Research article Special Issues

Some operators in soft primal spaces

  • Received: 19 December 2023 Revised: 12 March 2024 Accepted: 13 March 2024 Published: 19 March 2024
  • MSC : 54A05, 54A10

  • The concept of operators in topological spaces occupies a very important place. For this reason, a great deal of work and many results were presented via operators. Herein, we defined a primal local soft closure operator $ \Lambda(\cdot) $ using the concept of soft topology and soft primal and reconnoitered its basic characteristics. Then, we found several fundamental results about the behavior of the primal soft closure operator $ \lambda{(\cdot)} $ with the help of $ \Lambda(\cdot). $ Among other obtained results, we introduced a new topology induced by the primal soft closure operator. At last, we defined primal soft suitable spaces and gave some equivalent descriptions of it.

    Citation: Ahmad Al-Omari, Mesfer H. Alqahtani. Some operators in soft primal spaces[J]. AIMS Mathematics, 2024, 9(5): 10756-10774. doi: 10.3934/math.2024525

    Related Papers:

  • The concept of operators in topological spaces occupies a very important place. For this reason, a great deal of work and many results were presented via operators. Herein, we defined a primal local soft closure operator $ \Lambda(\cdot) $ using the concept of soft topology and soft primal and reconnoitered its basic characteristics. Then, we found several fundamental results about the behavior of the primal soft closure operator $ \lambda{(\cdot)} $ with the help of $ \Lambda(\cdot). $ Among other obtained results, we introduced a new topology induced by the primal soft closure operator. At last, we defined primal soft suitable spaces and gave some equivalent descriptions of it.



    加载中


    [1] D. Molodtsov, Soft set theory first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [2] O. Dalkiliç, N. Demirtaş, Algorithms for COVID-19 outbreak using soft set theory: Estimation and application, Soft Comput., 27 (2023), 3203–3211. https://doi.org/10.1007/s00500-022-07519-5 doi: 10.1007/s00500-022-07519-5
    [3] Z. A. Ameen, R. A. Mohammed, T. M. Al-shami, B. A. Asaad, Novel fuzzy topologies formed by fuzzy primal, J. Intell. Fuzzy Syst., 2024, 1–10.
    [4] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006
    [5] S. Al Ghour, Z. A. Ameen, On soft submaximal spaces, Heliyon, 8 (2022), e10574. https://doi.org/10.1016/j.heliyon.2022.e10574 doi: 10.1016/j.heliyon.2022.e10574
    [6] T. M. Al-shami, New soft structure: Infra soft topological spaces, Math. Probl. Eng., 2021 (2021), 3361604. https://doi.org/10.1155/2021/3361604 doi: 10.1155/2021/3361604
    [7] Z. A. Ameen, B. A. Asaad, T. M. Al-shami, Soft somewhat continuous and soft somewhat open functions, TWMS J. Pure Appl. Math., 13 (2023), 792–806. https://doi.org/10.48550/arXiv.2112.15201 doi: 10.48550/arXiv.2112.15201
    [8] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. A. El-latif, Soft ideal theory soft local function and generated soft topological spaces, Appl. Math. Inf. Sci., 8 (2014), 1595–1603. https://doi.org/10.12785/amis/080413 doi: 10.12785/amis/080413
    [9] R. A. Mahmoud, Remarks on soft topological spaces with soft grill, Far East J. Math. Sci., 86 (2014), 111–128.
    [10] Z. A. Ameen, M. H. Alqahtani, Baire category soft sets and their symmetric local properties, Symmetry, 15 (2023), 1810. https://doi.org/10.3390/sym15101810 doi: 10.3390/sym15101810
    [11] T. M. Al-shami, Z. A. Ameen, R. Abu-Gdairi, A. Mhemdi, On primal soft topology, Mathematics, 11 (2023), 2329. https://doi.org/10.3390/math11102329 doi: 10.3390/math11102329
    [12] Z. A. Ameen, M. H. Alqahtani, Congruence representations via soft ideals in soft topological spaces, Axioms, 12 (2023), 1015. https://doi.org/10.3390/axioms12111015 doi: 10.3390/axioms12111015
    [13] Z. A. Ameen, M. H. Alqahtani, Some classes of soft functions defined by soft open sets modulo soft sets of the first category, Mathematics, 11 (2023), 4368. https://doi.org/10.3390/math11204368 doi: 10.3390/math11204368
    [14] M. Terepeta, On separating axioms and similarity of soft topological spaces, Soft Comput., 23 (2019), 1049–1057. https://doi.org/10.1007/s00500-017-2824-z doi: 10.1007/s00500-017-2824-z
    [15] T. M. Al-shami, L. D. Kocinac, The equivalence between the enriched and extended soft topologies, Appl. Comput. Math., 18 (2019), 149–162.
    [16] S. Acharjee, M. Özkoç, F. Y. Issaka, Primal topological spaces, arXiv preprint, 2022.
    [17] A. Al-Omari, S. Acharjee, M. Özkoç, A new operator of primal topological spaces, Mathematica, 65 (2023), 175–183. https://doi.org/10.24193/mathcluj.2023.2.03 doi: 10.24193/mathcluj.2023.2.03
    [18] A. Al-Omari, M. Özkoç, S. Acharjee, Primal-proximity spaces, arXiv preprint, 2023.
    [19] H. Al-Saadi, H. Al-Malki, Generalized primal topological spaces, AIMS Math., 8 (2023), 24162–24175. http://dx.doi.org/10.3934/math.20231232 doi: 10.3934/math.20231232
    [20] M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
    [21] A. Allam, T. H. Ismail, R. Muhammed, A new approach to soft belonging, J. Ann. Fuzzy Math. Inform., 13 (2017), 145–152. https://doi.org/10.30948/afmi.2017.13.1.145 doi: 10.30948/afmi.2017.13.1.145
    [22] N. Xie, Soft points and the structure of soft topological spaces, Ann. Fuzzy Math. Inform., 10 (2015), 309–322.
    [23] A. Aygünoğlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl., 21 (2012), 113–119. https://doi.org/10.1007/s00521-011-0722-3 doi: 10.1007/s00521-011-0722-3
    [24] N. Çağman, S. Karataş, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358. https://doi.org/10.1016/j.camwa.2011.05.016 doi: 10.1016/j.camwa.2011.05.016
    [25] S. Nazmul, S. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform., 6 (2013), 1–15. https://doi.org/10.1186/2251-7456-6-66 doi: 10.1186/2251-7456-6-66
    [26] R. Sahin, A. Kuçuk, Soft filters and their convergence properties, Ann. Fuzzy Math. Inform., 6 (2013), 529–543.
    [27] A. Bashir, H. Sabir, On some structures of soft topology, Math. Sci., 6 (2012), 64. https://doi.org/10.1186/2251-7456-6-64 doi: 10.1186/2251-7456-6-64
    [28] A. A. Azzam, Z. A. Ameen, T. M. Al-shami, M. E. El-Shafei, Generating soft topologies via soft set operators, Symmetry, 14 (2022), 914. https://doi.org/10.3390/sym14050914 doi: 10.3390/sym14050914
    [29] T. Noiri, On $\alpha$-continuous functions, Casopis Pest. Mat., 109 (1984), 118–126. https://doi.org/10.21136/CPM.1984.108508 doi: 10.21136/CPM.1984.108508
    [30] Z. A. Ameen, S. Al Ghour, Cluster soft sets and cluster soft topologies, Comp. Appl. Math., 42 (2023), 337. https://doi.org/10.1007/s40314-023-02476-7 doi: 10.1007/s40314-023-02476-7
    [31] D. N. Georgiou, A. C. Megaritis, V. I. Petropoulos, On soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 1889–1901. https://doi.org/10.12785/amis/070527 doi: 10.12785/amis/070527
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(628) PDF downloads(79) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog