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1. Introduction

Let ρ : G ↪→ GL(n,F) be a faithful representation of a finite group G over a field F of arbitrary
characteristic. Denote by V = Fn the n dimensional representation space over F. We write F[V] for the
symmetric algebra S (V∗) over the dual space V∗. The action of G on V induces an action on F[V]: for
f ∈ F[V] and v ∈ V , the action of g ∈ G is given by (g( f ))(v) = f (g−1(v)). The ring of invariants F[V]G

is defined by
F[V]G := { f ∈ F[V] | g( f ) = f f or all g ∈ G}.

Here are some general methods to construct invariants of finite groups. Let f ∈ F[V], then the transfer
of f is defined by

TrG( f ) :=
∑
g∈G

g( f ).

Let H ≤ G be a subgroup. Then the relative transfer is defined as

TrG
H : F[V]H → F[V]G, f 7→

∑
gH∈G/H

g( f ),
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where G/H denotes a set of left coset representatives of H in G. TrG
H is independent of the choice of

the coset representatives. The norm of f is defined by

NG( f ) :=
∏
g∈G

g( f ).

Note that the transfer, relative transfer and norm are invariant polynomials. If the characteristic of F
divides the group order |G|, we speak of the modular case. Otherwise, we are in the nonmodular case,
which includes char(F) = 0.

Separating orbits of a group action on some geometric or algebraic space is likely to have been
one of the original motivations of invariant theory. It has regained particular attention following the
influential textbook of Derksen and Kemper [1]. Since then, separating invariants have been extensively
studied within the last decade.

Definition 1. A subset S ⊆ F[V]G is said to be separating if for any two points v, v′ ∈ V, we have:
If there exists an invariant f ∈ F[V]G with f (v) , f (v′), then there exists an element h ∈ S with
h(v) , h(v′).

If G is finite, then for v, v′ ∈ V with distinct G-orbits, there exists f ∈ F[V]G such that f (v) , f (v′).
It follows that a subset S ⊆ F[V]G is separating if any two G-orbits can be separated by invariants
from S for any finite group [2]. While the ring of invariants forms a separating set, computing the ring
of invariants for a modular representation is typically a difficult problem. Moreover, separating
invariants are better behaved than generating ones. For instance, the Noether degree bound and Weyl
theorem hold for separating invariants without any hypothesis on char(F), see [2, 3]. In [4], Dufresne
introduced a geometric notion of separating algebra and gave two geometric formulations of this
notion. Geometric separating sets and separating invariants over finite fields were considered in [5, 6].
For more background on separating invariants we direct readers to [7–13].

In the study of explicit separating invariants, it is natural to take p-groups as a starting point. The
work of Sezer [14] gives us a good understanding in the case of the cyclic group of order p. Since then,
explicit separating invariants have also been calculated for various groups such as cyclic p-groups,
the Klein four group, etc [15–19]. The next step is to look at elementary abelian p-groups. With a
few notable exceptions, the modular representation theory of an elementary abelian p-group is wild,
see for example [20, Theorem 4.4.4]. In the modular case, the degrees of the generators can become
arbitrarily big. Therefore, computing the invariants of elementary abelian p-groups in the modular
case is particularly difficult and explicit generating sets are available only for a handful of cases. The
ring of invariants for all two dimensional representations of (Z/p)r and the ring of invariants for all
three dimensional representations of (Z/p)2 have been worked out in [21]. See also [22] for further
research. Four families of finite dimensional representations of (Z/p)2 over an algebraically closed
field F of characteristic p, where p is an odd prime, is given in [23] and their invariant rings have
not been computed. In this paper, we give explicit separating sets, including transfers and norms
for each representation. Transfers and norms are basic invariants that are easier to obtain. These
invariants usually do not suffice to generate the entire ring of invariants F[V]G in the modular case.
Since the dual of a subrepresentation sits in the dual of higher dimensional representation of (Z/p)2,
this allows us to reduce the problem to separating two points whose coordinates are all the same except
a few coordinates. Consequently, we show that the separating set for a representation of (Z/p)2 can be
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obtained by adding some transfers and norms to any separating set for the subrepresentation. It is worth
pointing out that the size of the separating set depends only on the dimension of the representation.
Our work can be viewed as the generalization of the Klein four group (the elementary abelian 2-groups
of rank two) [17] to the elementary abelian p-groups of rank two for arbitrary odd prime p. However,
the latter case needs more complicated computation and additional separating invariants.

2. Constructing separating invariants

Let G = ⟨σ1, σ2⟩ � (Z/p)2 be the elementary abelian p-group of rank two of order p2, where p
is an odd prime. Let σ3 = σ1σ2 and Hi denote the subgroup of G which is generated by σi for 1 ≤
i ≤ 3. The complete list of indecomposable representations of the Klein four group is described in [20,
Theorem 4.3.3]. However, the modular representation theory of an elementary abelian p-group of rank
two is wild. Here, we study the natural generalization of the irreducible representations of the Klein
four group. There are four families of finite dimensional representations of G over an algebraically
closed field F of characteristic odd prime p, which are given in [23]. For each representation in each
family, we construct a finite separating set recursively. In the following, In denotes the n × n identity
matrix and for any element λ of the field F, Jλ denotes the n × n Jordan block (lower triangular) with
eigenvalues λ.

Type (I) For every even dimension 2n there are representations V2n,λ,

σ1 7→

(
In 0
In In

)
,

σ2 7→

(
In 0
Jλ In

)
.

Type (II) For every even dimension 2n there are representations V2n,∞,

σ1 7→

(
In 0
J0 In

)
,

σ2 7→

(
In 0
In In

)
.

Type (III) For every odd dimension 2n − 1 there are representations V−(2n−1),

σ1 7→


In−1 0
In−1

01×(n−1)
In

 ,

σ3 7→


In−1 0

01×(n−1)

In−1
In

 .
Type (IV) For every odd dimension 2n − 1 there are representations V2n−1,

σ1 7→

(
In 0

0(n−1)×1 In−1 In−1

)
,
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σ3 7→

(
In 0

In−1 0(n−1)×1 In−1

)
.

Notice that the matrix group associated with V2n,∞ in type (II) is the same as the matrix group
associated with V2n,0 in type (I). Therefore, their invariant rings are equal, and a separating set for
V2n,0 is also a separating set for V2n,∞. Each representation V−(2n−1) in type (III) is isomorphic to a
subrepresentation of V2n,p−1 in type (I), which we will explain in detail later. So we study the separating
sets for types (I) − (III) in Subsection 2.1 and for type (IV) in Subsection 2.2.

2.1. Separating invariants for types (I)–(III)

We start with the action of G on the representation space V2n,λ. Let ε1,ε2,· · · ,εn, ξ1,ξ2,· · · ,ξn be the
basis for V2n,λ with σ1(εi) = εi + ξi, σ1(ξi) = ξi, σ2(ξi) = ξi for 1 ≤ i ≤ n, σ2(εn) = εn + λξn and
σ2(εi) = εi + λξi + ξi+1 for 1 ≤ i ≤ n− 1. We identify each εi with the column vector with 1 on the i-th
coordinate and zero elsewhere, and each ξi with the column vector with 1 on the (n + i)-th coordinate
and zero elsewhere. Let x1, x2, · · · , xn, y1, y2, · · · , yn denote the corresponding elements in the dual
space V∗2n,λ. In fact, x1, x2, · · · , xn, y1, y2, · · · , yn form the basis for V∗2n,λ in the reverse order: we have
σ−1

1 (xi) = xi, σ−1
1 (yi) = xi+yi, σ−1

2 (xi) = xi for 1 ≤ i ≤ n, σ−1
2 (y1) = λx1+y1 and σ−1

2 (yi) = xi−1+λxi+yi

for 2 ≤ i ≤ n. For simplicity we will use the generators σ−1
i instead of σi for the rest of the paper

and change the notation by writing σi for the new generators for 1 ≤ i ≤ 3. Note also that F[V2n,λ] =
F[x1, x2, · · · , xn, y1, y2, · · · , yn]. Pick a point v = (v1, v2, · · · , vn,w1,w2, · · · ,wn) in V2n,λ. The surjection
φ : V2n,λ → V2n−2,λ given by (v1, v2, · · · , vn,w1,w2, · · · ,wn) 7→ (v1, v2, · · · , vn−1,w1,w2, · · · ,wn−1) is
G-equivariant, as for g ∈ G, v ∈ V2n,λ, g(φ(v)) = φ(g(v)). Dual to this surjection, the subspace in V∗2n,λ
generated by x1, x2, · · · , xn−1, y1, y2, · · · , yn−1 is closed under the G-action and isomorphic to V∗2n−2,λ.
Hence F[V2n−2,λ] = F[x1, x2, · · · , xn−1, y1, y2, · · · , yn−1] is a subalgebra in F[V2n,λ].

The following three lemmas are very useful in studying the image of the transfer for modular groups.
We will use these formulas repeatedly in the proofs of Lemmas 4–6.

Lemma 1. Let k be a positive integer. Then
∑

0≤l≤p−1 lk ≡ −1 mod p if p− 1 divides k and
∑

0≤l≤p−1 lk ≡

0 mod p, otherwise.

Proof. See [24, Lemma 9.0.2] for a proof for this statement. □

Lemma 2. Let k and l be positive integers such that 0 ≤ k ≤ p − 1, k ≤ l ≤ p − 1. There holds(
k
0

)(
p−(k+1)

l−k

)
+

(
k+1

1

)(
p−(k+2)
l−(k+1)

)
+ · · · +

(
l

l−k

)(
p−(l+1)

0

)
=

(
p

l−k

)
.

Proof. This statement can be proved by induction on k and l and we omit the detailed proof. □

Lemma 3. (1) Let k be a positive integer such that 1 ≤ k ≤ p. Then(
(p + 1)(p − 1)

k(p − 1)

)
≡ 1 mod p.

(2) Let l and k be a positive integer such that 2 ≤ l ≤ p and 1 ≤ k ≤ l − 1. Then(
l(p − 1)
k(p − 1)

)
≡ 0 mod p.

AIMS Mathematics Volume 9, Issue 9, 25603–25618.



25607

Proof. It is a simple matter to prove the two identities above by the definition of binomial coefficient.
□

From now on all congruences are modulo F[x1, x2, · · · , xn, y1, y2, · · · , yn−1] in Subsection 2.1. The
congruences of separating invariants in the following two lemmas will play an important part in the
proof of Theorem 1.

Lemma 4. (1) TrG(yp−1
i yp−1

j yn) ≡ (xi−1x j − xix j−1)p−1yn for 2 ≤ i, j ≤ n − 1.
(2) TrG(yp−1

1 yp−1
2 yn) ≡ x2(p−1)

1 yn.

Proof. Here we only prove for (1). It is easy to verify that TrG = TrG
H ◦ TrH for any subgroup H of G.

This suggest that we may compute TrG by first computing TrH and then computing TrG
H. Thus we may

work with the two smaller groups H and G/H.
By the definition of transfer we have

TrH1(yp−1
i yp−1

j yn) =
∑

0≤l≤p−1

(lxi + yi)p−1(lx j + y j)p−1(lxn + yn)

≡
∑

0≤l≤p−1

(lxi + yi)p−1(lx j + y j)p−1yn

≡
∑

0≤l≤p−1

∑
0≤s,t≤p−1

(
p − 1

s

)(
p − 1

t

)
(lxi)syp−1−s

i (lx j)p−1−tyt
jyn

≡
∑

0≤l≤p−1

∑
0≤s,t≤p−1

(
p − 1

s

)(
p − 1

t

)
lp−1+s−txs

i xp−1−t
j yp−1−s

i yt
jyn.

By Lemma 1, we see that

TrH1(yp−1
i yp−1

j yn) ≡
∑

0≤l≤p−1

∑
0≤k≤p−1

(
p − 1

k

)2

lp−1xk
i xp−1−k

j yp−1−k
i yk

jyn

≡
∑

0≤l≤p−1

lp−1
( ∑

0≤k≤p−1

(
p − 1

k

)2

xk
i xp−1−k

j yp−1−k
i yk

jyn

)
≡ −

∑
0≤k≤p−1

xk
i xp−1−k

j yp−1−k
i yk

jyn.

The last congruence follows since
(

p−1
k

)2
≡ 1 mod p. Similarly, for each k with 0 ≤ k ≤ p − 1 we have

TrH2(xk
i xp−1−k

j yp−1−k
i yk

jyn) =
∑

0≤l≤p−1

xk
i xp−1−k

j (lxi−1 + lλxi + yi)p−1−k(lx j−1 + lλx j + y j)k(lxn−1 + lλxn + yn)

≡
∑

0≤l≤p−1

xk
i xp−1−k

j (lxi−1 + lλxi + yi)p−1−k(lx j−1 + lλx j + y j)kyn

≡ − xk
i xp−1−k

j (xi−1 + λxi)p−1−k(x j−1 + λx j)kyn.

Thus

TrG(yp−1
i yp−1

j yn) =TrG
H1

(TrH1(yp−1
i yp−1

j yn))
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≡TrG
H1

(−
∑

0≤k≤p−1

xk
i xp−1−k

j yp−1−k
i yk

jyn)

≡
∑

0≤k≤p−1

xk
i xp−1−k

j (xi−1 + λxi)p−1−k(x j−1 + λx j)kyn

=
∑

0≤k≤p−1

∑
0≤s≤p−1−k

∑
0≤t≤k

(
p−1−k

s

)(
k
t

)
λs+txp−1−k−s

i−1 xk+s
i xk−t

j−1xp−1−k+t
j yn.

It follows from Lemma 2 that the coefficient of xp−1−l
i−1 xl

ix
m−1
j−1 xp−m

j yn is

λl−m+1
((m − 1

0

)(
p − m

l − (m − 1)

)
+

(
m
1

)(
p − (m + 1)

l − m

)
+ · · · +

(
l

l − (m − 1)

)(
p − (l + 1)

0

))
=λl−m+1

(
p

l − (m − 1)

)
.

Moreover,
(

p
l−(m−1)

)
≡ 1 mod p if l = m − 1 and

(
p

l−(m−1)

)
≡ 0 mod p, otherwise. From the above it

follows that

TrG(yp−1
i yp−1

j yn) ≡
∑

0≤k≤p−1

∑
0≤s≤p−1−k

∑
0≤t≤k

(
p−1−k

s

)(
k
t

)
λs+txp−1−k−s

i−1 xk+s
i xk−t

j−1xp−1−k+t
j yn

=(xp−1
i−1 xp−1

j + xp−2
i−1 xix j−1xp−2

j + · · · + xp−1
i xp−1

j−1 )yn

=(xi−1x j − xix j−1)p−1yn.

□

Lemma 5. (1) TrG(y(p+1)(p−1)
n−1 yn)≡

∑
1≤k≤p(xn−2+λxn−1)(p+1−k)(p−1)xk(p−1)

n−1 yn.
(2) NH3(xn−1yn − xnyn−1) ≡ xp

n−1yp
n − xn−1(x2

n−1 − xn−2xn)p−1yn.

Proof. (1) By the definition of transfer, we have

TrH1(y(p+1)(p−1)
n−1 yn) =

∑
0≤l≤p−1

(lxn−1 + yn−1)(p+1)(p−1)(lxn + yn)

≡
∑

0≤l≤p−1

(lxn−1 + yn−1)(p+1)(p−1)yn.

By Lemma 1 and Lemma 3(1) we see that

TrH1(y(p+1)(p−1)
n−1 yn) ≡

∑
0≤l≤p−1

∑
0≤k≤p+1

(
(p + 1)(p − 1)

k(p − 1)

)
lk(p−1)xk(p−1)

n−1 y(p+1−k)(p−1)
n−1 yn

≡ −
∑

1≤k≤p+1

xk(p−1)
n−1 y(p+1−k)(p−1)

n−1 yn.

For each k with 1 ≤ k ≤ p + 1,

TrH2(xk(p−1)
n−1 y(p+1−k)(p−1)

n−1 yn) =
∑

0≤l≤p−1

xk(p−1)
n−1 (lxn−2 + lλxn−1 + yn−1)(p+1−k)(p−1)(lxn−1 + lλxn + yn)
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≡
∑

0≤l≤p−1

xk(p−1)
n−1 (lxn−2 + lλxn−1 + yn−1)(p+1−k)(p−1)yn.

By Lemma 1 and Lemma 3(1) we have

TrH2(xk(p−1)
n−1 y(p+1−k)(p−1)

n−1 yn) ≡
∑

0≤l≤p−1

∑
0≤s≤p+1−k

(
(p+1−k)(p−1)

s(p − 1)

)
ls(p−1)(xn−2+λxn−1)s(p−1)xk(p−1)

n−1 y(p+1−k−s)(p−1)
n−1 yn.

For 1 ≤ k ≤ p, we see that
(

(p+1−k)(p−1)
s(p−1)

)
≡ 0 mod p unless s = p + 1 − k by Lemma 3(2) in which case

we have

TrH2(xk(p−1)
n−1 y(p+1−k)(p−1)

n−1 yn) ≡
∑

0≤l≤p−1

l(p+1−k)(p−1)(xn−2 + λxn−1)(p+1−k)(p−1)xk(p−1)
n−1 yn

≡ − (xn−2 + λxn−1)(p+1−k)(p−1)xk(p−1)
n−1 yn.

For k = p + 1, TrH2(xk(p−1)
n−1 y(p+1−k)(p−1)

n−1 yn) ≡
∑

0≤l≤p−1 x(p+1−k)(p−1)
n−1 yn ≡ 0. Thus,

TrG(y(p+1)(p−1)
n−1 yn) =TrG

H1
(TrH1(y(p+1)(p−1)

n−1 yn))

≡TrG
H1

(−
∑

1≤k≤p+1

xk(p−1)
n−1 y(p+1−k)(p−1)

n−1 yn)

≡
∑

1≤k≤p

(xn−2 + λxn−1)(p+1−k)(p−1)xk(p−1)
n−1 yn.

(2) Note that xn−1yn − xnyn−1 is σ1-invariant, so the H3-orbit product of this polynomial is G-invariant.
Thus, we have

NH3(xn−1yn − xnyn−1) =Π0≤l≤p−1(xn−1(lxn−1 + (lλ + l)xn + yn) − xn(lxn−2 + (lλ + l)xn−1 + yn−1))
=Π0≤l≤p−1(l(x2

n−1 − xn−2xn) + (xn−1yn − xnyn−1))
=(xn−1yn − xnyn−1)p − (xn−1yn − xnyn−1)(x2

n−1 − xn−2xn)p−1

≡xp
n−1yp

n − xn−1(x2
n−1 − xn−2xn)p−1yn.

□

Theorem 1. Let F[V2n,λ] = F[x1, x2, · · · , xn, y1, y2, · · · , yn]. Then

S 1 =

{
x1, fλ =

 NG(y1) f or λ < Fp,

NH1(y1) f or λ ∈ Fp

}
is a separating set for V2,λ. And S 2 = S 1

⋃
T2 is a separating set for V4,λ, where

T2 =

{
x2, NG(y2), fλ =

TrG(y(p+1)(p−1)
1 y2) f or λ < Fp,

NH3(x1y2 − x2y1) f or λ ∈ Fp

}
.

Let n ≥ 3 and S n−1 ⊆ F[V2n−2,λ]G be a separating set for V2n−2,λ. Then S n = S n−1
⋃

Tn is a separating
set for V2n,λ, where

Tn =

{
xn, NG(yn), TrG(yp−1

i yp−1
i+1 yn) f or 2 ≤ i ≤ n − 1,
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fλ =

 TrG(y(p+1)(p−1)
n−1 yn) f or λ < Fp,

NH3(xn−1yn − xnyn−1) f or λ ∈ Fp

}
.

Moreover, a separating set for V2n,0 is a separating set for V2n,∞.

Proof. The cases V2,λ and V4,λ are easy to check so we only prove the case of n. Consider any two
points v = (v1, · · · , vn,w1, · · · ,wn), v′ = (v′1, · · · , v

′
n,w

′
1, · · · ,w

′
n) ∈ V2n,λ that do not lie in the same

G-orbit, and suppose that f (v) = f (v′) for all f ∈ S n. We will show that there exists g ∈ G such
that v′ = g(v). This contradicts our assumption that v and v′ do not lie in the same G-orbit and this
contradiction shows that S n is a separating set for V2n,λ. We assume that every invariant in S n takes the
same value on v and v′ from now on.

If (v1, · · · , vn−1,w1, · · · ,wn−1), (v′1, · · · , v
′
n−1,w

′
1, · · · ,w

′
n−1) ∈ V2n−2,λ do not lie in the same G-orbit,

then there exists a polynomial in S n−1 that separates the two points because S n−1 ⊆ F[V2n−2,λ]G is
separating. Therefore this polynomial separates v and v′ as well. Hence by replacing v′ with a suitable
element in its G-orbit we may assume that v′i = vi and w′i = wi for 1 ≤ i ≤ n − 1. Since xn ∈ Tn, we
may assume that v′n = vn. Note that with this assumption we must have w′n , wn.

First, by Lemma 4(2), TrG(yp−1
1 yp−1

2 yn)(v) = TrG(yp−1
1 yp−1

2 yn)(v′) implies

0 = TrG(yp−1
1 yp−1

2 yn)(v) − TrG(yp−1
1 yp−1

2 yn)(v′)

= v2(p−1)
1 wn − v2(p−1)

1 w′n
= v2(p−1)

1 (wn − w′n).

As w′n , wn, we obtain
v1 = 0.

Similarly, TrG(yp−1
i yp−1

i+1 yn)(v) = TrG(yp−1
i yp−1

i+1 yn)(v′) implies

0 = TrG(yp−1
i yp−1

i+1 yn)(v) − TrG(yp−1
i yp−1

i+1 yn)(v′)
= (vi−1vi+1 − v2

i )p−1(wn − w′n)

for 2 ≤ i ≤ n − 2 by setting j = i + 1 in Lemma 4 (1). Since v1 = 0 and w′n , wn, we get

v2 = v3 = · · · = vn−2 = 0

successively. Since vn−2 = 0, TrG(y(p+1)(p−1)
n−1 yn)(v) = TrG(y(p+1)(p−1)

n−1 yn)(v′) implies

0 = TrG(y(p+1)(p−1)
n−1 yn)(v) − TrG(y(p+1)(p−1)

n−1 yn)(v′)

=
∑

1≤k≤p

(vn−2+λvn−1)(p+1−k)(p−1)vk(p−1)
n−1 (wn − w′n)

=
∑

1≤k≤p

λ(p+1−k)(p−1)v(p+1)(p−1)
n−1 (wn − w′n)

= (λp−1+λ2(p−1)+ · · · +λp(p−1))v(p+1)(p−1)
n−1 (wn − w′n)

= λp−1(λp−1 − 1)p−1v(p+1)(p−1)
n−1 (wn − w′n) (2.1)
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by Lemma 5(1). Notice that λp−1(λp−1 −1)p−1 = 0 if and only if λ ∈ Fp, so the following proof falls into
two parts depending on whether λ is in Fp or not.

If λ < Fp, then we have
vn−1 = 0

by (2.1). As NG(yn) =
∏

0≤k,l≤p−1(lxn−1+(lλ+k)xn+yn), we have NG(yn)(v) =
∏

0≤k,l≤p−1((lλ+k)vn+wn).
We define a polynomial

P(X) :=
∏

0≤k,l≤p−1

(X + (lλ + k)vn)

in F[X]. Notice that NG(yn)(v) = P(wn) and that P(wn) = P(wn + (lλ + k)vn) for all 0 ≤ k, l ≤ p − 1.
Since P(X) is a polynomial of degree p2, it follows that wn + (lλ+ k)vn for 0 ≤ k, l ≤ p− 1 are the only
solutions of P(X) − P(wn) = 0. Therefore the equality of NG(yn)(v′) = P(w′n) and NG(yn)(v) = P(wn)
implies wn must be equal to w′n + (lλ + k)vn for some 0 ≤ k, l ≤ p − 1. Hence v′ = σk

1σ
l
2(v). This is a

contradiction because v and v′ lie in the same G-orbit.
Next we turn to the case λ ∈ Fp. Since vn−2 = 0, then NH3(xn−1yn − xnyn−1) taking the same value on

v, v′ implies

0 = NH3(xn−1yn − xnyn−1)(v) − NH3(xn−1yn − xnyn−1)(v′)

= (vp
n−1wp

n − v2p−1
n−1 wn) − (vp

n−1w′pn − v2p−1
n−1 w′n)

= vp
n−1(wn − w′n)((wn − w′n)p−1 − vp−1

n−1)

by Lemma 5(2). If vn−1 , 0, then we have (wn − w′n)p−1 − vp−1
n−1 = 0, i.e. (wn − w′n)p−1 = vp−1

n−1 , i.e.
wn−w′n = lvn−1 for some 1 ≤ l ≤ p−1. There must exist k with 0 ≤ k ≤ p−1 such that lλ+k = 0. Hence
v′ = σk

1σ
l
2(v). This is a contradiction. So now assume vn−1 = 0. Then NG(yn)(v) = NG(yn)(v′) implies

(
∏

0≤l≤p−1(lvn+wn))p = (
∏

0≤l≤p−1(lvn+w′n))p. Thus 0 = (
∏

0≤l≤p−1(lvn+wn))p− (
∏

0≤l≤p−1(lvn+w′n))p =

(
∏

0≤l≤p−1(lvn + wn) −
∏

0≤l≤p−1(lvn + w′n))p and therefore wn = w′n + kvn for some 1 ≤ k ≤ p − 1. Hence
v′ = σk

1(v). This is also a contradiction.
The final statement follows because the matrix group associated with V2n,∞ is the same as the matrix

group associated with V2n,0, so their invariant rings are equal, and a separating set for V2n,0 is also a
separating set for V2n,∞. □

Remark 1. From the proof of Theorem 1, we see that the separating set for each representation V2n,λ

we obtained is minimal. Moreover, the size of separating set for V2n,λ is n(n+3)
2 , which only depends on

the dimension of the representation. Nevertheless, the maximal degree of an invariant in this set is the
group order p2.

Since V−(2n−1) is isomorphic to the submodule of V2n,p−1 spanned by ε1,· · · ,εn−1, ξ1,· · · ,ξn, where
ε1,· · · ,εn, ξ1,· · · ,ξn is the basis for V2n,p−1. Dual to this inclusion, there is a restriction map
F[V2n,p−1]G → F[V−(2n−1)]G, f 7→ f |V−(2n−1) which sends separating sets to separating sets by [1,
Theorem 2.4.9]. Therefore, in view of Theorem 1, we have the following statement.

Corollary 1. Let
F[V2n,p−1] = F[x1, x2, · · · , xn, y1, y2, · · · , yn]

and
F[V−(2n−1)] = F[x1, x2, · · · , xn−1, y1, y2, · · · , yn].
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Then
T1 = {y1}

is a separating set for V−1. Additionally,

T2 =
{
x1, NH1(y1), NH3(y2)

}
is a separating set for V−3. Let n ≥ 3 and S n−1 ⊆ F[V2n−2,p−1]G be a separating set for V2n−2,p−1. Then
the polynomials in S n = S n−1

⋃
Tn restricted to V−(2n−1) form a separating set for V−(2n−1), where

Tn =
{
NG(yn), NH3(xn−1yn − xnyn−1), TrG(yp−1

i yp−1
i+1 yn) f or 2 ≤ i ≤ n − 1

}
.

2.2. Separating sets for type (IV)

We consider type (I) representations V2n,p−1. In view of ⟨ξ1⟩ ⊂ V2n,p−1 is a G-submodule, we have
V2n−1 � V2n,p−1/⟨ξ1⟩ with basis ε̃i := εi + ⟨ξ1⟩ for 1 ≤ i ≤ n, ξ̃i := ξi + ⟨ξ1⟩ for 2 ≤ i ≤ n, and a
G-algebra inclusion F[V2n−1] = F[x1, · · · , xn, y2, · · · , yn] ⊂ F[V2n,p−1]. The action of σ1 and σ3 on the
variables are given by σ1(xi) = xi f or 1 ≤ i ≤ n − 1,

σ1(yi) = xi + yi f or 2 ≤ i ≤ n

and σ3(xi) = xi f or 1 ≤ i ≤ n − 1,
σ3(yi) = xi−1 + yi f or 2 ≤ i ≤ n.

Pick a point (v1, · · · , vn,w2, · · · ,wn) in V2n−1. There is a G-equivariant surjection V2n−1 → V2n−3 given
by

(v1, · · · , vn,w2, · · · ,wn) 7→ (v1, · · · , vn−1,w2, · · · ,wn−1).

Hence
F[V2n−3] = F[x1, · · · , xn−1, y2, · · · , yn−1]

is a subalgebra in F[V2n−1].
Note that all congruences are modulo F[x1, · · · , xn, y2, · · · , yn−1] in subsection 2.2.

Lemma 6. (1) TrG(yp−1
i yp−1

j yn) ≡ (xi−1x j − xix j−1)p−1yn for 2 ≤ i, j ≤ n − 1.
(2) TrG(y(p+1)(p−1)

i yn) ≡ xp−1
i−1 xp−1

i (xp−1
i−1 − xp−1

i )p−1yn for 2 ≤ i ≤ n − 1.
(3) NH3(xn−1yn − xnyn−1) ≡ xp

n−1yp
n − xn−1(x2

n−1 − xn−2xn)p−1yn.

(4) TrG((yi + αyn−1)(p+1)(p−1)yn)≡ (xi−1 + αxn−2)p−1(xi + αxn−1)p−1((xi−1 + αxn−2)p−1 − (xi + αxn−1)p−1)p−1yn

for every α ∈ F\Fp and 2 ≤ i ≤ n − 2.

Proof. The above congruences follow by the same methods as Lemmas 4 and 5. □

Theorem 2. Let F[V2n−1] = F[x1, · · · , xn, y2, · · · , yn]. Then S 1 = {x1}, S 2 =
{
x1, x2,NG(y2)

}
and

S 3 = S 2
⋃

T3 are separating sets for V1,V3 and V5 respectively, where

T3 =

{
x3, NG(y3), TrG(y(p+1)(p−1)

2 y3), NH3(x2y3 − x3y2)
}
.
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Let n ≥ 4 and S n−1 ⊆ F[V2n−3]G be a separating set for V2n−3. Choose an element α ∈ F with α not in
the prime field Fp. Then S n = S n−1

⋃
Tn is a separating set for V2n−1, where

Tn =

{
xn, NG(yn), NH3(xn−1yn − xnyn−1), TrG(yp−1

2 yp−1
n−1yn),

TrG(yp−1
i yp−1

i+1 yn) f or 2 ≤ i ≤ n − 2,
TrG(y(p+1)(p−1)

i yn) f or 2 ≤ i ≤ n − 1,

TrG((yi + αyn−1)(p+1)(p−1)yn) f or 2 ≤ i ≤ n − 2
}
.

Proof. We first prove the cases n ≥ 4. Consider any two points v = (v1, · · · , vn,w2, · · · ,wn), v′ =
(v′1, · · · , v

′
n,w

′
2, · · · ,w

′
n) ∈ V2n−1 that do not lie in the same G-orbit, and suppose that f (v) = f (v′) for

all f ∈ S n. We show that there exists g ∈ G such that v′ = g(v). This contradicts our assumption that v
and v′ do not lie in the same G-orbit and this contradiction shows that S n is a separating set for V2n−1.
We assume that every invariant in S n takes the same value on v and v′ from now on. We may assume
that v′i = vi for 1 ≤ i ≤ n, w′i = wi for 2 ≤ i ≤ n − 1 and w′n , wn as the proof of Theorem 1.

Case 1. We assume that there exists vi = 0 for 1 ≤ i ≤ n−1 and let j be maximal with this property.
First, TrG(yp−1

i yp−1
i+1 yn)(v) = TrG(yp−1

i yp−1
i+1 yn)(v′) implies

0 = TrG(yp−1
i yp−1

i+1 yn)(v) − TrG(yp−1
i yp−1

i+1 yn)(v′)
= (vi−1vi+1 − v2

i )p−1(wn − w′n)

for 1 ≤ i ≤ n − 3 by setting j = i + 1 in Lemma 6(1). As w′n , wn, this suggests that: If vi−1 = 0, then
vi = 0 for 2 ≤ i ≤ n − 2. Therefore j ≥ n − 2.

If j = n − 2, then vn−1 , 0. Again, TrG(yp−1
i yp−1

i+1 yn)(v) = TrG(yp−1
i yp−1

i+1 yn)(v′) implies (vi−1vi+1 −

v2
i )p−1(wn − w′n) = 0 for 1 ≤ i ≤ n − 3. As w′n , wn, so the last equation suggests that: If vi+1 = 0, then

vi = 0 for 1 ≤ i ≤ n − 3. Since vn−2 = 0, we get

v1 = v2 = · · · = vn−2 = 0

successively. However, NH3(xn−1yn − xnyn−1) taking the same value on v, v′ implies

0 = NH3(xn−1yn − xnyn−1)(v) − NH3(xn−1yn − xnyn−1)(v′)

= (vp
n−1wp

n − v2p−1
n−1 wn) − (vp

n−1w′pn − v2p−1
n−1 w′n)

= vp
n−1(wn − w′n)((wn − w′n)p−1 − vp−1

n−1)

by Lemma 6(3). As vn−1 , 0 and w′n , wn, then we have wn = w′n + lvn−1 for some 1 ≤ l ≤ p− 1. Hence
v′ = σl

1σ
l
2(v) which is a contradiction.

If j = n − 1, namely vn−1 = 0. TrG(yp−1
2 yp−1

n−1yn) taking the same value on v, v′ implies

0 = TrG(yp−1
2 yp−1

n−1yn)(v) − TrG(yp−1
2 yp−1

n−1yn)(v′)

= vp−1
2 vp−1

n−2(wn − w′n)

by setting i = 2, j = n−2 in Lemma 6(1). We have that v2 = 0 or vn−2 = 0. Whether v2 = 0 or vn−2 = 0,
we have

v1 = v2 = · · · = vn−2 = 0
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successively by TrG(yp−1
i yp−1

i+1 yn)(v) = TrG(yp−1
i yp−1

i+1 yn)(v′) for 2 ≤ i ≤ n − 2. Furthermore, NG(yn)(v) =
NG(yn)(v′) implies

0 = NG(yn)(v) − NG(yn)(v′)

=

( ∏
0≤l,k≤p−1

(lvn−1 + (−l + k)vn + wn)
)
−

( ∏
0≤l,k≤p−1

(lvn−1 + (−l + k)vn + w′n)
)

=

( ∏
0≤l,k≤p−1

((−l + k)vn + wn)
)
−

( ∏
0≤l,k≤p−1

((−l + k)vn + w′n)
)
.

Thus wn = w′n + (−l+ k)vn for some 0 ≤ k, l ≤ p− 1. Hence v′ = σk
1σ

l
2(v) which is also a contradiction.

Case 2. We assume that vi , 0 for 1 ≤ i ≤ n − 1. Then TrG(y(p+1)(p−1)
i yn)(v) = TrG(y(p+1)(p−1)

i yn)(v′)
implies

0 = TrG(y(p+1)(p−1)
i yn)(v) − TrG(y(p+1)(p−1)

i yn)(v′)

= vp−1
i−1 vp−1

i (vp−1
i−1 − vp−1

i )p−1wn − vp−1
i−1 vp−1

i (vp−1
i−1 − vp−1

i )p−1w′n
= vp−1

i−1 vp−1
i (vp−1

i−1 − vp−1
i )p−1(wn − w′n)

for 2 ≤ i ≤ n − 1 by Lemma 6(2). So we have

vp−1
1 = vp−1

2 = · · · = vp−1
n−1 , 0.

We claim that vi

vi+1
=

vn−2

vn−1
= γ ∈ F∗p

for 1 ≤ i ≤ n − 3. Given this, NH3(xn−1yn − xnyn−1) taking the same value on v, v′ implies

0 = NH3(xn−1yn − xnyn−1)(v) − NH3(xn−1yn − xnyn−1)(v′)
= (vp

n−1wp
n−vn−1(v2

n−1−vn−2vn)p−1wn)−(vp
n−1w′pn−vn−1(v2

n−1−vn−2vn)p−1w′n)
= (vp

n−1wp
n−vn−1(v2

n−1−γvn−1vn)p−1wn)−(vp
n−1w′pn−vn−1(v2

n−1−γvn−1vn)p−1w′n)
= vp

n−1(wn − w′n)((wn − w′n)p−1 − (vn−1 − γvn)p−1)

by Lemma 6(3). Thus, there exists some 1 ≤ l ≤ p − 1 such that wn − w′n = lvn−1 − lγvn. There must
exist k with 0 ≤ k ≤ p − 1 such that −l + k + lγ = 0. Then v′ = σk

1σ
l
2(v). This is a contradiction.

Now we prove for the claim. For 1 ≤ i ≤ n − 2, We define

γi :=
vi

vn−1
.

It is obvious that γi ∈ F
∗
p. Because of TrG((yi + αyn−1)(p+1)(p−1)yn)(v) = TrG((yi + αyn−1)(p+1)(p−1)yn)(v′),

we have that

0 = TrG((yi + αyn−1)(p+1)(p−1)yn)(v) − TrG((yi + αyn−1)(p+1)(p−1)yn)(v′)
= (vi−1+αvn−2)p−1(vi+αvn−1)p−1((vi−1+αvn−2)p−1−(vi+αvn−1)p−1)p−1wn

− (vi−1+αvn−2)p−1(vi+αvn−1)p−1((vi−1+αvn−2)p−1−(vi+αvn−1)p−1)p−1w′n
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= (vi−1+αvn−2)p−1(vi+αvn−1)p−1((vi−1+αvn−2)p−1−(vi+αvn−1)p−1)p−1(wn − w′n)

by Lemma 6(4). Since vp−1
1 = vp−1

2 = · · · = vp−1
n−1 , 0 and α ∈ F\Fp, we have that vi−1 + αvn−2 , 0 and

vi + αvn−1 , 0. Since wn , w′n, we obtain that

(vi−1 + αvn−2)p−1 − (vi + αvn−1)p−1 = 0. (2.2)

Substituting γi =
vi

vn−1
into (2.2), and because of vp−1

n−1 , 0 and γp−1
n−2 = 1 we get

(α +
γi−1

γn−2
)p−1 − (α + γi)p−1 = 0.

Consider the following polynomial

Q(X) := (X +
γi−1

γn−2
)p−1 − (X + γi)p−1

in Fp[X]. It is obvious that the degree of Q(X) is strictly less than p− 1. We next show that there are at
least p − 1 different roots of Q(X) and consequently Q(X) = 0.

Since Q(α) = (α + γi−1
γn−2

)p−1 − (α + γi)p−1 = 0, α + γi−1
γn−2
, 0 and α + γi , 0, then we have

((α +
γi−1

γn−2
)/(α + γi))p−1 = 1.

Set
Ma = a(α +

γi−1

γn−2
)/(α + γi) (2.3)

for each a ∈ Fp\{±1}. It is easy to see that Ma ∈ Fp and Ma , −1. Indeed, if Ma = −1, then
α = −(a γi−1

γn−2
+ γi)/(a + 1) ∈ Fp, which contradicts α ∈ F\Fp.

Now consider
(α + γi−1

γn−2
)(a + 1)

(α + γi)(Ma + 1)
=

aα + α + a γi−1
γn−2
+
γi−1
γn−2

Maα + α + Maγi + γi
∈ F∗p. (2.4)

Equation (2.4) suggests that (aα + α + a γi−1
γn−2
+
γi−1
γn−2

)p−1 = (Maα + α + Maγi + γi)p−1 and we see that
(Maα + α + Maγi + γi)p−1 = (aα + α + a γi−1

γn−2
+ γi)p−1 by (2.3). Thus (aα + α + a γi−1

γn−2
+
γi−1
γn−2

)p−1 =

(aα + α + a γi−1
γn−2
+ γi)p−1, i.e.

0 = (aα + α + a
γi−1

γn−2
+
γi−1

γn−2
)p−1 − (aα + α + a

γi−1

γn−2
+ γi)p−1 = Q(aα + α + a

γi−1

γn−2
)

for each a ∈ Fp\{±1}. For any a1 , a2 ∈ Fp\{±1}, a1α + α + a1
γi−1
γn−2
, a2α + α + a2

γi−1
γn−2

. Moreover,
Q(0) = 0. Therefore there are at least p − 1 different roots of Q(X). We have proved Q(X) = 0.

Substituting −γi into Q(X) = 0 we obtain

γi =
γi−1

γn−2
,

i.e. vi−1

vi
=

vn−2

vn−1
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for 2 ≤ i ≤ n − 2. This establish the claim.
Now, we prove the cases 1 ≤ n ≤ 3. Obviously, F[V1]G = F[x1]. Since

{
x1, x2,NG(y2)

}
forms a

homogeneous system of parameters for F[V3]G and the product of their degrees is equal to the order of
G, it follows from [1, Theorem 3.9.4] that F[V3]G = F[x1, x2,NG(y2)]. Naturally S 2 =

{
x1, x2,NG(y2)

}
is a separating set for V3. Then, S 3 = S 2

⋃
T3 is a separating set for V5, where

T3 =

{
x3, NG(y3), TrG(y(p+1)(p−1)

2 y3), NH3(x2y3 − x3y2)
}
.

The proof is analogous to the proof for n ≥ 4. □

Remark 2. Theorem 2 yields a minimal separating set for each representation V2n−1. Moreover, the
size of separating set for V2n−1 is n(3n−2)

2 , which depends only on the dimension of the representation.
Incidently, the maximal degree of an invariant in this set is the group order p2.

3. Conclusions

In this paper, we determine explicit separating sets for four families of finite dimensional
representations of the elementary abelian p-groups of rank two (Z/p)2 over an algebraically closed
field of characteristic p, where p is an odd prime. The size of every separating set depends only on the
dimension of the representation.
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