Research article Special Issues

Geometric visualization of evolved ruled surfaces via alternative frame in Lorentz-Minkowski 3-space

  • Received: 06 May 2024 Revised: 09 August 2024 Accepted: 24 August 2024 Published: 03 September 2024
  • MSC : 53A04, 53A05

  • The main goal of this paper is to investigate the evolution equations for special types of timelike ruled surfaces with significant geometric and physical applications in Lorentz-Minkowski 3-space $ E_{1}^{3} $. Using the alternative frame associated with the basic curve of these surfaces, we explored their key geometric properties. Our analysis provided insights into the dynamics of local curvatures during their evolutions, enhancing the understanding of surface behavior. Finally, we present applications of our preliminary findings that contribute to the broader field of differential geometry.

    Citation: Yanlin Li, H. S. Abdel-Aziz, H. M. Serry, F. M. El-Adawy, M. Khalifa Saad. Geometric visualization of evolved ruled surfaces via alternative frame in Lorentz-Minkowski 3-space[J]. AIMS Mathematics, 2024, 9(9): 25619-25635. doi: 10.3934/math.20241251

    Related Papers:

  • The main goal of this paper is to investigate the evolution equations for special types of timelike ruled surfaces with significant geometric and physical applications in Lorentz-Minkowski 3-space $ E_{1}^{3} $. Using the alternative frame associated with the basic curve of these surfaces, we explored their key geometric properties. Our analysis provided insights into the dynamics of local curvatures during their evolutions, enhancing the understanding of surface behavior. Finally, we present applications of our preliminary findings that contribute to the broader field of differential geometry.



    加载中


    [1] M. Önder, H. H. Uĝurlu, Frenet frames and invariants of timelike ruled surfaces, Ain Shams Eng. J., 4 (2013), 507–513. https://doi.org/10.1016/j.asej.2012.10.003 doi: 10.1016/j.asej.2012.10.003
    [2] R. López, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7 (2014), 44–107.
    [3] Y. Li, E. Güler, M. Toda, Family of right conoid hypersurfaces with light-like axis in Minkowski four-space, AIMS Mathematics, 9 (2024), 18732–18745. https://doi.org/10.3934/math.2024911 doi: 10.3934/math.2024911
    [4] Y. Li, E. Güler, Right conoids demonstrating a time-like axis within Minkowski four-dimensional space, Mathematics, 12 (2024), 2421. https://doi.org/10.3390/math12152421 doi: 10.3390/math12152421
    [5] B. Yilmaz, H. Aykut, Alternative partner curves in the Euclidean 3-space, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (2020), 1–10. https://doi.org/10.31801/cfsuasmas.538177 doi: 10.31801/cfsuasmas.538177
    [6] H. S. Abdel-Aziz, H. M. Serry, F. M. El-Adawy, M. K. Saad, Geometry and evolution of Hasimoto surface in Minkowski 3-space, PLoS One, 19 (2024), e0294310. https://doi.org/10.1371/journal.pone.0294310 doi: 10.1371/journal.pone.0294310
    [7] R. M. Wald, General relativity, University of Chicago Press, 1984.
    [8] S. Manukure, Y. Zhou, A (2+1)-dimensional shallow water equation and its explicit lump solutions, Int. J. Mod. Phys. B, 33 (2019), 1950038. https://doi.org/10.1142/S0217979219500383 doi: 10.1142/S0217979219500383
    [9] D. Yu, F. Cao, Construction and approximation degree for feedforward neural networks with sigmoidal functions, J. Comput. Appl. Math., 453 (2025), 116150. https://doi.org/10.1016/j.cam.2024.116150 doi: 10.1016/j.cam.2024.116150
    [10] Y. Li, M. Aquib, M. A. Khan, I. Al-Dayel, K. Masood, Analyzing the Ricci tensor for slant submanifolds in locally metallic product space forms with a semi-symmetric metric connection, Axioms, 13 (2024), 454. https://doi.org/10.3390/axioms13070454 doi: 10.3390/axioms13070454
    [11] Y. Li, M. Aquib, M. A. Khan, I. Al-Dayel, M. Z. Youssef, Geometric inequalities of slant submanifolds in locally metallic product space forms, Axioms, 13 (2024), 486. https://doi.org/10.3390/axioms13070486 doi: 10.3390/axioms13070486
    [12] A. M. G. Ahmed, A. Adjiri, S. Manukure, Soliton solutions and a bi-Hamiltonian structure of the fifth-order nonlocal reverse-spacetime Sasa-Satsuma-type hierarchy via the Riemann-Hilbert approach, AIMS Mathematics, 9 (2024), 23234–23267. https://doi.org/10.3934/math.20241130 doi: 10.3934/math.20241130
    [13] E. A. Appiah, S. Manukure, An integrable soliton hierarchy associated with the Boiti-Pempinelli-Tu spectral problem, Mod. Phys. Lett. B, 35 (2021), 2150282. https://doi.org/10.1142/S0217984921502821 doi: 10.1142/S0217984921502821
    [14] Y. Li, M. D. Siddiqi, M. A. Khan, I. Al-Dayel, M. Z. Youssef, Solitonic effect on relativistic string cloud spacetime attached with strange quark matter, AIMS Mathematics, 9 (2024), 14487–14503. https://doi.org/10.3934/math.2024704 doi: 10.3934/math.2024704
    [15] Y. Li, A. Gezer, E. Karakas, Exploring conformal soliton structures in tangent bundles with Ricci-Quarter symmetric metric connections, Mathematics, 12 (2024), 2101. https://doi.org/10.3390/math12132101 doi: 10.3390/math12132101
    [16] S. Manukure, T. Booker, A short overview of solitons and applications, Partial Differ. Equ. Appl. Math., 4 (2021), 100140. https://doi.org/10.1016/j.padiff.2021.100140 doi: 10.1016/j.padiff.2021.100140
    [17] S. Manukure, A. Chowdhury, Y. Zhou, Complexiton solutions to the asymmetric Nizhnik-Novikov-Veselov equation, Int. J. Mod. Phys. B, 33 (2019), 1950098. https://doi.org/10.1142/S021797921950098X doi: 10.1142/S021797921950098X
    [18] N. H. Abdel-All, R. A. Hussien, T. Youssef, Evolution of curves via the velocities of the moving frame, J. Math. Comput. Sci., 2 (2012), 1170–1185.
    [19] H. S. Abdel-Aziz, H. M. Serry, F. M. El-Adawy, A. A. Khalil, On admissible curves and their evolution equations in pseudo-galilean space, J. Math. Comput. Sci., 25 (2021), 370–380. https://doi.org/10.22436/jmcs.025.04.07 doi: 10.22436/jmcs.025.04.07
    [20] G. U. Kaymanli, C. Ekici, M. Dede, Directional evolution of the ruled surfaces via the evolution of their directrix using q-frame along a timelike space curve, Avrupa Bilim ve Teknoloji Dergisi, 20 (2020), 392–396. https://doi.org/10.31590/EJOSAT.681674 doi: 10.31590/EJOSAT.681674
    [21] T. Frankel, The Geometry of physics: An introduction, Cambridge University Press, 2011.
    [22] R. López, E. Demir, Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature, Open Math., 12 (2014), 1349–1361. https://doi.org/10.2478/s11533-014-0415-0 doi: 10.2478/s11533-014-0415-0
    [23] H. S. Abdel-Aziz, H. Serry, M. K. Saad, Evolution equations of pseudo spherical images for timelike curves in minkowski 3-space, Math. Stat., 10 (2022), 884–893. https://doi.org/10.13189/ms.2022.100420 doi: 10.13189/ms.2022.100420
    [24] H. S. Abdel-Aziz, M. K. Saad, A. A. Abdel-Salam, On involute-evolute curve couple in the hyperbolic and de sitter spaces, J. Egypt. Math. Soc., 27 (2019), 25. https://doi.org/10.1186/s42787-019-0023-z doi: 10.1186/s42787-019-0023-z
    [25] B. Ó Neill, Semi-Riemannian geometry with applications to relativity, Academic press, 1983.
    [26] B. Sahiner, Ruled surfaces according to alternative moving frame, 2019, arXiv: 1910.06589. https://doi.org/10.48550/arXiv.1910.06589
    [27] Y. Zhou, S. Manukure, C. Zhang, X. Zhang, Resonant solutions and breathers to the BKP equation, Nonlinear Dyn., 111 (2023), 8611–8616. https://doi.org/10.1007/s11071-023-08253-9 doi: 10.1007/s11071-023-08253-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(405) PDF downloads(63) Cited by(5)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog