(x, v)ψ dx.

In particular, (u, v) ∈ E is a nontrivial weak solution of the system (1.8) if only if (u, v) ∈ E is a
nontrivial critical point of the functional J. Next, we present our existence result for the system (1.8).

Theorem 1.1. Suppose that f and g satisfy (H1)–(H5). Then, the Hamiltonian system (1.8) has a
nontrivial weak solution.

First, observe that if γ = 0, then the system (1.8) is reduced to −∆u = g(x, v) and −∆v = f (x, u)
with Dirichlet conditions, and the growth of the functions are given by f (x, u) ∼ e|u|

2
and g(x, v) ∼ e|v|

2

uniformly on x ∈ B1, whose existence of nontrivial weak solutions was found in [18]. In the case
for γ > 0, the nonlinearities under the assumption (H4) behaves like f (x, u) ∼ e|u|

p
and g(x, v) ∼ e|v|

q

uniformly on x ∈ B1, where 1/p+1/q < 1 and p = q, that is, the pair (p, q) lies in the diagonal direction
above the exponential critical hyperbola. Therefore, our result treats the Hamiltonian system (1.8)
involving nonlinearities with supercritical exponential growth. Consequently, our result complements
the works which study nonlinearities f (x, u) ∼ e|u|

p
and g(x, v) ∼ e|v|

q
for values where (p, q) lies under

and on the the curve (1.6), that is, for nonlinerities that possess subcritical and critical exponential
growth, respectively [15, 18, 25, 38–41].

The paper is organized as follows: Section 2 contains some preliminaries results and properties
our setting space. In Section 3, we show that the Euler-Lagrange energy functional possesses the
geometry of the linking theorem. In Section 4, it is established the finite-dimensional approximation
and estimated the minimax level of the functional. Finally, in Section 5, we present the proof of
Theorem 1.1.

2. Preliminaries

Let H1
0,rad(B1,w) be the subspace of the radially symmetric functions in the closure of C∞0 (B1) with

respect to the norm

‖u‖ = ‖u‖H1
0, rad(B1,w) :=

(∫
B1

|∇u|2w(x) dx
)1/2

,

AIMS Mathematics Volume 8, Issue 8, 19121–19141.
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where w(x) =
(

log 1/|x|
)γ and 0 ≤ γ < 1.

Proposition 2.1. The Sobolev weighted space H1
0, rad(B1,w) is a separable Banach space.

Proof. Let 0 ≤ γ < 1 be fixed and consider s(t) =
(

log 1/(1 − t)
)γ. Then, s is a continuous positive

function defined for the interval (0, 1) and satisfies limt→0 s(t) = 0. Moreover, if Ω = B1(0), we have
d(x) = dist(x, ∂Ω) = 1 − |x|. Thus, s ◦ d = w. Therefore, we get that W1,2(Ω, s ◦ d) and its restrictions
to the radial symmetric functions are separable Banach spaces (see Theorem 3.9 in [22]). �

We note that H1
0, rad(B,w) is a Hilbert space endowed with inner product

〈u, v〉 :=
∫

B1

w(x)∇u∇v dx, for all u, v ∈ H1
0, rad(B,w).

Now, we state a compactness result.

Lemma 2.2. The embedding H1
0, rad(B1,w) ↪→ Lp(B1) is continuous and compact for 1 ≤ p < ∞.

Proof. It follows from the Cauchy-Schwarz inequality that∫
B1

|∇u| dx ≤
( ∫

B1

|∇u|2w(x) dx
)1/2
·
( ∫

B1

w(x)−1 dx
)1/2

.

Using the change of variable |x| = e−s, we obtain

1
2π

∫
B1

w(x)−1 dx =

∫ +∞

0
e−2ss−γ ds =

∫ 1

0
e−2ss−γ ds +

∫ +∞

1
e−2ss−γ ds,

where ∫ 1

0
e−2ss−γ ds ≤

∫ 1

0
s−γ ds =

1
1 − γ

and ∫ +∞

1
e−2ss−γ ds ≤

∫ +∞

1
e−2s ds =

e−2

2
.

Therefore, there exists C > 0 such that

‖∇u‖1 ≤ C
( ∫

B1

|∇u|2w(x) dx
)1/2

.

Thus, H1
0, rad(B1,w) ↪→ W1,1

0 (B1) continuosly, which implies the continuous and compact embedding

H1
0, rad(B1,w) ↪→ Lp(B1), for all p ≥ 1.

�

Proposition 2.3. (See [12]) Let w be the weight given by (1.7). Then,∫
B1

eα|u|
2

1−γ dx < +∞, for all u ∈ H1
0, rad(B1,w) and α > 0. (2.1)

Furthermore, if α ≤ α∗γ = 2
[
2π(1 − γ)

] 1
2−γ , there exists a positive constant C such that

sup
‖u‖≤1

∫
B1

eα|u|
2

1−γ dx ≤ C. (2.2)

AIMS Mathematics Volume 8, Issue 8, 19121–19141.
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Lemma 2.4. Let (un) be a sequence in H1
0, rad(B1,w) such that un ⇀ 0 in H1

0, rad(B1,w) and ‖un‖ = 1 for
every n ∈ N. Then, for every 0 < α < α∗γ, there exists a subsequence, still denoted by (un) such that∫

B1

(
eα|un |

2
1−γ
− 1

)
dx = 0→ 0, as n→ +∞.

Proof. Choosing ε > 0 such that α + ε < α∗γ. We have the following limits:

lim
|t|→0

eα|t|
2

1−γ
− 1

|t|
= 0 and lim

|t|→∞

eα|t|
2

1−γ
− 1

|t|e(α+ε)|t|
2

1−γ
= 0.

Thus, we can find C > 0 such that

eα|t|
2

1−γ
− 1 ≤ C|t| + C|t|e(α+ε)|t|

2
1−γ
, for all t ∈ R.

Using the Hölder inequality with r > 1 such that r(α + ε) < α∗γ and Proposition 2.3, we get∫
B1

(
eα|un |

2
1−γ
− 1

)
dx ≤ C‖un‖1 + C‖un‖r′

∫
B1

er(α+ε)|un |
2

1−γ dx ≤ C‖un‖1 + C‖un‖r′ .

By the weakly convergence of un ⇀ 0 in H1
0, rad(B1,w) and Lemma 2.2 for a subsequence, we have∫

B1

(
eα|un |

2
1−γ
− 1

)
dx→ 0.

�

3. Linking geometry

This section is devoted to prove that the functional J possesses the geometry of the linking theorem.
We start setting the following subspaces:

E+ = {(u, u) : u ∈ H1
0, rad(B1,w)} and E− = {(u,−u) : u ∈ H1

0, rad(B1,w)},

In particular, we have
E = E+ ⊕ E−.

Lemma 3.1. Assume that (H1), (H4), and (H5), are hold. Then, there exist positive constants σ and ρ
such that J(z) ≥ σ for all z ∈ ∂Bρ ∩ E+.

Proof. Given ε > 0 and q > 2, it follows from (H1) and (H4), the existence of some c > 0 such that

|G(x, s)|, |F(x, s)| ≤ ε |s|2 + c|s|qe2α0 |s|
2

2−γ
, for all (x, s) ∈ B1 × R.

Using the Cauchy-Schwarz inequality and (2.2), we obtain∫
B1

F(x, u) dx ≤ ε‖u‖22 + c‖u‖q2q

∫
e4α0 |u|

2
2−γ dx ≤ ε‖u‖22 + c‖u‖q2q,

AIMS Mathematics Volume 8, Issue 8, 19121–19141.
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provided that ‖u‖ ≤ ρ0 for some ρ0 > 0 such that 4α0ρ
2

2−γ

0 < α∗γ. A similar inequality holds for the
function G. By Lemma 2.2, we obtain c1 > 0 and c2 > 0 such that

J(u, u) ≥ ‖u‖2 −
∫

B1

F(x, u) dx −
∫

B1

G(x, u) dx ≥ ‖u‖2 − 2ε‖u‖22 − 2c‖u‖q2q ≥ (1 − 2εc1)‖u‖2 − c2‖u‖q.

Therefore, taking ε > 0 sufficiently small, we can choose ρ > 0 sufficiently small and σ > 0 such that
J(z) ≥ σ, for all z ∈ ∂Bρ ∩ E+. �

Taking e ∈ H1
0,rad(B1,w) such that ‖e‖ = 1, we define

Qe = {r(e, e) + (ω,−ω) : ‖(ω,−ω)‖ ≤ R0, 0 ≤ r ≤ R1},

where R0 > and R1 > 0 will be determined by the following result.

Lemma 3.2. Assume that (H1), (H2) and (H5), are hold. Then, there exist positive constants R0 and R1

such that
J(z) ≤ 0, for all z ∈ ∂Qe.

Proof. We observe that the boundary ∂Qe of the set Qe consists of three parts that corresponds the
following cases:

(i) Let z = (ω,−ω) ∈ ∂Qe ∩ E−. Therefore,

J(z) = −‖ω‖2 −

∫
B1

F(x, ω) dx −
∫

B1

G(x,−ω) dx ≤ 0.

(ii) Let z = r(e, e) + (ω,−ω) = (re + ω, re − ω) ∈ ∂Qe, with ‖(ω,−ω)‖ = R0 and 0 ≤ r ≤ R1, then

J(z) = r2‖e‖2 − ‖ω‖2 −
∫

B1

F(x, re + ω) dx −
∫

B1

G(x, re − ω) dx ≤ R2
1‖e‖

2 − ‖ω‖2 = R2
1 −

R2
0

2
.

Thus, J(z) ≤ 0 if R0 =
√

2R1.
(iii) Let z = R1(e, e) + (ω,−ω) ∈ ∂Qe, with ‖(ω,−ω)‖ ≤ R0, it follows from (H5) that

F(x, s),G(x, s) ≥
Cp

p
|s|p for all x ∈ B1 and s ≥ 0.

Therefore,

J(z) = R2
1‖e‖

2 − ‖ω‖2 −

∫
B1

F(x,R1e + ω) dx −
∫

B1

G(x,R1e − ω) dx

≤ R2
1 −

∫
B1

F(x,R1e + ω) dx −
∫

B1

G(x,R1e − ω) dx

≤ R2
1 −

Cp

p

∫
B1

(
|R1e + ω|p + |R1e − ω|p

)
dx

≤ R2
1 −

2CpRp
1

p

∫
B1

|e|p dx.

Since p > 2, we can choose R1 > 0 such that J(z) ≤ 0.

�
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4. Finite-dimensional approximation

Observe that the leading part of the functional J is strongly indefinite, that is, J can assume positives
and negatives values on infinite-dimensional subspaces of E. Therefore, we can not use the linking
theorem. To deal with this inconvenience, we follow the arguments developed by de Figueiredo, do Ó,
and Ruf [16], that is, we use a finite dimensional approximation.

Let e = up ∈ H1
0,rad(B1,w) be a nonnengative function with ‖up‖p = 1 where S p is attained. We

consider {ei}i∈N a Hilbert basis of 〈e〉⊥ and setting

E+
n = Span{(ei, ei) : i = 1, 2, . . . , n}

and
E−n = Span{(ei,−ei) : i = 1, 2 . . . , n},

En = E+
n ⊕ E−n .

we denote by

Hn = R(e, e) ⊕ En, H+
n = R(e, e) ⊕ E+

n and H−n = R(e, e) ⊕ E−n .

Setting the following class of functions:

Γn = {γ ∈ C(Qn,Hn) : γ(z) = z,∀z ∈ ∂Qn},

where Qn = Qe ∩ Hn, and set
cn = inf

γ∈Γn
max
z∈Qn

J(γ(z)). (4.1)

Now, let Jn be the restriction of J to the finite-dimensional space Hn. Moreover, Lemmas 3.1 and 3.2
are still valid for Jn. Additionally, it follows from [16] that

γ(Qn) ∩ (∂Bρ ∩ H+
n ) , ∅, for all γ ∈ Γn, (4.2)

for ρ given by Lemma 3.1. Moreover, Lemma 3.1 and (4.2), implies that

cn ≥ σ > 0, for all n ≥ 1.

Using the fact that the identity map In : Qn → Hn belongs to Γn and the fact that F and G are
nonnegative functions, we obtain

J(z) = r2‖e‖2 − ‖u‖2 −
∫

B1

F(x, re + u) dx −
∫

B1

G(x, re − u) dx ≤ R2
1, (4.3)

for each z = r(e, e) + (u,−u) ∈ Qn. Hence,

cn ≤ R2
1, for all n ≥ 1. (4.4)

Next, this proposition follows from the linking theorem for Jn (see [33]).
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Proposition 4.1. Assume that f and g satisfy (H1)–(H4). Then, the functional Jn possesses a critical
point zn = (un, vn) ∈ Hn at level cn for all n ∈ N, satisfying

J(zn) = cn ∈ [σ,R2
1], (4.5)

where σ and R1 > 0 are given by Lemmas 3.1 and 3.2, respectively, and

J′n(zn)(φ, ψ) = 0, for all (φ, ψ) ∈ Hn, (4.6)

that is∫
B1

w(x)∇un∇ψ dx =

∫
B1

g(x, vn)ψ dx and
∫

B1

w(x)∇φ∇vn dx =

∫
B1

f (x, un)φ dx, (4.7)

for each (φ, ψ) ∈ Hn.

Lemma 4.2. (See [15, Lemma 10]) If r, r′ > 1 satisfy 1/r + 1/r′ = 1, then

st ≤


(etr − 1) + s(ln s)1/r, for all t ≥ 0 and s ≥ e1/rr′

,

(etr − 1) +
sr′

r′
, for all t ≥ 0 and 0 ≤ s ≤ e1/rr′

.

Lemma 4.3. Let (un, vn) be a sequence in E satisfying |J(un, vn)| ≤ d and

|J′(un, vn)(φ, ψ)| ≤ εn‖(φ, ψ)‖, for all φ, ψ ∈ {0, un, vn}, where εn → 0. (4.8)

Then, the sequence (un, vn) is bounded in E.

Proof. Taking (φ, ψ) = (un, vn) in (4.8), we have∫
B1

f (x, un)un dx +

∫
B1

g(x, vn)vn dx ≤
∣∣∣∣2 ∫

B1

w(x)∇un∇vn dx
∣∣∣∣ + εn‖(un, vn)‖.

Since ∫
B1

w(x)∇un∇vn dx = J(un, vn) +

∫
B1

F(x, un) dx +

∫
B1

G(x, vn) dx,

combined with the fact that |J(un, vn)| ≤ d, we obtain∫
B1

f (x, un)un dx +

∫
B1

g(x, vn)vn dx ≤ 2d + 2
∫

B1

F(x, un) dx + 2
∫

B1

G(x, vn) dx + εn‖(un, vn)‖. (4.9)

From (H2), we get∫
B1

F(x, un) dx =

∫
{x∈B1:|un(x)|≤s0}

F(x, un) dx +

∫
{x∈B1:|un(x)|>s0}

F(x, un) dx

≤

∫
{x∈B1:|un(x)|≤s0}

F(x, un) dx +
1
µ

∫
{x∈B1:|un(x)|>s0}

f (x, un)un dx

=

∫
{x∈B1:|un(x)|≤s0}

(
F(x, un) −

1
µ

f (x, un)un

)
dx +

1
µ

∫
B1

f (x, un)un dx
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≤ M f |B1| +
1
µ

∫
B1

f (x, un)un dx, (4.10)

where
M f = max

(x,s)∈B1×[0,s0]

(
|F(x, s)| +

1
µ
| f (x, s)s|

)
.

Similarly for the function g, there exists Mg > 0 such that∫
B1

G(x, vn) dx ≤ Mg|B1| +
1
ν

∫
B1

g(x, vn)vn dx. (4.11)

From (4.10) and (4.11) in (4.9), we obtain(
1 −

2
µ

) ∫
B1

f (x, un)un dx +
(
1 −

2
ν

) ∫
B1

g(x, vn)vn dx ≤ 2d + 2(M f + Mg)|B1| + εn‖(un, vn)‖. (4.12)

Taking (φ, ψ) = (vn, 0) and (φ, ψ) = (0, un) in (4.8), we get

‖vn‖
2 =

∫
B1

w(x)∇vn∇vn dx ≤
∫

B1

f (x, un)vn dx + εn‖(vn, 0)‖

and
‖un‖

2 =

∫
B1

w(x)∇un∇un dx ≤
∫

B1

g(x, vn)un dx + εn‖(0, un)‖.

We define
Vn =

vn

‖vn‖
and Un =

un

‖un‖
.

Thus,

‖vn‖ ≤

∫
B1

f (x, un)Vn dx + εn‖vn‖ (4.13)

and
‖un‖ ≤

∫
B1

g(x, vn)Un dx + εn‖un‖. (4.14)

Let α1 = α0 + ξ. By assumption (H4), there exists λ > 0 such that

| f (x, s)| ≤ λeα1 |s|
2

1−γ
, for all (x, s) ∈ B1 × R. (4.15)

Set α2 = α∗γ − ξ, using (4.13), we can write

‖vn‖ ≤
λ

α
1−γ

2
2

∫
B1

| f
(
x, un(x)

)
|

λ
α

1−γ
2

2 |Vn(x)| dx.

From Lemma 4.2 with s = | f
(
x, un(x)

)
|/λ, t = α

1−γ
2

2 |Vn(x)|, r = 2/(1 − γ) and r′ = 2/(1 + γ), we obtain

‖vn‖ ≤
λ

α
1−γ

2
2

[ ∫
B1

(eα2 |Vn |
2

1−γ
− 1) dx +

1 + γ

2λ
2

1+γ

∫
{x∈B1: | f (x,un(x)|

λ ≤e
1−γ

2

2
1+γ
}

| f (x, un)|
2

1+γ dx
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+

∫
{x∈B1: | f (x,un(x)|

λ ≥e
1−γ

2

2
1+γ
}

| f (x, un)|
λ

(
ln
| f (x, un)|

λ

) 1−γ
2 dx

]
+ εn‖vn‖. (4.16)

By (4.15), we obtain

∫
{x∈B1: | f (x,un(x)|

λ ≥e
1−γ

2

2
1+γ
}

| f (x, un)|
λ

(
ln
| f (x, un)|

λ

) 1−γ
2 dx ≤

α
1−γ

2
1

λ

∫
B1

f (x, un)un dx. (4.17)

Observe that ∫
{x∈B1: | f (x,un(x)|

λ ≤e
1−γ

2

2
1+γ
}

| f (x, un)|
2

1+γ dx ≤
(
λe

1−γ
2

2
1+γ

) 2
1+γ
|B1|. (4.18)

From Proposition 2.3, we have ∫
B1

(
eα2 |Vn |

2
1−γ
− 1

)
dx ≤ C. (4.19)

By replacing (4.17)–(4.19) in (4.16), we get c1 > 0 and c2 > 0 such that

‖vn‖ ≤ c1

∫
B1

f (x, un)un dx + c2 + εn‖vn‖. (4.20)

Similarly, we get

‖un‖ ≤ c1

∫
B1

g(x, vn)vn dx + c2 + εn‖un‖. (4.21)

Using (4.12), (4.20) and (4.21), we can find c > 0 such that

‖vn‖ ≤ c + εn‖(un, vn)‖ + εn‖vn‖ and ‖un‖ ≤ c + εn‖(un, vn)‖ + εn‖un‖.

We finally obtain
‖(un, vn‖ ≤ c + εn‖(un, vn)‖

which implies that ‖(un, vn)‖ ≤ c, for every n ∈ N, for some positive constant c. �

Lemma 4.4. Assuming the conditions (H1)–(H5), are hold. Let (un, vn) be a sequence in E and (u, v) ∈
E such that (un, vn) ⇀ (u, v) weakly in E, J(un, vn)→ c and ‖J′(un, vn)‖E∗ → 0. Then,

(i) f (x, un)→ f (x, u) in L1(B1) and g(x, un)→ g(x, u) in L1(B1),
(ii) F(x, un)→ F(x, u) in L1(B1) and G(x, un)→ G(x, u) in L1(B1).

Proof. From Lemma 2.2, we can suppose that un converges to u in L1(B1). By Proposition 2.3, and the
assumptions (H1) and (H4), we imply that f (x, un) ∈ L1(B1). Moreover, using J′(un, vn)(un, vn) = on(1),
we can find c > 0 such that ∫

B1

f (x, un)un dx +

∫
B1

g(x, vn)vn dx ≤ c.

According to [19, Lemma 2.10], we obtain the limit (i) . On the other hand, from (i), we obtain∫
B1

f (x, un) dx→
∫

B1

f (x, u) dx.
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Therefore, there exists p ∈ L1(B1) such that

f (x, un) ≤ p(x) almost everywhere in B1. (4.22)

From (H1) and (H3), we obtain

F(x, t) ≤ max
(x,t)∈B1×[0,s0]

F(x, t) + M f (x, t), for all (x, t) ∈ B1 × R. (4.23)

Using (4.22) and (4.23), we have

F(x, un) ≤ max
(x,t)∈B1×[0,s0]

F(x, t) + Mp(x), for all x ∈ B1. (4.24)

Therefore, F(x, un) → F(x, u) in L1(B1), which follows from Lebesgue’s dominated convergence
theorem. �

Let recall that for p > 2, up ∈ E denotes the nonnegative function such that ‖up‖p = 1 and

S p = inf
0,u∈E

( ∫
B1

w(x)|∇u|2 dx
)1/2

( ∫
B1

|u|p dx
)1/p

= ‖up‖. (4.25)

Lemma 4.5. Suppose that f and g satisfy (H1) − (H5). Then, the following inequality holds:

sup
z∈R+(up,up)+E−

J(z) <
( α∗γ

max{α0, β0}

)1−γ
.

Proof. Let z = t(up, up) + (v,−v) with t ≥ 0, v ∈ E and up is given by (4.25). Then,

J(z) = t2‖up‖
2 − ‖v‖2 −

∫
B1

F(x, tup + v) dx −
∫

B1

G(x, tup − v) dx.

Using condition (H5), we have

J(z) ≤ t2‖up‖
2 −

Cp

p

∫
B1

(
|tup + v|p + |tup − v)|p

)
dx ≤ t2‖up‖

2 −
2Cptp

p

∫
B1

|up|
p dx.

Since ‖up‖ = S p and ‖up‖p = 1, we obtain

sup
z∈R+(up,up)+E−

J(z) ≤ max
t≥0

{
t2S 2

p −
2Cptp

p

}
.

Since the function λ(t) = t2S 2
p −

2Cptp

p
achieves its maximum on t0 =

S 2/(p−2)
p

C1/(p−2)
p

and using the estimate

of Cp, we have

sup
z∈R+(up,up)+E−

J(z) =
(p − 2)S 2p/(p−2)

p

pC2/(p−2)
p

<
( α∗γ

max{α0, β0}

)1−γ
.

�

Remark 4.6. By Lemma 4.5, there exists δ > 0 such that

cn ≤ max
Qn

J(z) ≤ sup
R+(up,up)⊕E−n

J(z) ≤ sup
R(e,e)⊕E−

J(z) ≤
( α∗

max{α0, β0}

)1−γ
− δ,

for every n ∈ N.
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5. Proof of the Theorem 1.1

Let (un, vn) ∈ Hn be the sequence given by Proposition 4.1. From Lemma 4.3, this sequence is
bounded in E. Thus, up to a subsequence, we can assume that (u, v) ∈ E such that (un, vn) ⇀ (u, v)
weakly in E, for some (u, v) ∈ E. Taking (0, ψ) and (φ, 0) in (4.7), where φ and ψ belongs to C∞0, rad(B1)∩
Hn. Therefore, ∫

B1

w(x)∇un∇ψ dx =

∫
B1

g(x, vn)ψ dx (5.1)

and ∫
B1

w(x)∇vn∇φ dx =

∫
B1

f (x, un)φ dx. (5.2)

Taking the limit in (5.1) and (5.2) as n→ ∞, by Lemma 4.4 and the density C∞0, rad(B1) ∩
(⋃

n∈N Hn

)
in H1

0, rad(B1, ω), we obtain∫
B1

w(x)∇u∇ψ dx =

∫
B1

g(x, v)ψ dx, for all ψ ∈ H1
0, rad(B1, ω) (5.3)

and ∫
B1

w(x)∇v∇φ dx =

∫
B1

f (x, u)φ dx, for all φ ∈ H1
0,rad(B1, ω). (5.4)

Therefore, (u, v) ∈ E is a critical point of J. Now, we prove that (u, v) is nontrivial. Since the
system (1.8) is strongly coupled, if we assume that u ≡ 0 we get that v ≡ 0. Therefore, by Lemma 2.2,
up to a subsequence, we have

un → 0 and vn → 0 in Lp(B1), for all p ≥ 1 (5.5)

and
un → 0 and vn → 0 almost everywhere in R2.

If we suppose that ‖un‖ is not bounded below by a positive constant, we can get a subsequence of (un)
such that ‖un‖ → 0. Therefore, ∫

B1

w(x)∇un∇vn dx→ 0. (5.6)

Considering the pairs of functions (φ, ψ) = (un, 0) and (φ, ψ) = (0, vn) in (4.7), we have∫
B1

w(x)∇un∇vn dx =

∫
B1

f (x, un)un dx =

∫
B1

g(x, vn)vn dx. (5.7)

Using Lemma 4.4 and (5.5), we have∫
B1

F(x, un) dx→ 0 and
∫

B1

G(x, vn) dx→ 0, as n→ +∞. (5.8)

Thus, by the above limits, we get that J(un, vn) tends to zero which contradicts (4.5); consequently,
‖un‖ is bounded below by a positive constant, in particular, we can assume that ‖un‖ , 0 for all n ∈ N.
Now, taking (φ, ψ) = (0, un) in (4.7), we get

‖un‖
2 =

∫
B1

g(x, vn)un dx. (5.9)
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Thus,

‖un‖ ≤

∫
BR

g(x, vn)
un

‖un‖
dx. (5.10)

We assume that max{α0, β0} = α0. Then, we can write(α∗γ
α0
− δ

) 1−γ
2
‖un‖ ≤

∫
B1

|g
(
x, vn

)
||ūn| dx,

where

ūn =
(α∗γ
α0
− δ

) 1−γ
2 un

‖un‖
. (5.11)

Applying Lemma 4.2 with

s =
|g
(
x, vn(x)

)
|

α
1−γ

2
0

, t = α
1−γ

2
0 |ūn(x)|, r =

2
1 − γ

and r′ =
2

1 + γ
,

we have (α∗γ
α0
− δ

) 1−γ
2
‖un‖ ≤

[ ∫
B1

(eα0 |ūn |
2

1−γ
− 1) dx +

1 + γ

2

∫
{x∈B1: |g(x,vn(x)|

α

1−γ
2

0

≤e
1−γ
2+γ }

|g(x, vn)|
2

1+γ

α
1−γ
1+γ

0

dx

+

∫
{x∈B1: |g(x,vn(x)|

α

1−γ
2

0

≥e
1−γ
1+γ }

|g(x, vn)|

α
1−γ

2
0

(
ln
|g(x, vn)|

α
1−γ

2
0

) 1−γ
2 dx

]
. (5.12)

By Lemma 2.4 and (5.11) the first integral tends to zero, using dominated dominated theorem and the
fact that vn → 0 almost everywhere in B1 the second integral tends to zero. Hence,(α∗γ

α0
− δ

) 1−γ
2
‖un‖ ≤

∫
B1

|g(x, vn)|

α
1−γ

2
0

(
ln
|g(x, vn)|

α
1−γ

2
0

) 1−γ
2 dx + on(1). (5.13)

Given ε ∈ (0,
α0δ

4(α
∗
γ

α0
− δ)

), where δ > 0 is given by Remark 4.6. By (H4) and the assumption α0 ≥ β0,

we can find Cε > 0 such that

|g(x, s)| ≤ Cεe(α0+ε)|s|
2

1−γ
, for all (x, s) ∈ B1 × R.

Replacing the above inequality in (5.13), we get

(α∗γ
α0
− δ

) 1−γ
2
‖un‖ ≤

1

α
1−γ

2
0

∫
B1

|g(x, vn)|
(

ln
Cεe(α0+ε)|vn |

2
1−γ

α
1−γ

2
0

) 1−γ
2 dx + on(1).

Thus, (α∗γ
α0
− δ

) 1−γ
2
‖un‖ ≤

1

α
1−γ

2
0

∫
B1

|g(x, vn)|

ln 1−γ
2

( Cε

α
1−γ

2
0

)
+ (α0 + ε)

1−γ
2 |vn|

 + on(1). (5.14)
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Let In =

∫
B1

|g(x, vn)|
[

ln
1−γ

2
( Cε

α
1−γ

2
0

)
+ (α0 + ε)

1−γ
2 |vn|

]
and set

Yn := {x ∈ B1 : ln
1−γ

2
( Cε

α
1−γ

2
0

)
≤

(
(α0 + 2ε)

1−γ
2 − (α0 + ε)

1−γ
2
)
|vn|}.

Hence,

In = ln
1−γ

2
( Cε

α
1−γ

2
0

) ∫
B1\Yn

|g(x, vn)| dx + (α0 + ε)
1−γ

2

∫
B1\Yn

g(x, vn)vn dx

+

∫
Yn

|g(x, vn)|
[

ln
1−γ

2
( Cε

α
1−γ

2
0

)
+ (α0 + ε)

1−γ
2 |vn|

]
dx

≤ ln
1−γ

2
( Cε

α
1−γ

2
0

) ∫
B1\Yn

|g(x, vn)| dx + (α0 + ε)
1−γ

2

∫
B1\Yn

g(x, vn)vn dx + (α0 + 2ε)
1−γ

2

∫
Yn

g(x, vn)vn dx.

Then,

In ≤ ln
1−γ

2
( Cε

α
1−γ

2
0

) ∫
B1\Yn

|g(x, vn)| dx + (α0 + 2ε)
1−γ

2

∫
B1

g(x, vn)vn dx. (5.15)

Since vn → 0 almost everywhere in B1 and g is bounded in B1\Yn for all n ∈ N (being independent of
n), by the dominated convergence theorem, we get∫

B1\Yn

|g(x, vn)| dx = on(1). (5.16)

Using (5.14)–(5.16), we have(α∗γ
α0
− δ

) 1−γ
2
‖un‖ ≤

(
1 +

2ε
α0

) 1−γ
2

∫
B1

g(x, vn)vn dx + on(1). (5.17)

Arguing similarly, we get(α∗γ
α0
− δ

) 1−γ
2
‖vn‖ ≤

(
1 +

2ε
α0

) 1−γ
2

∫
B1

f (x, un)un dx + on(1). (5.18)

On the other hand, using Proposition 4.1, Remark 4.6 and (5.8), we obtain∣∣∣∣ ∫
B1

w(x)∇un∇vn dx
∣∣∣∣ ≤ on(1) +

(α∗γ
α0
− δ

)1−γ
. (5.19)

Since J′n(un, vn)(un, vn) = 0, we get∫
B1

f (x, un)un dx +

∫
B1

g(x, vn)vn dx = 2
∣∣∣∣ ∫

B1

w(x)∇un∇vn dx
∣∣∣∣. (5.20)

By (5.19) and (5.20), we find∫
BR

f (x, un)un dx +

∫
BR

g(x, vn)vn dx ≤ 2
(α∗γ
α0
− δ

)1−γ
+ on(1). (5.21)
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Combining (5.17), (5.18) and (5.21), we obtain(α∗γ
α0
− δ

) 1−γ
2 (‖un‖ + ‖vn‖) ≤

(
1 +

2ε
α0

) 1−γ
2
( ∫

BR

f (x, un)un dx +

∫
B1

g(x, vn)vn dx
)

+ on(1)

≤ 2
(
1 +

2ε
α0

) 1−γ
2
(α∗γ
α0
− δ

)1−γ
+ on(1).

According to the election of ε, for every n ∈ N, we obtain

‖un‖ + ‖vn‖ ≤ 2
(
1 +

2ε
α0

) 1−γ
2
(α∗γ
α0
− δ

) 1−γ
2

+ on(1) ≤ 2
(α∗γ
α0
−
δ

2

) 1−γ
2

+ on(1).

Thus, there exists n0 ∈ N such that

‖un‖ + ‖vn‖ ≤ 2
(α∗γ
α0
−
δ

4

) 1−γ
2
, for all n ≥ n0.

Moreover, we can suppose that

‖un‖ ≤
(α∗γ
α0
−
δ

4

) 1−γ
2
, for all n ≥ n0.

Taking ξ > 0 such that (α0 + ξ)(
α∗γ

α0
−
δ

4
) < α∗γ, by (H4) there exists c > 0 such that

| f (x, s)| ≤ ce(α0+ξ)|s|
2

1−γ
, for all (x, s) ∈ B1 × R.

Let p > 1 close enough to 1 satisfying p(α0 + ξ)(
α∗γ

α0
−
δ

4
) < α∗γ. By Proposition 2.3 and the Hölder

inequality, we have ∫
B1

f (x, un)un dx ≤ c
∫

B1

|un|e(α0+ξ)|un |
2

1−γ dx

≤ c‖un‖p′
( ∫

B1

ep(α0+ξ)|un |
2

1−γ dx
)1/p

≤ c‖un‖p′
( ∫

B1

ep(α0+ξ)(
α∗γ
α0
− δ4 )( |un |

‖un‖
)

2
1−γ

dx
)1/p

≤ c‖un‖p′ .

Applying (5.5), we obtain ∫
B1

f (x, un)un dx→ 0, as n→ +∞.

Therefore, using (5.7) and (5.8), one has

lim
n→+∞

J(un, vn) = 0,

which represents a contradiction with the fact that J(zn) ≥ σ for all n ≥ 1. Therefore, (u, v) is a
nontrivial weak solution. This complete the proof.

AIMS Mathematics Volume 8, Issue 8, 19121–19141.



19138

6. Conclusions

In this work, we apply variational methods to find a nontrivial solution for a Hamiltonian systems
where the nonlinearities possess maximal growth related to Trudinger-Moser type inequalities. To
the best of our knowledge, this is the first result to demonstrate the existence of nontrivial solutions
for a Hamiltonian involving supercritical exponential growth in the sense of the exponential critical
hyperbola in the literature. According to our definition of logarithmic weight, we restricted the domain
to the unit ball. It is of interest to further our results to solutions for Hamiltonian systems involving
supercritical exponential growth on the whole space R2.
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