For a finite group acting linearly on a vector space, a separating set is a subset of the invariant ring that separates the orbits. In this paper, we determined explicit separating sets in the corresponding rings of invariants for four families of finite dimensional representations of the elementary abelian $ p $-groups $ (\mathbb{Z}/p)^2 $ of rank two over an algebraically closed field of characteristic $ p $, where $ p $ is an odd prime. Our construction was recursive. The separating sets consisted only of transfers and norms, and the size of every separating set depended only on the dimension of the representation.
Citation: Panpan Jia, Jizhu Nan, Yongsheng Ma. Separating invariants for certain representations of the elementary Abelian $ p $-groups of rank two[J]. AIMS Mathematics, 2024, 9(9): 25603-25618. doi: 10.3934/math.20241250
For a finite group acting linearly on a vector space, a separating set is a subset of the invariant ring that separates the orbits. In this paper, we determined explicit separating sets in the corresponding rings of invariants for four families of finite dimensional representations of the elementary abelian $ p $-groups $ (\mathbb{Z}/p)^2 $ of rank two over an algebraically closed field of characteristic $ p $, where $ p $ is an odd prime. Our construction was recursive. The separating sets consisted only of transfers and norms, and the size of every separating set depended only on the dimension of the representation.
[1] | H. Derksen, G. Kemper, Computational Invariant Theory, Berlin: Springer-Verlag, 2002. https://doi.org/10.1007/978-3-662-04958-7_3 |
[2] | J. Draisma, G. Kemper, D. Wehlau, Polarization of separating invariants, Canad. J. Math., 60 (2008), 556–571. https://doi.org/10.4153/cjm-2008-027-2 doi: 10.4153/cjm-2008-027-2 |
[3] | G. Kemper, Separating invariants, J. Symbolic Comput., 44 (2009), 1212–1222. https://doi.org/10.1016/j.jsc.2008.02.012 |
[4] | E. Dufresne, Separating invariants and finite reflection groups, Adv. Math., 221 (2009), 1979–1989. https://doi.org/10.1016/j.aim.2009.03.013 doi: 10.1016/j.aim.2009.03.013 |
[5] | G. Kemper, A. Lopatin, F. Reimers, Separating invariants over finite fields, J. Pure Appl. Algebra, 226 (2022), 106904. https://doi.org/10.1016/j.jpaa.2021.106904 doi: 10.1016/j.jpaa.2021.106904 |
[6] | Y. Chen, R. J. Shank, D. L. Wehlau, Modular invariants of finite gluing groups, J. Algebra, 566 (2021), 405–434. https://doi.org/10.1016/j.jalgebra.2020.08.034 doi: 10.1016/j.jalgebra.2020.08.034 |
[7] | E. Dufresne, J. Elmer, M. Kohls, The Cohen-Macaulay property of separating invariants of finite groups, Transform. Groups, 14 (2009), 771–785. https://doi.org/10.1007/s00031-009-9072-y doi: 10.1007/s00031-009-9072-y |
[8] | M. Kohls, H. Kraft, Degree bounds for separating invariants, Math. Res. Lett., 17 (2010), 1171–1182. https://doi.org/10.4310/mrl.2010.v17.n6.a15 doi: 10.4310/mrl.2010.v17.n6.a15 |
[9] | J. Elmer, M. Kohls, Separating invariants for the basic $\mathbb{G}_a$-actions, Proc. Amer. Math. Soc., 140 (2012), 135–146. https://doi.org/10.1090/s0002-9939-2011-11273-5 doi: 10.1090/s0002-9939-2011-11273-5 |
[10] | E. Dufresne, J. Elmer, M. Sezer, Separating invariants for arbitrary linear actions of the additive group, Manuscripta Math., 143 (2014), 207–219. https://doi.org/10.1007/s00229-013-0625-y doi: 10.1007/s00229-013-0625-y |
[11] | E. Dufresne, J. Jeffries, Separating invariants and local cohomology, Adv. Math., 270 (2015), 565–581. https://doi.org/10.1016/j.aim.2014.11.003 doi: 10.1016/j.aim.2014.11.003 |
[12] | M. Domokos, Degree bound for separating invariants of abelian groups, Proc. Amer. Math. Soc., 145 (2017), 3695–3708. https://doi.org/10.1090/proc/13534 doi: 10.1090/proc/13534 |
[13] | F. Reimers, Separating invariants of finite groups, J. Algebra, 507 (2018), 19–46. https://doi.org/10.1016/j.jalgebra.2018.03.022 doi: 10.1016/j.jalgebra.2018.03.022 |
[14] | M. Sezer, Constructing modular separating invariants, J. Algebra, 322 (2009), 4099–4104. https://doi.org/10.1016/j.jalgebra.2009.07.011 doi: 10.1016/j.jalgebra.2009.07.011 |
[15] | M. D. Neusel, M. Sezer, Separating invariants for modular $p$-groups and groups acting diagonally, Math. Res. Lett., 16 (2009), 1029–1036. https://doi.org/10.4310/mrl.2009.v16.n6.a11 doi: 10.4310/mrl.2009.v16.n6.a11 |
[16] | M. Sezer, Explicit separating invariants for cyclic $p$-groups, J. Combin. Theory Ser. A, 118 (2011), 681–689. https://doi.org/10.1016/j.jcta.2010.05.003 doi: 10.1016/j.jcta.2010.05.003 |
[17] | M. Kohls, M. Sezer, Separating invariants for the Klein four group and cyclic groups, Internat. J. Math., 24 (2013), 1350046. https://doi.org/10.1142/s0129167x13500468 doi: 10.1142/s0129167x13500468 |
[18] | F. Reimers, Separating invariants for two copies of the natural $S_n$-action, Commun. Algebra, 48 (2020), 1584–1590. https://doi.org/10.1080/00927872.2019.1691575 doi: 10.1080/00927872.2019.1691575 |
[19] | A. Lopatin, F. Reimers, Separating invariants for multisymmetric polynomials, Proc. Amer. Math. Soc., 149 (2021), 497–508. https://doi.org/10.1090/proc/15292 doi: 10.1090/proc/15292 |
[20] | D. J. Benson, Representations and Cohomology I, Cambridge: Cambridge University Press, 1991. https://doi.org/10.1017/cbo9780511623622 |
[21] | H. E. A. Campbell, R. J. Shank, D. L. Wehlau, Rings of invariants for modular representations of elementary abelian $p$-groups, Transform. Groups, 18 (2013), 1–22. https://doi.org/10.1007/s00031-013-9207-z doi: 10.1007/s00031-013-9207-z |
[22] | T. Pierron, R. J. Shank, Rings of invariants for the three-dimensional modular representations of elementary abelian $p$-groups of rank four, Involve, 9 (2016), 551–581. https://doi.org/10.2140/involve.2016.9.551 doi: 10.2140/involve.2016.9.551 |
[23] | J. Elmer, P. Fleischmann, On the depth of modular invariant rings for the groups $C_p\times C_p$, Progr. Math., 278 (2010), 45–61. https://doi.org/10.1007/978-0-8176-4875-6_4 doi: 10.1007/978-0-8176-4875-6_4 |
[24] | H. E. A. Campbell, D. L. Wehlau, Modular Invariant Theory, Berlin: Springer-Verlag, 2011. https://doi.org/10.1090/surv/094/06 |