Research article Special Issues

The conjugacy diameters of non-abelian finite $ p $-groups with cyclic maximal subgroups

  • Received: 18 January 2024 Revised: 05 March 2024 Accepted: 11 March 2024 Published: 19 March 2024
  • MSC : 05E16, 20D15

  • Let $ G $ be a group. A subset $ S $ of $ G $ is said to normally generate $ G $ if $ G $ is the normal closure of $ S $ in $ G. $ In this case, any element of $ G $ can be written as a product of conjugates of elements of $ S $ and their inverses. If $ g\in G $ and $ S $ is a normally generating subset of $ G, $ then we write $ \| g\|_{S} $ for the length of a shortest word in $ \mbox{Conj}_{G}(S^{\pm 1}): = \{h^{-1}sh | h\in G, s\in S \, \mbox{or} \, s{^{-1}}\in S \} $ needed to express $ g. $ For any normally generating subset $ S $ of $ G, $ we write $ \|G\|_{S} = \mbox{sup}\{\|g\|_{S} \, |\, \, g\in G\}. $ Moreover, we write $ \Delta(G) $ for the supremum of all $ \|G\|_{S}, $ where $ S $ is a finite normally generating subset of $ G, $ and we call $ \Delta(G) $ the conjugacy diameter of $ G. $ In this paper, we derive the conjugacy diameters of the semidihedral $ 2 $-groups, the generalized quaternion groups and the modular $ p $-groups. This is a natural step after the determination of the conjugacy diameters of dihedral groups.

    Citation: Fawaz Aseeri, Julian Kaspczyk. The conjugacy diameters of non-abelian finite $ p $-groups with cyclic maximal subgroups[J]. AIMS Mathematics, 2024, 9(5): 10734-10755. doi: 10.3934/math.2024524

    Related Papers:

  • Let $ G $ be a group. A subset $ S $ of $ G $ is said to normally generate $ G $ if $ G $ is the normal closure of $ S $ in $ G. $ In this case, any element of $ G $ can be written as a product of conjugates of elements of $ S $ and their inverses. If $ g\in G $ and $ S $ is a normally generating subset of $ G, $ then we write $ \| g\|_{S} $ for the length of a shortest word in $ \mbox{Conj}_{G}(S^{\pm 1}): = \{h^{-1}sh | h\in G, s\in S \, \mbox{or} \, s{^{-1}}\in S \} $ needed to express $ g. $ For any normally generating subset $ S $ of $ G, $ we write $ \|G\|_{S} = \mbox{sup}\{\|g\|_{S} \, |\, \, g\in G\}. $ Moreover, we write $ \Delta(G) $ for the supremum of all $ \|G\|_{S}, $ where $ S $ is a finite normally generating subset of $ G, $ and we call $ \Delta(G) $ the conjugacy diameter of $ G. $ In this paper, we derive the conjugacy diameters of the semidihedral $ 2 $-groups, the generalized quaternion groups and the modular $ p $-groups. This is a natural step after the determination of the conjugacy diameters of dihedral groups.



    加载中


    [1] F. Aseeri, Uniform boundedness of groups, Ph.D thesis, University of Aberdeen, 2022.
    [2] V. Bardakov, V. Tolstykh, V. Vershinin, Generating groups by conjugation-invariant sets, J. Algebra Appl., 11 (2012), 1250071. https://doi.org/10.1142/S0219498812500715 doi: 10.1142/S0219498812500715
    [3] M. Brandenbursky, Ś. Gal, J. Kȩdra, M. Marcinkowski, The cancellation norm and the geometry of bi-invariant word metrics, Glasgow Math. J., 58 (2015), 153–176. https://doi.org/10.1017/S0017089515000129 doi: 10.1017/S0017089515000129
    [4] M. Brandenbursky, J. Kȩdra, Fragmentation norm and relative quasimorphisms, Proc. Amer. Math. Soc., 150 (2022), 4519–4531. https://doi.org/10.1090/proc/14683 doi: 10.1090/proc/14683
    [5] D. Burago, S. Ivanov, L. Polterovich, Conjugation-invariant norms on groups of geometric origin, Adv. Stud. Pure Math., 52 (2008), 221–250. https://doi.org/10.2969/aspm/05210221 doi: 10.2969/aspm/05210221
    [6] P. Dutta, R. K. Nath, Various energies of commuting graphs of some super integral groups, Indian J. Pure Appl. Math., 52 (2021), 1–10. https://doi.org/10.1007/s13226-021-00131-7 doi: 10.1007/s13226-021-00131-7
    [7] J. Dutta, R. K. Nath, Laplacian and signless Laplacian spectrum of commuting graphs of finite groups, Khayyam J. Math., 4 (2018), 77–87. https://doi.org/10.22034/KJM.2018.57490 doi: 10.22034/KJM.2018.57490
    [8] W. N. T. Fasfous, R. K. Nath, Inequalities involving energy and Laplacian energy of non-commuting graphs of finite groups, Indian J. Pure Appl. Math., 2023. https://doi.org/10.1007/s13226-023-00519-7 doi: 10.1007/s13226-023-00519-7
    [9] W. N. T. Fasfous, R. Sharafdini, R. K. Nath, Common neighborhood spectrum of commuting graphs of finite groups, Algebra Discret. Math., 32 (2021), 33–48. http://doi.org/10.12958/adm1332 doi: 10.12958/adm1332
    [10] D. Gorenstein, Finite Groups, 2 Eds., New York: Chelsea Publishing Co, 1980.
    [11] M. Kawasaki, Relative quasimorphisms and stably unbounded norms on the group of symplectomorphisms of the Euclidean spaces, J. Symplect. Geom., 14 (2016), 297–304. https://doi.org/10.4310/JSG.2016.v14.n1.a11 doi: 10.4310/JSG.2016.v14.n1.a11
    [12] J. Kȩdra, A. Libman, B. Martin, Strong and uniform boundedness of groups, J. Topol. Anal., 15 (2023), 707–739. https://doi.org/10.1142/S1793525321500497 doi: 10.1142/S1793525321500497
    [13] H. Kurzweil, B. Stellmacher, The theory of finite groups, New York: Springer-Verlag, 2004. https://doi.org/10.1007/b97433
    [14] A. Libman, C. Tarry, Conjugation diameter of the symmetric groups, Involve, 13 (2020), 655–672, https://doi.org/10.2140/involve.2020.13.655 doi: 10.2140/involve.2020.13.655
    [15] A. Muranov, Finitely generated infinite simple groups of infinite square width and vanishing stable commutator length, J. Topol. Anal., 2 (2010), 341–384. https://doi.org/10.1142/S1793525310000380 doi: 10.1142/S1793525310000380
    [16] R. K. Nath, W. N. T. Fasfous, K. C. Das, Y. Shang, Common neighborhood energy of commuting graphs of finite groups, Symmetry, 13 (2021), 1651. https://doi.org/10.3390/sym13091651 doi: 10.3390/sym13091651
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(832) PDF downloads(77) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog