In this paper, we introduce a method for computing the primitive decomposition of idempotents in any semisimple finite group algebra, utilizing its matrix representations and Wedderburn decomposition. Particularly, we use this method to calculate the examples of the dihedral group algebras $ \mathbb{C}[D_{2n}] $ and generalized quaternion group algebras $ \mathbb{C}[Q_{4m}] $. Inspired by the orthogonality relations of the character tables of these two families of groups, we obtain two sets of trigonometric identities. Furthermore, a group algebra isomorphism between $ \mathbb{C}[D_{8}] $ and $ \mathbb{C}[Q_{8}] $ is described, under which the two complete sets of primitive orthogonal idempotents of these group algebras correspond bijectively.
Citation: Lilan Dai, Yunnan Li. Primitive decompositions of idempotents of the group algebras of dihedral groups and generalized quaternion groups[J]. AIMS Mathematics, 2024, 9(10): 28150-28169. doi: 10.3934/math.20241365
In this paper, we introduce a method for computing the primitive decomposition of idempotents in any semisimple finite group algebra, utilizing its matrix representations and Wedderburn decomposition. Particularly, we use this method to calculate the examples of the dihedral group algebras $ \mathbb{C}[D_{2n}] $ and generalized quaternion group algebras $ \mathbb{C}[Q_{4m}] $. Inspired by the orthogonality relations of the character tables of these two families of groups, we obtain two sets of trigonometric identities. Furthermore, a group algebra isomorphism between $ \mathbb{C}[D_{8}] $ and $ \mathbb{C}[Q_{8}] $ is described, under which the two complete sets of primitive orthogonal idempotents of these group algebras correspond bijectively.
[1] | B. L. Macedo Ferreira, R. Nascimento Ferreira, The Wedderburn $b$-decomposition for alternative baric algebras, Mitt. Math. Ges. Hamburg., 37 (2017), 13–25. |
[2] | A. Herman, On the automorphism groups of rational group algebras of metacyclic groups, Comm. Algebra, 25 (1997), 2085–2097. https://doi.org/10.1080/00927879708825973 doi: 10.1080/00927879708825973 |
[3] | E. Jespers, G. Leal, Generators of large subgroups of the unit group of integral group rings, Manuscripta Math., 78 (1993), 303–315. https://doi.org/10.1007/bf02599315 doi: 10.1007/bf02599315 |
[4] | E. Jespers, Á. del Río, A structure theorem for the unit group of the integral group ring of some finite groups, J. Reine Angew. Math., 521 (2000), 99–117. https://doi.org/10.1515/crll.2000.032 doi: 10.1515/crll.2000.032 |
[5] | A. Olivieri, Á. del Río, J. J. Simón, The group of automorphisms of the rational group algebra of a finite metacyclic group, Comm. Algebra, 34 (2006), 3543–3567. https://doi.org/10.1080/00927870600796136 doi: 10.1080/00927870600796136 |
[6] | C. R. Giraldo Vergara, F. E. Brochero Martínez, Wedderburn decomposition of some special rational group algebras, Lect. Mat., 23 (2002), 99–106. https://doi.org/10.1515/9783110372946-004 doi: 10.1515/9783110372946-004 |
[7] | C. R. Giraldo Vergara, Wedderburn decomposition of small rational group algebras, Groups, Rings and Group Rings, Lect. Notes Pure Appl. Math., 248 (2006), 191–200. |
[8] | G. K. Bakshi, R. S. Kulkarni, I. B. S. Passi, The rational group algebra of a finite group, J. Algebra Appl., 12 (2013). https://doi.org/10.1142/s021949881250168x |
[9] | F. E. Brochero Martínez, Structure of finite dihedral group algebra, Finite Fields Appl., 5 (2015), 204–214. https://doi.org/10.1016/j.ffa.2015.05.002 doi: 10.1016/j.ffa.2015.05.002 |
[10] | Y. Gao, Q. Yue, Idempotents of generalized quaternion group algebras and their applications, Discrete Math., 344 (2021). https://doi.org/10.1016/j.disc.2021.112342 |
[11] | M. Isaacs, A. Lichtman, D. Passman, S. Sehgal, N. J. Sloane, H. Zassenhaus, Representation theory, group rings, and coding theory, American Mathematical Society, 1989. |
[12] | S. D. Berman, Group algebras of abelian extensions of finite groups, Dokl. Akad. Nauk SSSR, 102 (1955), 431–434. |
[13] | S. D. Berman, Representations of finite groups over an arbitrary field and over rings of integers, Izv. Akad. Nauk SSSR Ser. Mat., 30 (1966), 69–132. |
[14] | A. Olivieri, Á. del Río, J. J. Simón, On monomial characters and central idempotents of rational group algebras, Comm. Algebra, 32 (2004), 1531–1550. https://doi.org/10.1081/agb-120028797 doi: 10.1081/agb-120028797 |
[15] | E. Jespers, G. Olteanu, Á. del Río, Rational group algebras of finite groups: From idempotents to units of integral group rings, Algebr. Represent. Theory, 15 (2012), 359–377. https://doi.org/10.1007/s10468-010-9244-4 doi: 10.1007/s10468-010-9244-4 |
[16] | G. Olteanu, I. Van Gelder, Finite group algebras of nilpotent groups: A complete set of orthogonal primitive idempotents, Finite Fields Appl., 17 (2011), 157–165. https://doi.org/10.1016/j.ffa.2010.10.005 doi: 10.1016/j.ffa.2010.10.005 |
[17] | E. Jespers, G. Olteanu, Á. del Río, I. Van Gelder, Group rings of finite strongly monomial group: Central units and primitive idempotents. J. Algebra, 387 (2013), 99–116. https://doi.org/10.1016/j.jalgebra.2013.04.020 doi: 10.1016/j.jalgebra.2013.04.020 |
[18] | E. Jespers, Á. del Río, Volume 1 Orders and Generic Constructions of Units, Berlin, München, Boston: De Gruyter, 2016. https://doi.org/10.1515/9783110372946 |
[19] | C. Bagiński, Modular group algebras of $2$-groups of maximal class, Comm. Algebra, 20 (1992), 1229–1241. https://doi.org/10.1080/00927879208824402 doi: 10.1080/00927879208824402 |
[20] | D. B. Coleman, Finite groups with isomorphic group algebras, Trans. Amer. Math. Soc., 105 (1962), 1–8. |
[21] | D. Tambara, S. Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, J. Algebra, 209 (1998), 692–707. https://doi.org/10.1006/jabr.1998.7558 doi: 10.1006/jabr.1998.7558 |
[22] | J. P. Serre, Linear representations of finite groups, New York: Springer, 1977. https://doi.org/10.1007/978-1-4684-9458-7 |
[23] | P. Webb, A course in finite group representation theory, Cambridge: Cambridge University Press, 2016. https://doi.org/10.1017/CBO9781316677216 |
[24] | G. D. James, M. W. Liebeak, Representations and characters of groups. 2 Eds., New York: Cambridge University, 2001. https://doi.org/10.1017/CBO9780511814532 |