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Abstract: The main goal of this paper is to investigate the evolution equations for special types of
timelike ruled surfaces with significant geometric and physical applications in Lorentz-Minkowski
3-space E3

1. Using the alternative frame associated with the basic curve of these surfaces, we
explored their key geometric properties. Our analysis provided insights into the dynamics of local
curvatures during their evolutions, enhancing the understanding of surface behavior. Finally, we
present applications of our preliminary findings that contribute to the broader field of differential
geometry.
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1. Introduction

The investigation of surfaces and alternative frames in Lorentz–Minkowski space offers insights
into the interplay between differential geometry and special relativity [1–4].

Ruled surfaces are surfaces that can be generated by moving a straight line in space according to
specific rules. These surfaces have applications in various fields, including architecture, computer
graphics, and differential geometry itself. While ruled surfaces are often studied in Euclidean or
Riemannian geometries, examining them in the context of E3

1 opens new perspectives and challenges
due to the Lorentzian nature of spacetime. The use of alternative frames in differential geometry [5, 6]
provides a basis for understanding the geometric and physical properties of spacetime. This approach,
extensively discussed in Wald’s textbook [7], allows for the decomposition of the metric tensor into
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components corresponding to different types of vectors in the frame. Alternative frames have proven
valuable in studying the kinematics of particles and observers in curved spacetimes, enabling the
interpretation of relativistic effects and gravitational interactions. Furthermore, in the fields of partial
differential equations, geometric analysis, mathematical physics, etc., soliton theory is a critical
theory that attracts the attention of many researchers [8–11]. There are many applications of solitons
in applied mathematics and pure mathematics, especially in partial differential equations, ordinary
partial differential equations, Lie algebras, Lie groups, differential geometry, and algebraic
geometry [12–15]. In [16], Manukure and Booker presented an overview of solitons and applications;
they stated the research history of solitons and showed further developments. The paper [16] shows
that solitons appear in various fields, particularly in physical contexts, including fluid dynamics,
optical fibers, and quantum field theory. In each case, they are described by specific evolution
equations that capture the relevant physics [17]. This work aims to explore the evolution of different
types of timelike ruled surfaces using alternative frames in Minkowski space. By investigating the
interplay between these surfaces and alternative frames, we enhance our understanding of the
geometric structures of these surfaces in Lorentz-Minkowski 3-space.

This paper is organized as follows: In Section 2, we provide a brief overview of curves and
timelike ruled surfaces and explore the relationship between these surfaces and alternative frames in
Lorentz–Minkowski 3-space. Section 3 presents evolution equations for a given timelike curve and
some timelike ruled surfaces generated by the alternative frame vectors of their associated timelike
curves in Lorentz–Minkowski 3-space. Illustrated examples to support our main results are provided
in Section 4, and we conclude with a summary of our findings in Section 5.

2. Geometric concepts

2.1. An alternative frame

Lorentz–Minkowski 3-space E3
1 is the real vector space E3 augmented by the Lorentzian inner

product
〈a,b〉E3

1
= −a1b1 + a2b2 + a3b3, (2.1)

where a = (a1, a2, a3) and b = (b1, b2, b3) ∈ E3
1. The norm of b is ‖b‖ =

√
〈b,b〉E3

1
.

The cross product of a and b is given by

a ∧E3
1

b = 〈−a3b2 + a2b3,−a3b1 + a1b3, a1b2 − a2b1〉. (2.2)

If r(s) : I ⊆ R −→ E3
1 is a regular curve described by

r(s) = (y(s), z(s),w(s)), (2.3)

where I is an open interval and y(s), z(s), and w(s) ∈ C3, then r is spacelike if 〈r′(s), r′(s)〉E3
1
> 0,

timelike if 〈r′(s), r′(s)〉E3
1
< 0, and lightlike if 〈r′(s), r′(s)〉E3

1
= 0, for all s ∈ I.

The derivatives of the Frenet frame vectors of r(s), which has tangent T(s), principal normal n(s),
and binormal p(s), take the form:

∂

∂s


T(s)
n(s)
p(s)

 =


0 κ(s) 0

εpκ(s) 0 τ(s)
0 εTτ(s) 0



T(s)
n(s)
p(s)

 , (2.4)
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where
〈T,T〉E3

1
= εT, 〈n,n〉E3

1
= εn, and 〈p,p〉E3

1
= −εTεn = εp, (2.5)

and
T ×E3

1
n = p, n ×E3

1
p = −εnT, and p ×E3

1
T = −εTn. (2.6)

The functions κ(s) and τ(s) represent the curvature and the torsion of the curve, respectively. For
more details, see [2]. Additionally, this frame satisfies the following conditions:

T(s) =
dr/ds
||dr/ds||

, n(s) =
Ts(s)
||Ts(s)||

, p(s) = T(s) ∧E3
1

n(s),

where Ts(s) = dT(s)/ds.
In this context, the time evolution equations for the given curve are written as follows:

∂

∂t


T
n
p

 =


0 α β

α 0 γ

β −γ 0




T
n
p

 ,
where α, β, and γ are the velocities of the curve, dependent on its curvatures.

Next, we explore the alternative frame of r(s) as a timelike curve in Lorentz–Minkowski 3-space.
By examining this frame, we gain insights into the geometric properties and physical aspects of the
curve, offering a fresh perspective on its behavior within the context of differential geometry.

Consider r = r(s) as a given timelike curve with arc length parameter s in E3
1. Let {T(s),n(s),p(s)}

and {n(s),C(s),W(s)} be the Frenet frame and the alternative frame of r, respectively. The alternative
frame can then be defined as follows:

C(s) =
n′(s)
||n′(s)||

,

W(s) =
τ(s)√

|κ2(s) − τ2(s)|
T(s) +

κ(s)√
|κ2(s) − τ2(s)|

(s)p(s), (2.7)

where n, C, and W represent the spacelike normal, the timelike derivative of the normal, and the
spacelike Darboux vector of r(s), respectively [5]. Clearly, the Darboux vector W is orthogonal to the
normal vector n(s) [6, 18].

The derivative formulas for the alternative frame of r(s) can be expressed as follows:

∂

∂s


n(s)
C(s)
W(s)

 =


0 σ(s) 0

σ(s) 0 %(s)
0 %(s) 0




n(s)
C(s)
W(s)

 , (2.8)

where

σ(s) =
√
|κ2(s) − τ2(s)|, %(s) =

κ2(s)( τ(s)
κ(s) )

′

κ2(s) − τ2(s)
, (2.9)

are differentiable functions referred to as alternative curvatures that depend on the curvatures of r(s).
Since the principal normal vector n(s) is common to both frames, the relationship between the two

frames can be expressed in matrix form as [5]:
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
T
n
p

 =


0 κ(s)√

|κ2(s)−τ2(s)|
−

τ(s)√
|κ2(s)−τ2(s)|

1 0 0
0 −

τ(s)√
|κ2(s)−τ2(s)|

κ(s)√
|κ2(s)−τ2(s)|




n
C
W

 , (2.10)

or 
n
C
W

 =


0 1 0
κ(s)√

|κ2(s)−τ2(s)|
0 −

τ(s)√
|κ2(s)−τ2(s)|

−
τ(s)√

|κ2(s)−τ2(s)|
0 κ(s)√

|κ2(s)−τ2(s)|




T
n
p

 . (2.11)

Considering that

n ×E3
1

C = W, C ×E3
1

W = n, and n ×E3
1

W = C, (2.12)

and to simplify the form of our equations, we will use the following symbols:

z1 =
κ(s)√

|κ2(s) − τ2(s)|
, z2 =

τ(s)√
|κ2(s) − τ2(s)|

.

The equations of motion for the alternative frame {n(s),C(s),W(s)} of r(s) can be expressed
broadly, similar to Eq (2.8) as [19]:

∂

∂t


n(s)
C(s)
W(s)

 =


0 δ(s) θ(s)
δ(s) 0 φ(s)
−θ φ(s) 0




n(s)
C(s)
W(s)

 , (2.13)

where δ, θ, and φ represent the alternative velocities of the aforementioned curve.
The alternative frame provides a distinct basis for analyzing the geometry of curves and surfaces.

The vectors in this alternative frame often offer insights into various geometric properties and can
simplify the analysis of complex structures [20]. In [21], a novel class of ruled surface known as the
C-ruled surface is introduced, defined through the alternative frame associated with a base curve. The
differential geometric properties of this surface are examined, including the striction line, distribution
parameter, fundamental forms, as well as Gaussian and mean curvatures. In our work, we will examine
the evolution equations for specific types of ruled surfaces with significant geometric applications. By
employing the alternative frame associated with the basic curve of these surfaces, we will investigate
their key geometric properties. This comprehensive analysis will provide deeper insights into the
dynamics of the local curvatures during their evolution. Our work aims to advance the understanding
of surface behavior in Lorentz–Minkowski 3-space, with implications across various disciplines.

2.2. Ruled surfaces in Minkowski space

A ruled surface is one generated by moving a straight line, known as the ruling line, according to
specific rules. Each ruling line lies entirely on the surface, forming a family of lines that cover the
surface. Mathematically, a ruled surface can be defined as follows (see [3, 22–24] for more details):

S(s, v) = r(s) + v Φ(s) | s ∈ I, v ∈ J, (2.14)
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where r(s) is the base curve of S(s, v) in Lorentz–Minkowski 3-space, v is a function defined on an
interval J, and Φ is a fixed vector representing the direction of the ruling lines. The choice of the curve
r(s) and the function v determines the specific properties and shape of the ruled surface.

Definition 2.1. A surface in Lorentz–Minkowski 3-space is classified as spacelike or timelike based
on the nature of the induced metric at the surface: a positive definite Riemannian metric corresponds
to a spacelike surface, while a negative definite Riemannian metric corresponds to a timelike surface.
Alternatively, a spacelike surface has a normal vector that is timelike, whereas a timelike surface has
a normal vector that is spacelike [25].

For the ruled surface defined by Eq (2.14), the normal vector at a point is defined as a vector
perpendicular to the tangent plane of the surface at that point. This normal vector is crucial for defining
the geometry of the surface and is denoted by

N =
Ss × Sv

||Ss × Sv||
. (2.15)

The first and second fundamental forms on the surface S, along with their quantities, are respectively
expressed by

I = 〈dS, dS〉 = Eds2 + 2 Fdsdv + Gdv2, (2.16)

where,
E = 〈Ss,Ss〉, F = 〈Ss,Sv〉 = 〈Sv,Ss〉, G = 〈Sv,Sv〉,

and
II = 〈dS,N〉 = eds2 + 2 f dsdv + gdv2, (2.17)

noting that
e = 〈Sss,N〉, f = 〈Ssv,N〉 = 〈Svs,N〉, g = 〈Svv,N〉.

The Gaussian and mean curvatures of S play a vital role in characterizing the shape and properties
of S. They are given by the following forms:

K = εN
eg − f 2

EG − F2 =
Det(h)
Det(∆)

; εN = 〈N,N〉, (2.18)

and

H =
εN

2
eG − 2 f F + gE(

EG − F2) =
1
2
εNtr(h∗∆), (2.19)

where ∆ = EG − F2, h = eg − f 2, and h∗ denotes the inverse matrix of h [25].
It is worth noting that, as stated in [26], the surface evolution denoted by S(s, v, t) and its

corresponding flow ∂S(s,v,t)
∂t are considered inextensible if the following condition is satisfied:

∂E
∂t = 0,
∂F
∂t = 0,
∂G
∂t = 0.

(2.20)
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3. Evolution equations and alternative frame

In this section, we focus on deriving the evolution equations for special types of ruled surfaces
using an alternative frame for their curves. To achieve this, we first derive the evolution equations
for a timelike curve, highlighting its unique geometric properties and implications within differential
geometry. The main result of this analysis is presented in the following theorem.

Theorem 3.1. Let r = r(s, t) be a given timelike curve which has the alternative frame {n,C,W} in E3
1,

then the evolution equations of the alternative curvatures of r can be described as:σt = δs + % θ,

%t = φs − σθ,
(3.1)

where δ, φ and θ are the velocities of r.

Proof. Let us write Eq (2.8) in a simple form as

∂A
∂s

= L A, (3.2)

where

A =


n
C
W

 , L =


0 σ(s) 0

σ(s) 0 %(s)
0 %(s) 0

 .
Similar to that procedure, Eq (2.13) can be reformulated as

∂A
∂t

= M A, (3.3)

where

M =


0 δ(s) θ(s)
δ(s) 0 φ(s)
−θ φ(s) 0

 .
From this point, by applying the compatibility conditions ∂

∂s
∂A
∂t = ∂

∂t
∂A
∂s and making some

calculations, one can obtain
∂L
∂t
−
∂M
∂s

+ [L,M] = 03×3, (3.4)

with Lie bracket [L,M] = LM −ML.
We conclude from Eq (3.4), after simple calculations, we obtain the following system of equations

σt − δs − % θ = 0,
%t − φs + σθ = 0,
θs − σφ + % δ = 0,

which leads to the completeness of the proof. �
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Our focus now shifts to deriving evolution equations for specific ruled surfaces generated by the
alternative frame vectors associated with their curves. This will be addressed through the following
theorems.

Theorem 3.2. Consider r = r(s, t) is a timelike curve that has the alternative frame {n,C,W} in
Lorentz–Minkowski 3-space. Let Sn be a timelike n-ruled surface whose r is its base curve, then the
following are hold:

1) The evolution equation of Sn is

z2
∂z2

∂t
− (z1 + vσ)

∂z1

∂t
= 0. (3.5)

2) Sn is minimal surface if and only if

z2τ2 − (z1 + vτ1)s = 0.

3) Sn is developable if and only if
(z1 + vσ) − z2% = 0.

Proof. Since, the ruled surface Sn can be written as:

Sn(s, v, t) = r(s, t) + v n(s, t), (3.6)

then by differentiating this equation, we get(Sn)s = (z1 + vσ) C − %W,

(Sn)v = n.

From Eq (2.15), the normal on N is obtained:

N =
1√

− τ2

κ2(s)−τ2(s) + (z1 + vσ)2
(0, z2,−z1 − vσ) . (3.7)

In the light of the above, the first fundamental quantities are

E = z2
2 − (z1 + vσ)2 , F = 0, G = 1, (3.8)

which lead to
I = EG − F2 = z2

2 − (z1 + vσ)2 . (3.9)

The second derivatives of Eq (3.6) with respect to s and v are expressed as
(Sn)ss = σ (z1 + vσ) n + ((z1 + vσ)s − z2%) C
+ (% (z1 + vσ) − (z2)s) W,

(Sn)vv = 0,
(Sn)vs = (Sn)sv = σC.
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From this, the second fundamental form is given as follows:

II = eg − f 2

= −

σ2 ((z1 + vσ) − z2%)2

(z1 + vσ)2
− z2

2

 , (3.10)

where, 
e = 〈 (Sn)ss ,N〉 =

z22%−z2(z1+vσ)s√
(z1+vσ)2−z2

2

,

f = 〈 (Sn)sv ,N〉 = 〈 (Sn)vs ,N〉 =
σ((z1+vσ)−z2%)
√

(z1+vσ)2−z2
2

,

g = 〈 (Sn)vv ,N〉 = 0.

(3.11)

From the aforementioned data, the Gaussian and mean curvatures for the surface Sn are given as
follows: 

K =

(
σ((z1+vσ)−z2%)√
−z2

2+(z1+vσ)2

)2

,

H = −1
2

(
z22%−z2(z1+vσ)s

(−z2
2+(z1+vσ)

3
2

)
,

(3.12)

therefore, the surface Sn is minimal if and only if

−z2
2% − z2 (z1 + vσ)s = 0.

On the other hand, the surface Sn can be described as a developable if and only if

σ((z1 + vσ) − z2%) = 0.

In light of the benefit of Eq (2.20), the evolution of the surface is obtained:

z2
∂z2

∂t
− (z1 + vσ)

∂z1

∂t
= 0.

This finishes the proof. �

Theorem 3.3. Assume that SC is a timelike C-ruled surface and r(s, t) be its timelike curve, which
has the alternative frame vectors n,C,W in Lorentz–Minkowski 3-space. The surface SC satisfies the
following:

1) It is minimal if and only if(
vσ

(
−z1(σ − %) − (vσ)s + (z1σ + v%)s

)
+z2(z1σ + (vσ)s) + z1σ( − z2 + v(σ + %))

)
= 0 (3.13)

holds.
2) The surface is developable if and only if

vσ + v% − z2 = 0 (3.14)

is hold.
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3) It has the evolution equation:

z1
∂z1

∂t
+ (−z2 + v%)

∂z2

∂t
= 0. (3.15)

Proof. The parametric representation of the SC surface can be formulated as

SC(s, v, t) = r(s, t) + vC(s, t). (3.16)

The partial differentials of the surface SC with respect to s and v are given from(SC)s = vσn + z1C + (−z2 + v%)W,

(SC)v = C.

Again, the surface differentials with respect to the parameters s and v are expressed as follows:
(SC)ss = (σz1 + (vσ)s) n,
+(vσ2 + (z1)s + %(−z2 + v%))C + ((−z2 + v%)s + z1%)W
(SC)vv = 0,
(SC)vs = (SC)sv = σn + %W.

From this, the normal relative to the surface is given by

N =
1√

(vσ)2 + (−z2 + v%)2
(z2 − vσ, 0, vσ). (3.17)

In light of the above-mentioned data related to surface calculations, the first and second fundamental
forms with their quantities are, respectively

E = (vσ)2 − z2
1 + (−z2 + v%)2,

F = −z1, G = −1, (3.18)

which give us
I = −(vσ)2 − (−z2 + v%)2, (3.19)

and, 
e =

vσ(−z1(σ−%)−(vσ)s+(z1σ+v%)s)+z2(z1σ+v%)s)√
(vσ)2+(−z2+v%)2

,

f =
−σ(−z2+vσ+v%)√
(vσ)2+(−z2+v%)2

,

g = 0.

(3.20)

From this, we have

II =
σ2(−z2 + vσ + v%)2

(vσ)2 + (−z2 + v%)2 . (3.21)

The geometric meanings of the surface SC are represented by its Gaussian and mean curvatures.
They are given from 

K = −( σ(−z2+vσ+v%)√
(vσ)2+(−z2+v%)2

)2,

H = −1
2

vσ(−z1(σ−%)−(vσ)s+(z1σ+v%)s)+z2(z1σ+(vσ)s)+z1σ(−z2+v(σ+%))

((vσ)2+(−z2+v%)2)
3
2

.
(3.22)
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As a result of the above, the surface SC is minimal when(
vσ( − z1(σ − %) − (vσ)s + (z1σ + v%)s)

+z2(z1σ + (vσ)s) + z1σ( − z2 + v(σ + %))

)
= 0

holds.
Besides, the surface SC is classified as a developable whenever

−z2 + vσ + v% = 0,

is hold.
By applying Eq (2.20), the evolution condition for this surface is expressed as

z1
∂z1

∂t
+ (−z2 + v%)

∂z2

∂t
= 0.

Hence, the proof is completed. �

Theorem 3.4. Suppose that SW is a timelike W-ruled surface generated by the alternative vector W
of its base curve r in Lorentz–Minkowski 3-space. Then, the following statements are satisfied:

1) SW is a developable surface.
2) It has the following evolution equation:

z2
∂z2

∂t
− (z1 + v%)

∂z1

∂t
= 0. (3.23)

Proof. Since the surface SW has the following parametric representation

SW(s, v, t) = r(s, t) + vW(s, t), (3.24)

then by differentiating this equation twice with respect to s and v, we obtain the following

(SW)s = (z1 + v%)C − z2W,

(SW)v = σW,

(SW)ss = σ(z1 + v%)n
+

(
−z2% + (z1 + v%)s

)
C + (%(z1 + v%) − (z2)s)W,

(SW)vv = 0,
(SW)vs = (SW)sv = %C.

From this, we have the normal
N = (1, 0, 0), (3.25)

and 
E = 〈 (SW)s , (SW)s 〉 = −(z1 + v%)2 + z2

2,

F = 〈 (SW)s , (SW)v 〉 = −z2,

G = 〈 (SW)v , (SW)v 〉 = 1,

(3.26)
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I = −(z1 + v%)2, (3.27)

and also

e = 〈 (SW)ss ,N〉 = σ(z1 + v%), f = 〈 (SW)vs ,N〉 = 0, g = 〈 (SW)vv ,N〉 = 0, (3.28)

II = 0. (3.29)

Further, the Gaussian and mean curvatures of SW are calculated as

K = 0, H =
−σ

2 (z1 + v%)
, (3.30)

As a consequence, this surface is developable and not minimal.
Under the previous data, the evolution equation for the surface SW is given by

z2
∂z2

∂t
− (z1 + v%)

∂z1

∂t
= 0.

Thus, the result is clear. �

4. Application

In this section, we are interested in providing a practical example to demonstrate the theoretical
results that we obtained through our study of the three special ruled surfaces: n-ruled, C-ruled, and
W-ruled surfaces.

Consider r(s, t) be a timelike curve given by (see Figure 1)

r(s, t) =
(
t sinh

√
2s, t cosh

√
2s, t s

)
. (4.1)

The tangent T, the normal n and the binormal p of r are, respectively
T =

(√
2 cosh

√
2s,
√

2 sinh
√

2s, 1
)
,

n =
(
sinh

√
2s,− cosh

√
2s, 0

)
,

p =
(
cosh

√
2s, sinh

√
2s,
√

2
)
.

The curvature functions of the considered curve are

κ =
2
t
, τ =

−
√

2
t

,

also, the alternative frame vectors n,C,W of r are given as follows:
n =

(
sinh

√
2s,− cosh

√
2s, 0

)
,

C =
(
cosh

√
2s, sinh

√
2s, 0

)
,

W = (0, 0, 1) .

(4.2)

From this, the alternative curvatures of r are calculated as

σ =

√
2

t
, % = 0.
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Figure 1. The timelike curve r.

The n-ruled surface that has r as a base curve is expressed by the following representation (see
Figure 2)

Sn =
(
t sinh

(√
2s

)
+ vsinh

(√
2s

)
, t cosh

(√
2s

)
− vcosh

(√
2s

)
, ts

)
, (4.3)

which has the normal

N =


−

t cosh(
√

2s)
√

2v(v+2t cosh(2
√

2s))+t2cosh(4
√

2s)
,

t sinh(
√

2s)
√

2v(v+2t cosh(2
√

2s))+t2cosh(4
√

2s)
,

−
v+t cosh(2

√
2s)

√
v2+2tvcosh(2

√
2s)+ 1

2 t2cosh(4
√

2s)


.

The first and second fundamental coefficients of the surface can be calculated, respectively

E = −t2 − 2v2 − 4tvcosh
(
2
√

2s
)
, F = −

√
2t sinh

(
2
√

2s
)
,G = 1,

and 
e =

2t2sinh(2
√

2s)
√

2v(v+2t cosh(2
√

2s))+t2cosh(4
√

2s)
,

f = t√
v2+2tvcosh(2

√
2s)+ 1

2 t2cosh(4
√

2s)
,

g = 0.

Also, the surface’s curvatures are

K =
2t2(

2v2 + 4tvcosh
(
2
√

2s
)

+ t2cosh
(
4
√

2s
))2 ,

H =
t2

(
−2 + t2 + 2v2 + 4tvcosh

(
2
√

2s
))

sinh
(
2
√

2s
)

(
2v2 + 4tvcosh

(
2
√

2s
)

+ t2cosh
(
4
√

2s
))3/2 . (4.4)
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Figure 2. The evolved n-ruled surface Sn of the curve r.

Similarly, the ruled surface that is generated by the vector C of the alternative frame of r can be
written as (see Figure 3)

SC =
(
vcosh

(√
2s

)
+ t sinh

(√
2s

)
, t cosh

(√
2s

)
+ vsinh

(√
2s

)
, ts

)
. (4.5)

Straightforward calculations of the surface SC lead to

N =

 t sinh
(√

2s
)

√
t2 + 2v2

,
t cosh

(√
2s

)
√

t2 + 2v2
,−

v√
t2
2 + v2

 ,
and

E = −t2 + 2v2, F = −
√

2t, G = −1,

e =
2t2

√
t2 + 2v2

, f =
t√

t2
2 + v2

, g = 0.

The Gaussian and mean curvatures of SC are

K =
2t2(

t2 + 2v2)2 , H =
t2

(
t2 − 2

(
1 + v2

))
(
t2 + 2v2)3/2 . (4.6)

In the light of these results, this surface is neither developable nor minimal.
Likewise, the parametric representation for the ruled surface SW reads as (see Figure 4)

SW =
(
t sinh

(√
2s

)
, t cosh

(√
2s

)
, ts + v

)
. (4.7)

Making some special calculations related to the considered surface, we get

N =
(
−sinh

(√
2s

)
,−cosh

(√
2s

)
, 0

)
,

and
E = −t2, F = t, G = 1, e = −2t, f = 0, and g = 0.
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The Gaussian and mean curvatures are

K = 0, H = −
t
2
,

which describe SC as developable and not minimal.

Figure 3. The evolved C-ruled surface SC of the curve r.

Figure 4. The evolved W-ruled surface SW of the curve r.

5. Conclusions

In the three-dimensional Lorentz–Minkowski 3-space E3
1, we examined the evolution equations for

specific types of ruled surfaces that have significant geometric and physical applications. We
employed the alternative frame associated with the basic curve of these surfaces and investigated their
key geometric properties. Through a comprehensive analysis, we gained deeper insights into the
dynamics of the local curvatures exhibited by these surfaces during their evolution. This work
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advanced the understanding of the dynamical behavior of surfaces in Lorentz–Minkowski 3-space,
with potential implications across various disciplines. Finally, we discussed applications of our
preliminary findings, which contribute significantly to the broader field of differential geometry.
Looking forward, several avenues for future research emerge. Our findings could be applied to
physical models involving particle trajectories or gravitational fields, potentially revealing how
timelike ruled surfaces might be utilized in practical scenarios or theoretical frameworks. Further
studies could explore alternative frames in more complex settings or for other types of surfaces
beyond ruled ones, which might lead to a broader understanding of geometric structures in relativity.
The study of solitons through their evolution equations provides crucial insights into a wide range of
phenomena, contributing to advances in both theoretical and applied sciences. Solitons are special
types of solutions to nonlinear partial differential equations that maintain their shape while
propagating at constant velocity. They are often associated with topological solutions and are
significant in various fields [16]. Here are some potential applications of evolution equations related
to solitons (topological solutions): In the field of mathematical physics, the study of solitons is
essential for understanding integrable systems, where the evolution equations are exactly solvable.
This has applications in theoretical models and helps in the development of new mathematical
techniques. Also, in plasma physics, the evolution equations used in solitons can describe stable wave
packets in plasma, which helps in understanding space weather–phenomena and the behavior of
high-energy plasmas. By expanding on these aspects, in future research, we will combine the results
and methods in [25–27] to deepen our knowledge and uncover new applications of differential
geometry in both theoretical and practical contexts.
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4. Y. Li, E. Güler, Right conoids demonstrating a time-like axis within Minkowski four-dimensional
space, Mathematics, 12 (2024), 2421. https://doi.org/10.3390/math12152421

5. B. Yilmaz, H. Aykut, Alternative partner curves in the Euclidean 3-space, Commun. Fac. Sci. Univ.
Ank. Ser. A1 Math. Stat., 69 (2020), 1–10. https://doi.org/10.31801/cfsuasmas.538177

6. H. S. Abdel-Aziz, H. M. Serry, F. M. El-Adawy, M. K. Saad, Geometry and
evolution of Hasimoto surface in Minkowski 3-space, PLoS One, 19 (2024), e0294310.
https://doi.org/10.1371/journal.pone.0294310

7. R. M. Wald, General relativity, University of Chicago Press, 1984.

8. S. Manukure, Y. Zhou, A (2+1)-dimensional shallow water equation and its explicit lump solutions,
Int. J. Mod. Phys. B, 33 (2019), 1950038. https://doi.org/10.1142/S0217979219500383

9. D. Yu, F. Cao, Construction and approximation degree for feedforward neural
networks with sigmoidal functions, J. Comput. Appl. Math., 453 (2025), 116150.
https://doi.org/10.1016/j.cam.2024.116150

10. Y. Li, M. Aquib, M. A. Khan, I. Al-Dayel, K. Masood, Analyzing the Ricci tensor for slant
submanifolds in locally metallic product space forms with a semi-symmetric metric connection,
Axioms, 13 (2024), 454. https://doi.org/10.3390/axioms13070454

11. Y. Li, M. Aquib, M. A. Khan, I. Al-Dayel, M. Z. Youssef, Geometric inequalities
of slant submanifolds in locally metallic product space forms, Axioms, 13 (2024), 486.
https://doi.org/10.3390/axioms13070486

12. A. M. G. Ahmed, A. Adjiri, S. Manukure, Soliton solutions and a bi-Hamiltonian structure of
the fifth-order nonlocal reverse-spacetime Sasa-Satsuma-type hierarchy via the Riemann-Hilbert
approach, AIMS Mathematics, 9 (2024), 23234–23267. https://doi.org/10.3934/math.20241130

13. E. A. Appiah, S. Manukure, An integrable soliton hierarchy associated with the
Boiti-Pempinelli-Tu spectral problem, Mod. Phys. Lett. B, 35 (2021), 2150282.
https://doi.org/10.1142/S0217984921502821

14. Y. Li, M. D. Siddiqi, M. A. Khan, I. Al-Dayel, M. Z. Youssef, Solitonic effect on relativistic string
cloud spacetime attached with strange quark matter, AIMS Mathematics, 9 (2024), 14487–14503.
https://doi.org/10.3934/math.2024704

15. Y. Li, A. Gezer, E. Karakas, Exploring conformal soliton structures in tangent bundles
with Ricci-Quarter symmetric metric connections, Mathematics, 12 (2024), 2101.
https://doi.org/10.3390/math12132101

AIMS Mathematics Volume 9, Issue 9, 25619–25635.

https://dx.doi.org/https://doi.org/10.1016/j.asej.2012.10.003
https://dx.doi.org/https://doi.org/10.3934/math.2024911
https://dx.doi.org/https://doi.org/10.3390/math12152421
https://dx.doi.org/https://doi.org/10.31801/cfsuasmas.538177
https://dx.doi.org/https://doi.org/10.1371/journal.pone.0294310
https://dx.doi.org/https://doi.org/10.1142/S0217979219500383
https://dx.doi.org/https://doi.org/10.1016/j.cam.2024.116150
https://dx.doi.org/https://doi.org/10.3390/axioms13070454
https://dx.doi.org/https://doi.org/10.3390/axioms13070486
https://dx.doi.org/https://doi.org/10.3934/math.20241130
https://dx.doi.org/https://doi.org/10.1142/S0217984921502821
https://dx.doi.org/https://doi.org/10.3934/math.2024704
https://dx.doi.org/https://doi.org/10.3390/math12132101


25635

16. S. Manukure, T. Booker, A short overview of solitons and applications, Partial Differ. Equ. Appl.
Math., 4 (2021), 100140. https://doi.org/10.1016/j.padiff.2021.100140

17. S. Manukure, A. Chowdhury, Y. Zhou, Complexiton solutions to the asymmetric
Nizhnik-Novikov-Veselov equation, Int. J. Mod. Phys. B, 33 (2019), 1950098.
https://doi.org/10.1142/S021797921950098X

18. N. H. Abdel-All, R. A. Hussien, T. Youssef, Evolution of curves via the velocities of the moving
frame, J. Math. Comput. Sci., 2 (2012), 1170–1185.

19. H. S. Abdel-Aziz, H. M. Serry, F. M. El-Adawy, A. A. Khalil, On admissible curves and
their evolution equations in pseudo-galilean space, J. Math. Comput. Sci., 25 (2021), 370–380.
https://doi.org/10.22436/jmcs.025.04.07

20. G. U. Kaymanli, C. Ekici, M. Dede, Directional evolution of the ruled surfaces via the evolution of
their directrix using q-frame along a timelike space curve, Avrupa Bilim ve Teknoloji Dergisi, 20
(2020), 392–396. https://doi.org/10.31590/EJOSAT.681674

21. T. Frankel, The Geometry of physics: An introduction, Cambridge University Press, 2011.
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