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Abstract: Let G be a group and S be a subset of G. We say that S normally generates G if
G is the normal closure of S in G. In this situation, every element g ∈ G can be written as a
product of conjugates of elements of S and their inverses. If S ⊆ G normally generates G, then
the length ‖g‖S ∈ N of g ∈ G with respect to S is the shortest possible length of a word in
ConjG(S ±1) := {h−1sh|h ∈ G, s ∈ S or s−1 ∈ S } expressing g. We write ‖G‖S = sup{‖g‖S | g ∈ G}
for any normally generating subset S of G. The conjugacy diameter of any group G is ∆(G) :=
sup{‖G‖S |S is a finite normally generating subset of G}. We say that G is uniformly bounded if
∆(G) < ∞. This concept is a strengthening of boundedness. Motivated by previously known results
approximating ∆(G) for any algebraic group G, we find the exact values of the conjugacy diameters of
the direct product of finitely many copies of S L2(C) and the direct product of finitely many copies of
PS L2(C). We also prove that if G1, . . . ,Gn be quasisimple groups such that Gi is uniformly bounded
for each i ∈ {1, . . . , n}, then G1 × · · · ×Gn is uniformly bounded. This is also a generalization of some
previously known results in the literature.
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1. Introduction

1.1. Background on norms and boundedness

Let G be a group. A norm on G is a function ν : G −→ [0,∞), which satisfies the following axioms:
(i) ν(g) = 0 if and only if g = 1;
(ii) ν(g) = ν(g−1) ∀ g ∈ G;
(iii) ν(gh) ≤ ν(g) + ν(h) ∀ g, h ∈ G.

We call ν conjugation-invariant if in addition
(iv) ν(g−1hg) = ν(h) ∀ g, h ∈ G.
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Examples of conjugation-invariant norms are word norms associated with generating sets invariant
under conjugations [5], the commutator length [9], verbal norms [10], the Hofer norm on the group of
Hamiltonian diffeomorphisms of a symplectic manifold [21], and others [7, 18, 22].

The diameter of a group G with respect to a conjugation-invariant norm ν on G, denoted diamν(G)
or diam(ν), is sup{ν(g)|g ∈ G}. Burago et al. [8] introduced the concept of bounded groups, namely
groups for which every conjugation invariant norm has a finite diameter. Examples of bounded groups
include finite index subgroups in S -arithmetic Chevalley groups [14], the commutator subgroup of
Thompson’s group [13], the automorphism groups of regular trees [15], and others [12,18,25]. On the
other hand, if G is not bounded, then G is said to be unbounded. Groups with infinite abelianization
are examples of unbounded groups [8]. There are also other examples of unbounded groups, and for
these examples, we refer the reader to [3, 4, 6].

A normally generating subset of a group is one of the most important sources of conjugation
invariant norms. Assume that G is a group and S be a subset of G. The normal closure of S in G,
denoted by 〈〈S 〉〉, is the smallest normal subgroup of G containing S . In other words, it is the subgroup
of G that is generated by all conjugates of elements of S . We say that G is normally generated by S if
G = 〈〈S 〉〉. In this situation, every element of G can be written as a product of elements of

ConjG(S ±1) := {h−1sh|h ∈ G, s ∈ S or s−1 ∈ S }. (1.1)

If S ⊆ G normally generates G, then the length ‖g‖S ∈ [0,∞) of g ∈ G with respect to S is defined
to be

‖g‖S = inf{n ∈ N|g = s1 · · · sn for some s1, . . . , sn ∈ ConjG(S ±1)}.

In other words, it is the shortest possible length of a word in ConjG(S ±1) expressing g.
The word norm is

‖ . ‖S : G → [0,∞),

g 7→ ‖g‖S .

It is easy to see that the word norm ‖ . ‖S is a conjugation-invariant norm on G. The diameter of a
group G with respect to the conjugation-invariant word norm ‖ . ‖S is given by

‖G‖S := sup{‖g‖S |g ∈ G}.

Let G be a group normally generated by a finite set S . It has been shown in [18, Corollary 2.5] that
G is bounded if and only if ‖G‖S < ∞. This highlights the significance of using word norms for finite
normally generating subsets and their diameters to study the boundedness of groups.

In light of [18, Corollary 2.5], there are some refinements of the notion of boundedness. We will
introduce some notation to describe these refinements. For any group G and any n ≥ 1, let

Γn(G) := {S ⊆ G | |S | ≤ n and S normally generates G},

Γ(G) := {S ⊆ G | |S | < ∞ and S normally generates G}.

Set

∆n(G) := sup{‖G‖S |S ∈ Γn(G)},
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∆(G) := sup{‖G‖S |S ∈ Γ(G)}.

The conjugacy diameter of any group G is denoted as ∆(G). The group G is said to be strongly
bounded if ∆n(G) < ∞ for all n ∈ N (see [18, Definition 1.1]). The group G is said to be uniformly
bounded if ∆(G) < ∞ (see [18, Definition 1.1]).

1.2. Motivation and statements of results

Recently, conjugacy diameters were studied for several classes of finite and infinite groups. For
the case of finite groups, Kaspczyk and the author of this paper studied the conjugacy diameters of
non-abelian finite p-groups with cyclic maximal subgroups in [1]. They determined the conjugacy
diameters of the semidihedral 2-groups (see [1, Theorem 1.4]), the generalized quaternion groups
(see [1, Theorem 1.5]), and the modular p-groups (see [1, Theorem 1.6]). Kȩdra et al. also proved that
∆(PS L(n, q)) ≤ 12(n − 1) for any n ≥ 3 and any prime power q (see [18, Example 7.2]). Also, Libman
and Tarry showed that if G is a non-abelian group of order pq, where p and q are prime numbers
with p < q, then ∆(G) = max{ p−1

2 , 2} (see [20, Thereom 1.1]), and that ∆(S n) = n − 1 for any n ≥ 2
(see [20, Thereom 1.2]). For the case of infinite groups, we have ∆(D∞) ≤ 4 (see [18, Example 2.8]).
Also, the conjugacy diameters of S L2(C) and PS L2(C) have been studied, and we have:

Theorem 1.1. ( [17, Theorem 3.3]) Let G := S L2(C). Then G is normally generated by any g ∈
G \ Z(G), and moreover

‖G‖g =

2, if trace(g) = 0,
3, otherwise.

Hence, G is uniformly bounded and ∆(G) = 3.

Theorem 1.2. ( [17, Theorem 3.4]) Let G := PS L2(C). Then G is normally generated by any g ∈
G \ Z(G), and moreover, ‖G‖g = 2. Hence G is uniformly bounded and ∆(G) = 2.

The next theorem provides a family of uniformly bounded groups.

Theorem 1.3. ( [18, Theorem 4.3]) Let G be a finitely normally generated algebraic group over an
algebraically closed field. Let G0 denote the connected component of the identity. Then G is uniformly
bounded and ∆(G) ≤ 4 dim(G) + ∆(G/G0).

Note that by [18, Proposition 4.2], a linear algebraic group over an algebraically closed field is
finitely normally generated if and only if it has a finite abelianization.

In general, calculating ∆(G) for a group G is not easy, and the goal of this paper is to compute this
value for some finitely normally generated algebraic groups over C. We show that the bound for ∆(G)
in Theorem 1.3 is not sharp, and we obtain the exact value for the conjugacy diameters of the direct
product of finitely many copies of S L2(C) and the direct product of finitely many copies of PS L2(C).
In particular, we prove the following:

Theorem 1.4. Let n ≥ 1 be a natural number and let G := PS L2(C). Then,

∆(Gn) = ∆n(Gn) = 2n.
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Theorem 1.5. Let n ≥ 1 be a natural number and let G := S L2(C). Then,

∆(Gn) = ∆n(Gn) = 3n.

The bound in Theorem 1.3 is far from sharp. As an example, let G := S Lm(C) where m ≥ 1.We have
that G is a linear algebraic group and dim(G)= m2−1 (see [16, Section 7.2]). By [16, Proposition 3.1]),
we have dim(Gn)= n(m2−1) for every n ≥ 1.Now, Theorem 1.5 shows that ∆((S L2(C))n) = 3n,whereas
Theorem 1.3 yields that ∆((S L2(C))n) ≤ 4n(22 − 1). Also, there is some improvement on the bound in
Theorem 1.3 for some special cases (see [19, Theorem 1.3]). However, this improvement does not give
exact values of ∆((S L2(C))n) and ∆((PS L2(C))n).

In order to prove Theorems 1.4 and 1.5, we need first to give an alternative method to prove
Theorems 1.1 and 1.2. The new method we used there is based on the so-called rational canonical
form and a new definition (see Definition 2.2). The importance of this definition will be mentioned in
Remark 5.1.

The other main result of this paper is to generalise the following result:

Theorem 1.6. [17, Lemma 2.20 (c)] Let n ≥ 1 be a natural number, and let G1, . . . ,Gn be finitely
normally generated groups. Then G = G1 × · · · × Gn is finitely normally generated, and if the groups
Gi are uniformly bounded and simple then G is uniformly bounded.

Our main result generalises the above result as follows:

Theorem 1.7. Let n ≥ 1 be a natural number, and let G1, . . . ,Gn be quasisimple groups. Suppose that
Gi is uniformly bounded for each i ∈ {1, . . . , n}. Then G = G1 × · · · ×Gn is uniformly bounded.

2. Preliminaries

In this section, we present some results and notation needed for the proofs of Theorems 1.4, 1.5,
and 1.7.

Definition 2.1. ( [18, Section 2]) Let X be a subset of a group G. For any n ≥ 0, we define BX(n) to be
the set of all elements of G that can be expressed as a product of at most n conjugates of elements of X
and their inverses.

By Definition 2.1, we have

{1} = BX(0) ⊆ BX(1) ⊆ BX(2) ⊆ . . .

The next lemma is [18, Lemma 2.3]. We prove the last two parts of this lemma since the proofs are
not given in [18].

Lemma 2.1. Let G be a group; let X,Y ⊆ G and n,m ∈ N. Then,

(i) BX(n)−1 = BX(n) and BX(n) is invariant under conjugation in G.

(ii) If X ⊆ Y then BX(n) ⊆ BY(n).

(iii) BX(n)BX(m) = BX(n + m).

(iv) Y ⊆ BX(n) =⇒ BY(m) ⊆ BX(mn).
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(v) If π : G → H is a surjective group homomorphism, then BH
π(X)(n) = π(BG

X(n)) for any X ⊆ G.

(vi) If π : G → H is a surjective group homomorphism, then BG
π−1(Y)(n) = π−1(BH

Y (n)) for any Y ⊆ H.

Proof. (i)–(iv) follow from the definition.
We now prove (v). Let π(g) ∈ π(BG

X(n)). Then g ∈ BG
X(n). So there exist x1, . . . , xm ∈ X for some 0 ≤

m ≤ n such that

g =

m∏
i=1

h−1
i xεi

i hi,

where hi ∈ G and εi ∈ {1,−1} for each 1 ≤ i ≤ m. We have

π(g) =

m∏
i=1

π(hi)−1π(xi)εiπ(hi).

This shows that π(g) ∈ BH
π(X)(n). Therefore, π(BG

X(n)) ⊆ BH
π(X)(n).

Now let h ∈ BH
π(X)(n). So there exist π(x1), . . . , π(xm) ∈ π(X) for some 0 ≤ m ≤ n such that

h =

m∏
i=1

h−1
i π(xi)εihi,

where hi ∈ H and εi ∈ {1,−1} for each 1 ≤ i ≤ m. For each 1 ≤ i ≤ m, let h̃i ∈ G with π(h̃i) = hi. Then

h =

m∏
i=1

π(h̃i)−1π(xi)εiπ(h̃i) =

m∏
i=1

π(h̃−1
i xεi

i h̃i).

This shows that h ∈ π(BG
X(n)). Therefore, BH

π(X)(n) ⊆ π(BG
X(n)). The proof is complete.

Finally, the proof of (vi). Let g ∈ BG
π−1(Y)(n). Then there are elements x1, . . . , xm of π−1(Y) for

some 0 ≤ m ≤ n such that

g =

m∏
i=1

h−1
i xεi

i hi,

where hi ∈ G and εi ∈ {1,−1} for each 1 ≤ i ≤ m. We have

π(g) =

m∏
i=1

π(hi)−1π(xi)εiπ(hi).

Since π(xi) ∈ Y for each 1 ≤ i ≤ m, it follows that π(g) ∈ BH
Y (n). Therefore, g ∈ π−1(BH

Y (n)), and it
follows that BG

π−1(Y)(n) ⊆ π−1(BH
Y (n)).

Suppose now that g ∈ π−1(BH
Y (n)). Then π(g) ∈ BH

Y (n). So there exist y1, . . . , ym ∈ Y for some 0 ≤
m ≤ n such that

π(g) =

m∏
i=1

h−1
i yεi

i hi,

where hi ∈ H and εi ∈ {1,−1} for each 1 ≤ i ≤ m. For each 1 ≤ i ≤ m, let h̃i, ỹi ∈ G with π(h̃i) =

hi, π(ỹi) = yi. Then,

π(g) =

m∏
i=1

π(h̃i)−1π(ỹi)εiπ(h̃i) =

m∏
i=1

π(h̃−1
i ỹεi

i h̃i) = π
( m∏

i=1

h̃−1
i ỹεi

i h̃i
)
.
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Setting w :=
∏m

i=1 h̃−1
i ỹεi

i h̃i, it follows that g = uw for some u ∈ ker(π). We have

g = uw = u
( m∏

i=1

h̃−1
i ỹεi

i h̃i
)

= h̃−1
1 h̃1u

( m∏
i=1

h̃−1
i ỹεi

i h̃i
)

= h̃−1
1 h̃1 u h̃−1

1 ỹε1
1 h̃1 ·

m∏
i=2

h̃−1
i ỹεi

i h̃i.

With w0 := h̃1 u h̃−1
1 ỹε1

1 , we have

π(w0) = π(h̃1uh̃−1
1 ỹε1

1 ) = π(h̃1)π(u) π(h̃1)−1 π(ỹ1)ε1 = π(h̃1) π(h̃1)−1 π(ỹ1)ε1 = π(ỹ1)ε1 .

It follows that wε1
0 ∈ π

−1(Y). So we have w0 ∈ BG
π−1(Y)(1). Now g = h̃−1

1 w0 h̃1 ·
∏m

i=2 h̃−1
i ỹεi

i h̃i ∈ BG
π−1(Y)(n).

Therefeore, π−1(BH
Y (n)) ⊆ BG

π−1(Y)(n). �

Next, we will introduce Definition 2.2 to prove Theorems 1.1 and 1.2. The significance of this
definition will be explained later (see Remark 5.1).

Definition 2.2. Let X be a subset of a group G. For any n ≥ 0, define WX(n) to be the set of all elements
of G that can be written as a product of exactly n conjugates of elements of X and their inverses.

The next result follows easily from the above definitions.

Lemma 2.2. Let G be a group, let X ⊆ G, and let n,m ∈ N. Then,

(i) WX(n)−1 = WX(n) and WX(n) is invariant under conjugation in G.

(ii) WX(n)WX(m) = WX(n + m).

(iii) WX(n) ⊆ BX(n).

Remark 2.1. Let G be a group, X ⊆ G, and n ∈ N. In general, we do not have BX(n) ⊆ WX(n). For
example, let G := (Z,+), and let X be the set of odd integers. It is not hard to observe that BX(2) = Z,

while WX(2) = 2Z. Also, BX(1) = X ∪ {0}, while WX(1) = X.

Lemma 2.3. Let G be a group such that [G,G] = G and G/Z(G) is simple. Then every g ∈ G \ Z(G)
normally generates G.

Proof. Let g ∈ G \ Z(G). Set S := {g} and N := 〈〈S 〉〉. By the definition, N is the smallest normal
subgroup of G containing S . We have to show that G = N. Since g ∈ N and g < Z(G), we have
N � Z(G). As N E G, Lemma [24, Proposition 6.2(iii)] implies that G = N. �

Next, let F be an arbitrary field. We will discuss the rational canonical form over F. Most of the
material presented here comes from [11]. Let A be an n1 × n2 matrix and B be an m1 ×m2 matrix. Then
their direct sum, denoted by A ⊕ B, is the (n1 + m1) × (n2 + m2) matrix of the form(

A 0
0 B

)
.

Let A be a square matrix over F. The characteristic polynomial of A, denoted by CPA(x), is the
polynomial defined by CPA(x) = det(xI − A), where x is a variable. A monic polynomial over F is
a single variable polynomial with coefficients in F, whose highest order coefficient is equal to one.
Therefore, a monic polynomial has the form f (x) = xn + an−1xn−1 + · · ·+ a1x + a0 ∈ F[x]. The minimal
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polynomial of A, denoted by mA(x), is the unique monic polynomial f (x) of smallest degree such that
f (A) = 0. The companion matrix of a monic polynomial f (x) = xn + an−1xn−1 + · · · + a1x + a0 over F
is the matrix 

0 0 0 · · · 0 −a0

1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2
...

...
. . .

. . . · · ·
...

0 0 0 . . . 0 −an−2

0 0 0 · · · 1 −an−1


.

We denote the companion matrix of f (x) by C f (x).

A square matrix R over F is said to be a rational canonical form if R is a direct sum of companion
matrices,

R = C f1(x) ⊕C f2(x) ⊕ · · · ⊕C fm(x) =


C f1(x) 0 · · · 0

0 C f2(x) · · · 0
...

...
. . . 0

0 0 · · · C fm(x)

 ,
for monic polynomials f1(x), ..., fm(x) of degree at least one such that

f1(x)
∣∣∣ f2(x)

∣∣∣ . . . ∣∣∣ fm(x).

The next result is [11, Section 12.2, Theorem 16].

Theorem 2.1. Let A ∈ GLn(F).

(i) The matrix A is GLn(F)-conjugate to a matrix R in rational canonical form.

(ii) The rational canonical form R for A is unique.

Let A be a square matrix over F. Then the matrix R from Theorem 2.1 is said to be the rational
canonical form of A. If A is conjugate to a rational canonical form

R = C f1(x) ⊕C f2(x) ⊕ · · · ⊕C fm(x),

where f1(x)
∣∣∣ f2(x)

∣∣∣ . . . ∣∣∣ fm(x), then we say that the invariant factors of A are f1(x), f2(x), . . . , fm(x). We
call fm(x) the largest invariant factor of A.

The next result gives a link between the characteristic polynomial of a matrix and its invariant
factors. This result is quite helpful for determining the invariant factors, especially for matrices of
small size.

Proposition 2.1. Let A be a square matrix over F.

(i) The product of all the invariant factors of A is the characteristic polynomial of A.

(ii) The minimal polynomial mA(x) divides the characteristic polynomial CPA(x).

(iii) The minimal polynomial mA(x) is the largest invariant factor of A.
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Proof. See [11, Section 12.2, Proposition 20] for (i) and (ii). (iii) follows from [11, Section 12.2,
Proposition 13]. �

The finding of the characteristic and minimal polynomials determines all the invariant factors
for 2×2 and 3 × 3 matrices. However, for n × n matrices with n ≥ 4, the determination of the
characteristic and minimal polynomials is generally insufficient for determining all of the invariant
factors; see [11, Section 12.2, Examples (3) and (4)]. However, there are algorithms to obtain the
invariant factors and convert a given n×n matrix to rational canonical form; see [11, p. 480] or [2]. We
will be interested in 2 × 2 matrices, and so our main tool in determining invariant factors and rational
canonical forms will be Proposition 2.1.

Let us now recall the conjugacy classes of S L2(C). For all t ∈ C, s ∈ C∗, define

D(s) :=
(

s 0
0 s−1

)
, U(t) :=

(
1 t
0 1

)
, and I :=

(
1 0
0 1

)
.

Any element of S L2(C) is conjugate to one of the matrices defined above; see [23, Section 1.2,
Example 9]. More precisely, the following holds for g ∈ S L2(C).

(i) If trace(g) = ±2, then g is S L2(C)-conjugate to ±I or ±U(1).

(ii) If trace(g) , ±2, then g is S L2(C)-conjugate to D(t) for some t ∈ C∗ with trace(g) = t + t−1, and t
is unique up to replacing t with t−1.

For ` ∈ {−2, 2}, there are only two S L2(C)-conjugacy classes of matrices of trace `. In fact, ±U(1)

and ±U(−1) are conjugate to each other by
(
i 0
0 −i

)
.

Remark 2.2. Observe that trace(g) = trace(g−1) for all g ∈ S L2(C). Let g, h ∈ S L2(C) \ {±I} and
trace(g) = trace(h). Then, g is S L2(C)-conjugate to h. Therefore, g ∼ g−1 in S L2(C).

Proposition 2.2. Every non-scalar element g ∈ S L2(C) is GL2(C)-conjugate to the companion matrix

h :=
(
0 −1
1 x

)
, where x = trace(g). Moreover, C(x) :=

(
0 1
−1 x

)
is S L2(C)-conjugate to C′(x) :=(

0 −1
1 x

)
.

Proof. Let g be a non-scalar element of S L2(C). Then mg(x) has degree 2. Using Proposition 2.1, we
deduce that mg(x) is the only invariant factor of g and that mg(x) is equal to CPg(x). So the rational
canonical form of g is equal to the companion matrix of mg(x) = CPg(x). By a well-known formula for
the characteristic polynomial of a 2 × 2 matrix, we have CPg(x) = x2 − trace(g)x + 1. Its companion
matrix and hence the rational canonical form of g are given by

h =

(
0 −1
1 trace(g)

)
.

The first statement of the proposition now follows from Theorem 2.1.

One can show that C(x) is S L2(C)-conjugate to C′(x) by
(
−xi −i
−i 0

)
. �
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3. Boundedness of S L2(C) and PS L2(C)

This section is based on [17, Section 3]. We will give a different approach based on the rational
canonical form and Definition 2.2 to prove Theorems 1.1 and 1.2. Some results presented here will be
needed in Section 5. We need first to introduce some notation and results:

Let L ⊆ S L2(C), and let us denote the subset {trace(A)|A ∈ L} of C by trace(L). Recall the notations
C(x),C′(x),D(s),U(t), and I from Section 2. We can prove the following results.

Lemma 3.1. Suppose that L ⊆ S L2(C) is conjugation invariant and L = L−1. If trace(L) = C and
±C(2) ∈ L, then L ⊇ S L2(C) \ {±I}.

Proof. Let ±I , g ∈ S L2(C). We want to show that g ∈ L. It follows from the conjugacy classes of
S L2(C) that we have two cases for g (see the previous section). The first case, if trace(g) = ±2, then,
g is S L2(C)-conjugate to ±C(2) (see Proposition 2.2). By hypothesis, we have that ±C(2) ∈ L and
L is conjugation invariant. So g ∈ L. The second case, if trace(g) , ±2, then g is S L2(C)-conjugate
to C(t + t−1) for some t ∈ C∗ and t is unique up to replacing t with t−1 (see Proposition 2.2). Since
trace(L) = C, there exists g̃ ∈ L such that trace(g̃) = trace(g). So, by Remark 2.2, we have g̃ is S L2(C)-
conjugate to g. Since L is conjugation invariant, we have that g ∈ L. This completes the proof. �

Lemma 3.2. ( [17, Lemma 3.6]) Let g ∈ S L2(C) \ {±1} and let n ≥ 1. Then −I ∈ Bg(n + 1) ⇐⇒ −I ∈
Bg(n) or there exists h ∈ Bg(n) such that h , ±I and trace(h) = −trace(g).

Corollary 3.1. ( [17, Corollary 3.7]) Let g ∈ S L2(C) \ {±1} Then −I ∈ Bg(2) ⇐⇒ trace(g) = 0.

Lemma 3.3. Let g ∈ S L2(C) \ {±1} and let n ≥ 1. Then −I ∈ Wg(n + 1) ⇐⇒ −I ∈ Wg(n) or there
exists h ∈ Wg(n) such that h , ±I and trace(h) = −trace(g).

Proof. We follow arguments found in the proof of Lemma 3.2. Let ±I , g ∈ S L2(C). If −I ∈ Wg(n+1)\
Wg(n), then −I = h ·m for some h ∈ Wg(n) and some ±I , m ∈ Wg(1). This implies that h = −m−1 , ±I.
Thus, trace(h) = −trace(m−1) = −trace(m) (see Remark 2.2). Since m ∈ Wg(1), we have trace(m) =

trace(k−1g±1k) for some k ∈ S L2(C). Hence, trace(h) = −trace(k−1g±1k) = −trace(g). Conversely, if
h ∈ Wg(n) such that h , ±I and trace(h) = −trace(g), then h is conjugate to −g±1. But Wg(n) = Wg(n)−1.

Hence, −g−1 ∈ Wg(n) and −I = −g−1 · g ∈ Wg(n) ·Wg(1) = Wg(n + 1). �

Corollary 3.2. Let g ∈ S L2(C) \ {±I}. Then −I ∈ Wg(2) ⇐⇒ trace(g) = 0.

Proof. Let ±I , g ∈ S L2(C). If −I ∈ Wg(2), then there exist m, k ∈ Wg(1) such that m · k = −I ∈ Wg(2).
This implies that k = −m−1 and that trace(k) = trace(−m−1) = −trace(m). In fact, we have m = h−1g±1h
and k = h′−1g±1h′ for some h and h′ in S L2(C). Since the trace is invariant under conjugation and
trace(g) = trace(g−1) in S L2(C), we have trace(m) = trace(g) = trace(k). But k = −m−1. So trace(g) =

−trace(g). It follows that trace(g) = 0. Conversely, suppose that trace(g) = 0. We want to show that
−I ∈ Wg(2). Since trace(g) = 0, we have g is S L2(C)-conjugate to C(i + i−1) (see Proposition 2.2 ). So,
−I = C(i + i−1) ·C(i + i−1) ∈ Wg(2). �

Lemma 3.4. Suppose that g ∈ S L2(C) is conjugate either to ±C(2) or to C(t + t−1) for some t , 0, ±1.
Then Wg(2) ⊇ S L2(C) \ {−I}.
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Proof. Let a, b, v ∈ C∗. Assume that X =

(
v + v−1 a−1

−a 0

)
∈ Wg(1) and Y =

(
v + v−1 b−1

−b 0

)
∈ Wg(1). Let

A =

(
a1 a2

a3 a4

)
∈ S L2(C). We want to show that

(
k 1
−1 0

)
= A−1XAY ∈ Wg(1) ·Wg(1) = Wg(2),wherek ∈ C. (3.1)

In particular, we want to show that trace(Wg(2)) = C.

Apply (3.1) with

a1 = a2 =
(k − 1)
(k − 2)

, a3 =
1

(k − 1)
, a4 = 1, a = −

v(k − 2)
(k − 1)2 , and b = v,

where k < {1, 2} to see that
trace(Wg(2)) = C \ {1, 2}.

But
I = XX−1 ∈ Wg(2)

and (
1 1
−1 0

)
=

(
−1 −1
1 0

)−1 (
v + v−1 v−1

−v 0

) (
−1 −1
1 0

) (
v + v−1 v−1

−v 0

)
∈ Wg(2).

Thus trace(Wg(2)) = C.

We now want to show that ±C(2) ∈ Wg(2). Clearly, we have −C(2) ∈ Wg(2) since −2 ∈ trace(Wg(2))

and
(

k 1
−1 0

)
, −I. It remains to show that C(2) ∈ Wg(2). Assume first that g = C(t + t−1). Apply (3.1)

with

a1 =
1

(t2 − 1)
, a2 = −a3 = −1, a4 = 0, v = t, a = −

(t2 − 1)
t

, and b = t−1,

where t , 0, ±1 obtains C(2) ∈ Wg(2). Next, assume that g = ±C(2). Then

C(2) ∼
(
v + v−1 v2

b
− b

v2 0

) (
v + v−1 b−1

−b 0

)
∈ Wg(2) (v = ±1).

We showed that trace(Wg(2)) = C and ±C(2) ∈ Wg(2). Lemma 3.1 implies that Wg(2) ⊇ S L2(C) \
{−I}. �

Corollary 3.3. Suppose that g ∈ S L2(C) is conjugate either to ±C(2) or to C(t+t−1) for some t , 0,±1.
Then Bg(2) ⊇ S L2(C) \ {−I}.

Proof. It follows from Lemma 3.4 that Wg(2) ⊇ S L2(C) \ {−I}. Thus Bg(2) ⊇ S L2(C) \ {−I} by
Lemma 2.2(iii). �

Corollary 3.4. Suppose that g ∈ S L2(C) is conjugate either to ±C(2) or to C(t+t−1) for some t , 0,±1.
Then Wg(2 + n) = S L2(C) for all n ≥ 1.
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Proof. Let ±I , g ∈ S L2(C). If trace(g) ≤ −2 or trace(g) ≥ 2 then up to conjugacy and taking inverses
we assume that either g = ±C(2) or g = C(t + t−1) for some t , 0,±1.

First, we show that Wg(3) = S L2(C). It follows from Lemma 3.4 and Corollary 3.2 that Wg(2) =

S L2(C) \ {−I}. In other words, let −I , h ∈ S L2(C). Then there exist g1, g2 ∈ Wg(1) such that

h = g1 · g2 ∈ Wg(1) ·Wg(1) = Wg(2).

Using Lemma 3.4 and Corollary 3.2 again, we have

g1 = g̃1 · ˜̃g2 ∈ Wg(1) ·Wg(1) = Wg(2).

So,
h = g̃1 · ˜̃g1 · g2 ∈ Wg(3).

It remains to show that −I ∈ Wg(3). This also follows from Lemma 3.4 and Corollary 3.2 since if
Wg(2) = S L2(C) \ {−I} then −g−1 ∈ Wg(2) and therefore g · −g−1 = −I ∈ Wg(3). So we have Wg(3) =

S L2(C).
We show next that Wg(4) = S L2(C). Since Wg(3) = S L2(C), there are g1, g2, g3 ∈ Wg(1) such that

h̃ = g1 · g2 · g3 ∈ Wg(3),

for all h̃ ∈ G. But
g1 = g̃1 · ˜̃g2 ∈ Wg(1) ·Wg(1).

So,
h̃ = g̃1 · ˜̃g2 · g2 · g3 ∈ Wg(4).

This shows that Wg(4) = S L2(C). Similarly, one can show that Wg(n + 1) = S L2(C) for all n ≥ 4. This
completes the proof. �

Proof of Theorem 1.1. Let g ∈ S L2(C) \ Z(S L2(C)). It follows from Lemma 2.3 that g normally
generates S L2(C). We have Bg(1) , Bh(1) for any h ∈ S L2(C) with trace(g) , trace(h). Then
Bg(1) , S L2(C). Now g±1 is conjugate either to ±C(2) or to C(t + t−1) for some t ∈ C∗ with
t , ±1. It follows from Corollaries 3.1 and 3.3 that Bg(2) = S L2(C) \ {−I}. Then −g−1 ∈ Bg(2)
and g · −g−1 = −I ∈ Bg(3) = S L2(C). Therefore, ∆1(S L2(C)) = 3. Moreover, ∆(S L2(C)) = 3
(see [17, Lemma 2.11]). �

Let G = S L2(C) and H = PS L2(C). Let π : G → H be the natural projection. If g ∈ G, then
it follows from Lemma 2.1(v) that Bπ(g)(n) = π(Bg(n)) for any n ∈ N. Since G is finitely normally
generated, we have that H is finitely normally generated. Using similar arguments as in the proof of
Lemma 2.1(vi), one can show that π−1(Bπ(g)(n)) = Bg(n) ∪ −Bg(n) for all n ∈ N.

Proof of Theorem 1.2. Set h := π(g) ∈ PS L2(C),where ±I , g ∈ S L2(C). Since PS L2(C) has infinitely
many conjugacy classes, we have that Bh(1) , PS L2(C). It follows from Corollary 3.3 that Bg(2) ⊇
S L2(C) \ {−I}. As Bh(2) = π(Bg(2)), we have π(S L2(C) \ {−I}) = Bh(2). Thus ∆1(PS L2(C)) = 2.
Moreover, ∆(PS L2(C)) = 2 (see [17, Lemma 2.11]). �
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4. Proof of Theorem 1.7

The key to the proof of Theorem 1.7 is the following lemma.

Lemma 4.1. Let n ≥ 1 be a natural number and let G1, . . . ,Gn be groups. Let G = G1 × · · · ×Gn, and
let S be a normally generating subset of G. Let 1 ≤ i ≤ n and

πi : G → Gi,

(g1, . . . , gn) 7→ gi.

Then {πi(s)|s ∈ S } normally generates Gi.

Proof. Let g ∈ Gi and let us identify g with (1G1 , . . . , 1Gi−1 , g, 1Gi+1 , . . . , 1Gn). Then g can be written as a
product of conjugates of elements of S and their inverses. This implies that g (considered as an element
of Gi) can be written as a product of conjugates of elements of {πi(s)|s ∈ S } ∪ {πi(s)−1|s ∈ S }. So Gi is
normally generated by {πi(s)|s ∈ S }. �

Proof of Theorem 1.7. We follow arguments found in the proof of Theorem 1.6. For each 1 ≤ i ≤ n,
let

πi : G → Gi,

(g1, . . . , gn) 7→ gi,

be the projection of G onto Gi. Let S be an element of Γ(G). Let 1 ≤ i ≤ n. Since S normally
generates G, we have that {πi(s)|s ∈ S } normally generates Gi by Lemma 4.1. As Z(Gi) , Gi, it
follows that there is some si ∈ S with πi(si) < Z(Gi). We claim that there exists some yi ∈ Gi with
[yi, πi(si)] < Z(Gi). Otherwise, we would have that [yi, πi(si)] ∈ Z(Gi) for all yi ∈ Gi. But this would
imply that πi(si)·Z(Gi) is central in Gi/Z(Gi),which is not possible since Gi/Z(Gi) is nonabelian simple.
Now take some yi ∈ Gi with [yi, πi(si)] < Z(Gi) and define xi := [yi, πi(si)]. By Lemma 2.3, xi normally
generates Gi. Considering xi and yi as elements of G, we have xi = [yi, si] ∈ BS (2). So we have
‖xi‖S ≤ 2. As xi normally generates Gi for all 1 ≤ i ≤ n, we have that {x1, . . . , xn} normally generates
G. Since ‖xi‖S ≤ 2 for all 1 ≤ i ≤ n, it follows that

‖G‖S ≤ 2‖G‖{x1,...,xn}.

It is easy to see that

‖G‖{x1,...,xn} ≤

n∑
i=1

‖Gi‖xi ≤

n∑
i=1

∆(Gi).

It follows that

‖G‖S ≤ 2
n∑

i=1

∆(Gi).

Since S was assumed to be an arbitrary element of Γ(G), it follows that G is uniformly bounded. �
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5. Proofs of Theorems 1.4 and 1.5

The keys to the proofs of Theorems 1.4 and 1.5 are Definition 2.2 and the following proposition.

Proposition 5.1. Let n ≥ 1 be a natural number. Let G1, . . . ,Gn, be groups and let Ni be a proper
normal subgroup of Gi for each i ∈ {1, . . . , n}. Suppose that, for 1 ≤ i ≤ n,Gi is normally generated by
each gi ∈ Gi \ Ni. Suppose, moreover, that Gi/Ni, 1 ≤ i ≤ n, is not cyclic. Let G = G1 × · · · ×Gn. Then
∆(G) = ∆n(G).

Proof. Since Γn(G) ⊆ Γ(G), we have ∆n(G) ≤ ∆(G). So it suffices to show that ∆(G) ≤ ∆n(G). Let
S ∈ Γ(G). Let 1 ≤ i ≤ n. Since S normally generates G and since Ni is a proper normal subgroup of Gi,

there is some xi = (gi,1, . . . , gi,n) ∈ S , such that gi,i < Ni. Define T := {x±1
1 , . . . , x

±1
n }. We need to show

that T normally generates G. By hypothesis, Gi/Ni is not cyclic. In particular, Gi , 〈Ni, gi,i〉. Take
some hi ∈ Gi \ 〈Ni, gi,i〉. Since gi,i < Ni, we have by hypothesis that Gi is normally generated by gi,i.

So hi can be written as a product of conjugates of elements of {gi,i, g−1
i,i }. Hence, there exist a natural

number k ≥ 1, elements a1, . . . , ak ∈ Gi, and ε1, . . . , εk ∈ {1, −1}, such that

hi =

k∏
j=1

a−1
j gε j

i,ia j.

Set ConjG(T ) := {g−1tg|g ∈ G, t ∈ T }. For each 1 ≤ j ≤ k, let

a j := (1G1 , . . . , 1Gi−1 , a j, 1Gi+1 , . . . , 1Gn).

Also, set

li =

k∑
j=1

ε j.

Then we have

((gi,1)li , . . . , (gi,i−1)li , hi, (gi,i+1)li , . . . , (gi,n)li) =

k∏
j=1

a j
−1xε j

i a j ∈ 〈ConjG(T )〉. (5.1)

We also have
x−li

i = ((gi,1)−li , . . . , (gi,n)−li) ∈ 〈ConjG(T )〉. (5.2)

Multiplying (5.1) with (5.2), we obtain

(1G1 , . . . , 1Gi−1 , hi(gi,i)−li , 1Gi+1 , . . . , 1Gn) ∈ 〈ConjG(T )〉. (5.3)

Since hi < 〈Ni, gi,i〉,we have h̃i := hi(gi,i)−li < 〈Ni, gi,i〉 and hence h̃i < Ni. By hypothesis, Gi is normally
generated by h̃i. Hence, each element of Gi can be written as a product of conjugates of {h̃i, h̃−1

i }. Now,
since 〈ConjG(T )〉 E G, (5.3) implies that

(1G1 , . . . , 1Gi−1 , ui, 1Gi+1 , . . . , 1Gn) ∈ 〈ConjG(T )〉, (5.4)

for any ui ∈ Gi. It follows that 〈ConjG(T )〉 = G. In other words, G is normally generated by T and
hence also normally generated by T0 := {x1, . . . , xn}. Since T0 ⊆ S , we have ‖G‖S ≤ ‖G‖T0 . Thus,

∆(G) = sup{‖G‖S | S ∈ Γ(G)} ≤ sup{‖G‖T0 | T0 ∈ Γn(G)} = ∆n(G).

Since S ∈ Γ(G) was arbitrarily chosen, it follows that ∆(G) ≤ ∆n(G). �
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Proof of Theorem 1.4. We have ∆(Gn) = ∆n(Gn) by Proposition 5.1 and ∆(Gn) ≥ 2n by [18,
Lemma 2.11(b)] and Theorem 1.2. Therefore, it suffices to show that ∆(Gn) ≤ 2n.

Let X ∈ Γ(Gn). We are going to show that Gn = BX(2n). This clearly implies that ‖Gn‖X ≤ 2n, and
as X was arbitrarily chosen, it follows that ∆(Gn) ≤ 2n.

Define surjective group homomorphisms

πi : Gn → G,

(g1, . . . , gn) 7→ gi,

for all 1 ≤ i ≤ n. Since X normally generates Gn, there exists some xi = (gi,1, . . . , gi,n) ∈ X with
πi(xi) , I, for each 1 ≤ i ≤ n. In other words, we have that gi,i , I for all 1 ≤ i ≤ n.

Let (w1, w2, . . . , wn) ∈ Gn. By Theorem 1.2, π1(x1) normally generates G, and we have that
‖w1‖π1(x1) ≤ 2. It follows from Lemma 2.1(v) that π1 : Gn → G maps BX(2) to Bπ1(X)(2). Hence, there
exists v ∈ BX(2) with π1(v) = w1. Clearly, v = (w1, v2, v3, . . . , vn) for some v2, v3, . . . , vn ∈ G.
Therefore,

(w1, w2, . . . , wn) = v · (I, v−1
2 w2, v−1

3 w3, . . . , v−1
n wn).

We will show that (I, v−1
2 w2, I, . . . , I) ∈ BX(2). By Lemma 3.4, we can write v−1

2 w2 as a product of
exactly two conjugates of g2,2 and g−1

2,2. Also, by Remark 2.2, g2,2 and g−1
2,2 are conjugate. Therefore,

(I, v−1
2 w2, I, . . . , I) can be written as a product of the form

(I, v−1
2 w2, I, . . . , I) = (I, h, I, . . . , I)−1 x2 (I, h, I, . . . , I) · (I, h̃, I, . . . , I)−1 x−1

2 (I, h̃, I, . . . , I),

for some h and h̃ ∈ G. Hence, (I, v−1
2 w2, I, . . . , I) ∈ Wx2(2) ⊆ WX(2) ⊆ BX(2).

Similarly, one can see that (I, I, . . . , I, v−1
i wi, I, . . . , I, I) ∈ Bxi(2), where 3 ≤ i ≤ n. This implies

that (I, v−1
2 w2, v−1

3 w3, . . . , v−1
n wn) ∈ BX(2n − 2). As v ∈ BX(2), it follows that

(w1, w2, . . . , wn) ∈ BX(2) · BX(2n − 2) = BX(2n).

So ∆(Gn) ≤ 2n. �

The next lemma will be needed to prove Theorem 1.5.

Lemma 5.1. Let G be a group. Let n ≥ 1 be a natural number, and let Gn = G × · · · × G. Let
x = (g1, . . . , gn) ∈ Gn. Suppose that g ∼ g−1 for all g ∈ G. Then,

Wx(m) = (Wg1(m) × · · · ×Wgn(m)) for all m ≥ 0.

Proof. Pick an element y ∈ Wx(m). Then there exist u1, . . . , um ∈ Gn and ε1, . . . , εm ∈ {1, −1} such
that y =

∏m
i=1 u−1

i xεiui. For 1 ≤ i ≤ m, let ui,1, . . . , ui, n ∈ G such that ui = (u i,1, . . . , ui,n). Then

y =

m∏
i=1

(ui,1, . . . , ui,n)−1 · (g1, . . . , gn)εi · (ui,1, . . . , ui,n) =

m∏
i=1

(u−1
i,1 , . . . , u

−1
i,n ) · (gεi

1 , . . . , g
εi
n ) · (ui,1, . . . , ui,n).

Hence y ∈ (Wg1(m)× · · · ×Wgn(m)). Take an element z = (z1, . . . , zn) of (Wg1(m)× · · · ×Wgn(m)). Then,
for each 1 ≤ i ≤ n, we have

zi = h−1
i,1 gεi,1

i hi,1 · · · h−1
i,mgεi,m

i hi,m,
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for some hi,1, . . . , hi,m ∈ G and some εi,1, . . . , εi,m ∈ {1, −1}. Since gi ∼ g−1
i by hypothesis, we may

assume that εi,1, . . . , εi,m = 1. So we have

z =
( m∏

i=1

h−1
1,i g1h1,i, . . . ,

m∏
i=1

h−1
n,i gnhn,i

)
=

m∏
i=1

(h1,i, . . . , hn,i)−1 · (g1, . . . , gn) · (h1,i, . . . , hn,i).

Thus, z can be written as a product of exactly m conjugates of x = (g1, . . . , gn). So z ∈ Wx(m). �

Corollary 5.1. Let n ≥ 1 be a natural number. Let x = (g1, . . . , gn) ∈ (S L2(C))n. We have

Wx(m) = (Wg1(m) × · · · ×Wgn(m)) for all m ≥ 0.

Proof. This follows directly from Remark 2.2 and Lemma 5.1. �

Remark 5.1. Let n ≥ 1 be a natural number, G be a group, and x = (g1, . . . , gn) ∈ Gn. Also, let m ≥ 1
be a natural number. In general, we do not have

Bx(m) = (Bg1(m) × · · · × Bgn(m)).

This is demonstrated by the following example.
Set

g := −U(1) =

(
−1 −1
0 −1

)
∈ S L2(C),

and
x := (g, g) ∈ (S L2(C))2.

In view of the conjugacy classes of S L2(C) and Definition 2.1, we have

Bx(1) = {(I, I)} ∪ {(M1,M2)
∣∣∣M1,M2 ∈ S L2(C) \ {−I} and trace(M1) = trace(M2) = −2},

and
Bg(1) = {I} ∪ {M

∣∣∣M ∈ S L2(C) \ {−I} and trace(M) = −2}.

Now, we have (I, g) ∈ (Bg(1) × Bg(1)), but (I, g) < Bx(1). Hence,

Bx(1) , (Bg(1) × Bg(1)).

However, we have seen in Corollary 5.1 that

Wx(1) = (Wg(1) ×Wg(1)).

This explains the importance of Definition 2.2.

Proof of Theorem 1.5. We have ∆(Gn) = ∆n(Gn) by Proposition 5.1 and ∆(Gn) ≥ 3n by [18,
Lemma 2.11(b)] and Theorem 1.1. Therefore, it suffices to show that ∆(Gn) ≤ 3n.

Let X ∈ Γ(Gn). We are going to show that Gn = BX(3n). This clearly implies that ‖Gn‖X ≤ 3n, and
as X was arbitrarily chosen, it follows that ∆(Gn) ≤ 3n.

Define surjective group homomorphisms

πi : Gn → G,
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(g1, . . . , gn) 7→ gi,

for all 1 ≤ i ≤ n. Since X normally generates Gn, there exists some xi = (gi,1, . . . , gi,n) ∈ X with
πi(xi) , ±I for each 1 ≤ i ≤ n. In other words, we have that gi,i , ±I for all 1 ≤ i ≤ n.

In order to complete the proof, we need the following three claims:

Claim 5.1. Let 2 ≤ j ≤ n. Then G = Wg2, j(3) · · ·Wgn, j(3).

Proof. Let 2 ≤ k ≤ n. As a consequence of Corollary 3.4, we have Wgk, j(3) = G or {I} or {−I}. Also,
Wg j, j(3) = G. It follows that G = Wg2, j(3) · · ·Wgn, j(3). �

Claim 5.2. We have I ∈ Wg2,1(3) · · ·Wgn,1(3) or −I ∈ Wg2,1(3) · · ·Wgn,1(3).

Proof. Suppose that g j,1 , ±I for some 2 ≤ j ≤ n. Then we have Wg j,1(3) = G by Corollary 3.4. It
easily follows that Wg2,1(3) · · ·Wgn,1(3) = G, whence the claim holds.

Assume now that g j,1 = ±I for all 2 ≤ j ≤ n. Then it is clear that Wg j,1(3) = {I} or {−I} for
all 2 ≤ j ≤ n. Hence Wg2,1(3) · · ·Wgn,1(3) = {I} or {−I}, and the claim follows. �

Claim 5.3. Wx2(3) · · ·Wxn(3) = (Wg2,1(3) · · ·Wgn,1(3)) × · · · × (Wg2,n(3) · · ·Wgn,n(3)).

Proof. By Corollary 5.1, we have

Wx2(3) · · ·Wxn(3) = (Wg2,1(3) × · · · ×Wg2,n(3)) · · · · (Wgn,1(3) × · · · ×Wgn,n(3))
= (Wg2,1(3) · · ·Wgn,1(3)) × · · · × (Wg2,n(3) · · ·Wgn,n(3)).

�

Now let (w1, w2, . . . , wn) ∈ Gn. Our goal is to show that (w1, w2, . . . , wn) ∈ BX(3n). By
Theorem 1.1, π1(x1) normally generates G, and we have that ‖G‖π1(x1) ≤ 3. So we have ‖w1‖π1(x1) ≤ 3
and ‖ − w1‖π1(x1) ≤ 3. Hence, w1 and −w1 are elements of Bπ1(X)(3).

By Claim 5.2, we have I ∈ Wg2,1(3) · · ·Wgn,1(3) or −I ∈ Wg2,1(3) · · ·Wgn,1(3). We now consider both
cases.
Case 1. I ∈ Wg2,1(3) · · ·Wgn,1(3).

By Lemma 2.1(v), there is some v ∈ BX(3) with π1(v) = w1. Clearly, v = (w1, v2, . . . , vn) for some
v2, . . . , vn ∈ G. By Claims 5.1 and 5.3, we have

(I, v−1
2 w2, v−1

3 w3, . . . , v−1
n wn) ∈ Wx2(3) · · ·Wxn(3) ⊆ BX(3n − 3).

As v ∈ BX(3), it follows that

(w1, w2, . . . , wn) = v · (I, v−1
2 w2, v−1

3 w3, . . . , v−1
n wn) ∈ BX(3n).

Case 2. −I ∈ Wg2,1(3) · · ·Wgn,1(3).
By Lemma 2.1(v), there is some v ∈ BX(3) with π1(v) = −w1. Clearly, v = (−w1, v2, . . . , vn) for

some v2, . . . , vn ∈ G. By Claims 5.1 and 5.3, we have

(−I, v−1
2 w2, v−1

3 w3, . . . , v−1
n wn) ∈ Wx2(3) · · ·Wxn(3) ⊆ BX(3n − 3).

As v ∈ BX(3), it follows that

(w1, w2, . . . , wn) = v · (−I, v−1
2 w2, v−1

3 w3, . . . , v−1
n wn) ∈ BX(3n).

This completes the proof of Theorem 1.5. �
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6. Conclusions

In general, calculating ∆(G) for a group G is not easy, and the goal of this paper was to compute
this value for some finitely normally generated algebraic groups over C. We found the exact values
of ∆((S L2(C))n) and ∆((PS L2(C))n) for every n ∈ N. Kȩdra et al. in [18] showed that every finitely
normally generated linear algebraic group G over an algebraically closed field is uniformly bounded
and

∆(G) ≤ 4 dim(G) + ∆(G/G0), (6.1)

where G0 is the identity component of G. Thus we have improved (6.1) for the particular cases of
(S L2(C))n and (PS L2(C))n. More precisely, we showed that the bounds in (6.1) are far from sharp.
Our main results showed that for any n ∈ N, we have ∆((S L2(C))n) = 3n (see Theorem 1.5) and
∆((PS L2(C))n) = 2n (see Theorem 1.4), whereas formula (6.1) implies that ∆((S L2(C))n) ≤ 12n and
∆((PS L2(C))n) ≤ 12n.

We remark that ∆(S L2(C)) and ∆(PS L2(C)) have been found in [17, Theorem 3.3] and [17,
Theorem 3.4]), respectively. However, we used a different approach based on the rational canonical
form and Definition 2.2 to study them. This new method was needed to prove Theorems 1.4 and 1.5.
Moreover, this approach could be applicable to study ∆((S L2(F))n) and ∆((PS L2(F))n), where F is an
arbitrary field. For example, we have that ∆(S L2(R)) = 4 (see [17, Theorem 3.1]) and ∆(PS L2(R)) = 3
(see [17, Theorem 3.2]). If we copy the same arguments as in Theorems 1.4 and 1.5, then we conjecture
that ∆((S L2(R))n) = 4n and ∆((PS L2(R))n) = 3n for every n ∈ N. We leave this in a future paper and
compare that with [19, Theorem 1.4].
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