Research article

Uniform boundedness of $ (SL_2(\mathbb{C}))^{n} $ and $ (PSL_2(\mathbb{C}))^{n} $

  • Received: 11 September 2024 Revised: 22 November 2024 Accepted: 22 November 2024 Published: 28 November 2024
  • MSC : 05E16, 20G20, 58D19

  • Let $ G $ be a group and $ S $ be a subset of $ G. $ We say that $ S $ normally generates $ G $ if $ G $ is the normal closure of $ S $ in $ G. $ In this situation, every element $ g\in G $ can be written as a product of conjugates of elements of $ S $ and their inverses. If $ S\subseteq G $ normally generates $ G, $ then the length $ \| g\|_{S}\in \mathbb{N} $ of $ g\in G $ with respect to $ S $ is the shortest possible length of a word in $ \text{Conj}_{G}(S^{\pm 1}): = \{h^{-1}sh | h\in G, s\in S \, \text{or} \, s{^{-1}}\in S \} $ expressing $ g. $ We write $ \|G\|_{S} = \text{sup}\{\|g\|_{S} \, |\, \, g\in G\} $ for any normally generating subset $ S $ of $ G. $ The conjugacy diameter of any group $ G $ is $ \Delta(G): = \sup\{ {\|G\|_{S}}\, \, | S\ \text{is a finite normally generating subset of } G \}. $ We say that $ G $ is uniformly bounded if $ \Delta(G) < \infty. $ This concept is a strengthening of boundedness. Motivated by previously known results approximating $ \Delta(G) $ for any algebraic group $ G, $ we find the exact values of the conjugacy diameters of the direct product of finitely many copies of $ SL_2(\mathbb{C}) $ and the direct product of finitely many copies of $ PSL_2(\mathbb{C}). $ We also prove that if $ G_1, \dots, G_n $ be quasisimple groups such that $ G_i $ is uniformly bounded for each $ i\in \{1, \dots, n\}, $ then $ G_1\times\dots \times G_n $ is uniformly bounded. This is also a generalization of some previously known results in the literature.

    Citation: Fawaz Aseeri. Uniform boundedness of $ (SL_2(\mathbb{C}))^{n} $ and $ (PSL_2(\mathbb{C}))^{n} $[J]. AIMS Mathematics, 2024, 9(12): 33712-33730. doi: 10.3934/math.20241609

    Related Papers:

  • Let $ G $ be a group and $ S $ be a subset of $ G. $ We say that $ S $ normally generates $ G $ if $ G $ is the normal closure of $ S $ in $ G. $ In this situation, every element $ g\in G $ can be written as a product of conjugates of elements of $ S $ and their inverses. If $ S\subseteq G $ normally generates $ G, $ then the length $ \| g\|_{S}\in \mathbb{N} $ of $ g\in G $ with respect to $ S $ is the shortest possible length of a word in $ \text{Conj}_{G}(S^{\pm 1}): = \{h^{-1}sh | h\in G, s\in S \, \text{or} \, s{^{-1}}\in S \} $ expressing $ g. $ We write $ \|G\|_{S} = \text{sup}\{\|g\|_{S} \, |\, \, g\in G\} $ for any normally generating subset $ S $ of $ G. $ The conjugacy diameter of any group $ G $ is $ \Delta(G): = \sup\{ {\|G\|_{S}}\, \, | S\ \text{is a finite normally generating subset of } G \}. $ We say that $ G $ is uniformly bounded if $ \Delta(G) < \infty. $ This concept is a strengthening of boundedness. Motivated by previously known results approximating $ \Delta(G) $ for any algebraic group $ G, $ we find the exact values of the conjugacy diameters of the direct product of finitely many copies of $ SL_2(\mathbb{C}) $ and the direct product of finitely many copies of $ PSL_2(\mathbb{C}). $ We also prove that if $ G_1, \dots, G_n $ be quasisimple groups such that $ G_i $ is uniformly bounded for each $ i\in \{1, \dots, n\}, $ then $ G_1\times\dots \times G_n $ is uniformly bounded. This is also a generalization of some previously known results in the literature.



    加载中


    [1] F. Aseeri, J. Kaspczyk, The conjugacy diameters of non-abelian finite $p$-groups with cyclic maximal subgroups, AIMS Mathematics, 9 (2024), 10734–10755. http://dx.doi.org/10.3934/math.2024524 doi: 10.3934/math.2024524
    [2] A. Ballester-Bolinches, R. Esteban-Romero, V. Pérez-Calabuig, A note on the rational canonical form of an endomorphism of a vector space of finite dimension, Oper. Matrices, 12 (2018), 823–836. http://dx.doi.org/10.7153/oam-2018-12-49 doi: 10.7153/oam-2018-12-49
    [3] M. Brandenbursky, J. Kȩdra, On the autonomous metric on the group of area-preserving diffeomorphisms of the 2-disc, Algebr. Geom. Topol., 13 (2013), 795–816. http://dx.doi.org/10.2140/agt.2013.13.795 doi: 10.2140/agt.2013.13.795
    [4] M. Brandenbursky, Bi-invariant metrics and quasi-morphisms on groups of Hamiltonian diffeomorphisms of surfaces, Int. J. Math., 26 (2015), 1550066. http://dx.doi.org/10.1142/S0129167X15500664 doi: 10.1142/S0129167X15500664
    [5] M. Brandenbursky, Ś. Gal, J. Kȩdra, M. Marcinkowski, The cancellation norm and the geometry of bi-invariant word metrics, Glasgow Math. J., 58 (2016), 153–176. http://dx.doi.org/10.1017/S0017089515000129 doi: 10.1017/S0017089515000129
    [6] M. Brandenbursky, J. Kȩdra, E. Shelukhin, On the autonomous norm on the group of Hamiltonian diffeomorphisms of the torus, Commun. Contemp. Math., 20 (2018), 1750042. http://dx.doi.org/10.1142/S0219199717500420 doi: 10.1142/S0219199717500420
    [7] M. Brandenbursky, J. Kȩdra, Fragmentation norm and relative quasimorphisms, Proc. Amer. Math. Soc., 150 (2022), 4519–4531. http://dx.doi.org/10.1090/PROC/14683 doi: 10.1090/PROC/14683
    [8] D. Burago, S. Ivanov, L. Polterovich, Conjugation-invariant norms on groups of geometric origin, Adv. Stud. Pure Math., 2008 (2008), 221–250. http://dx.doi.org/10.2969/aspm/05210221 doi: 10.2969/aspm/05210221
    [9] D. Calegari, Stable commutator length is rational in free groups, J. Amer. Math. Soc., 22 (2009), 941–961. http://dx.doi.org/10.1090/S0894-0347-09-00634-1 doi: 10.1090/S0894-0347-09-00634-1
    [10] D. Calegari, D. Zhuang, Stable W-length, In: Topology and geometry in dimension three: triangulations, invariants, and geometric structures, Providence: American Mathematical Society, 2011,145–169.
    [11] D. Dummit, R. Foote, Abstract algebra, 3 Eds., Hoboken: John Wiley & Sons, Inc., 2004.
    [12] Ś. Gal, J. Kȩdra, On bi-invariant word metrics, J. Topol. Anal., 3 (2011), 161–175. http://dx.doi.org/10.1142/S1793525311000556
    [13] Ś. Gal, J. Gismatullin, Uniform simplicity of groups with proximal action, Trans. Amer. Math. Soc. Ser. B, 4 (2017), 110–130. http://dx.doi.org/10.1090/btran/18 doi: 10.1090/btran/18
    [14] Ś. Gal, J. Kȩdra, A. Trost, Finite index subgroups in Chevalley groups are bounded: an addendum to "on bi-invariant word metrics", J. Topol. Anal., in press. http://dx.doi.org/10.1142/S1793525323500115
    [15] J. Gismatullin, Boundedly simple groups of automorphisms of trees, J. Algebra, 392 (2013), 226–243. http://dx.doi.org/10.1016/j.jalgebra.2013.06.023 doi: 10.1016/j.jalgebra.2013.06.023
    [16] J. Humphreys, Linear algebraic groups, 1 Ed., Nwe York: Springer-Verlag, 1975. http://dx.doi.org/10.1007/978-1-4684-9443-3
    [17] J. Kȩdra, A. Libman, B. Martin, Strong and uniform boundedness of groups, arXiv: 1808.01815. http://dx.doi.org/10.48550/arXiv.1808.01815
    [18] J. Kȩdra, A. Libman, B. Martin, Strong and uniform boundedness of groups, J. Topol. Anal., 15 (2023), 707–739. http://dx.doi.org/10.1142/S1793525321500497 doi: 10.1142/S1793525321500497
    [19] J. Kȩdra, A. Libman, B. Martin, Uniform boundedness for algebraic and lie groups, arXiv: 2022.13885. http://dx.doi.org/10.48550/arXiv.2202.13885
    [20] A. Libman, C. Tarry, Conjugation diameter of the symmetric groups, Involve, 13 (2020), 655–672. http://dx.doi.org/10.2140/involve.2020.13.655 doi: 10.2140/involve.2020.13.655
    [21] D. McDuff, D. Salamon, Introduction to symplectic topology, 3 Eds, Oxford: Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198794899.001.0001
    [22] A. Muranov, Finitely generated infinite simple groups of infinite square width and vanishing stable commutator length, J. Topol. Anal., 2 (2010), 341–384. http://dx.doi.org/10.1142/S1793525310000380 doi: 10.1142/S1793525310000380
    [23] W. Rossmann, Lie groups: an introduction through linear groups, Oxford: Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780198596837.001.0001
    [24] M. Suzuki, Group theory II, Berlin: Springer, 1986.
    [25] T. Tsuboi, On the uniform simplicity of diffeomorphism groups, In: Differential geometry, Singapore: World Scientific Publishing, 2009, 43–55. http://dx.doi.org/10.1142/9789814261173_0004
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(191) PDF downloads(36) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog