Research article

On analysing discrete sequential operators of fractional order and their monotonicity results

  • Received: 14 February 2023 Revised: 18 March 2023 Accepted: 28 March 2023 Published: 31 March 2023
  • MSC : 39A12, 39B62, 33B10, 26A48, 26A51

  • In this study, we consider the analysis of monotonicity for the Riemann-Liouville fractional differences of sequential type. The results are defined on the subsets of $ (0, 1)\times(0, 1) $ with a certain restriction. By analysing the difference operator in the point-wise form into a delta form, we use the standard sequential formulas as stated in Theorems 2.1 and 2.2 to establish the positivity of the delta difference operator of the proposed the discrete sequential operators. Finally, some numerical experiments are conducted which confirm our theoretical monotonicity results.

    Citation: Pshtiwan Othman Mohammed, Musawa Yahya Almusawa. On analysing discrete sequential operators of fractional order and their monotonicity results[J]. AIMS Mathematics, 2023, 8(6): 12872-12888. doi: 10.3934/math.2023649

    Related Papers:

  • In this study, we consider the analysis of monotonicity for the Riemann-Liouville fractional differences of sequential type. The results are defined on the subsets of $ (0, 1)\times(0, 1) $ with a certain restriction. By analysing the difference operator in the point-wise form into a delta form, we use the standard sequential formulas as stated in Theorems 2.1 and 2.2 to establish the positivity of the delta difference operator of the proposed the discrete sequential operators. Finally, some numerical experiments are conducted which confirm our theoretical monotonicity results.



    加载中


    [1] J. L. G. Guirao, P. O. Mohammed, H. M. Srivastava, D. Baleanu, M. S. Abualrub, Relationships between the discrete Riemann-Liouville and Liouville-Caputo fractional differences and their associated convexity results, AIMS Math., 7 (2022), 18127–18141. https://doi.org/10.3934/math.2022997 doi: 10.3934/math.2022997
    [2] C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022
    [3] T. Abdeljawad, Different type kernel $h$–fractional differences and their fractional $h$–sums, Chaos Soliton. Fract., 116 (2018), 146–156. https://doi.org/10.1016/j.chaos.2018.09.022 doi: 10.1016/j.chaos.2018.09.022
    [4] P. O. Mohammed, H. M. Srivastava, D. Baleanu, K. M. Abualnaja, Modified fractional difference operators defined using Mittag-Leffler kernels, Symmetry, 14 (2022), 1519. https://doi.org/10.3390/sym14081519 doi: 10.3390/sym14081519
    [5] F. M. Atıcı, M. Uyanik, Analysis of discrete fractional operators, Appl. Anal. Discrete Math., 9 (2015), 139–149. http://dx.doi.org/10.2298/AADM150218007A doi: 10.2298/AADM150218007A
    [6] F. M. Atıcı, M. Atıcı, M. Belcher, D. Marshall, A new approach for modeling with discrete fractional equations, Fund. Inf., 151 (2017), 313–324. https://doi.org/10.3233/FI-2017-1494 doi: 10.3233/FI-2017-1494
    [7] F. Atıcı, S. Sengul, Modeling with discrete fractional equations, J. Math. Anal. Appl., 369 (2010), 1–9.
    [8] C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022
    [9] C. R. Chen, M. Bohner, B. G. Jia, Ulam-hyers stability of Caputo fractional difference equations, Math. Meth. Appl. Sci., 42 (2019), 7461–7470. https://doi.org/10.1002/mma.5869 doi: 10.1002/mma.5869
    [10] R. Dahal, C. S. Goodrich, Theoretical and numerical analysis of monotonicity results for fractional difference operators, Appl. Math. Lett., 117 (2021), 107104. https://doi.org/10.1016/j.aml.2021.107104 doi: 10.1016/j.aml.2021.107104
    [11] C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc., 145 (2017), 3809–3827. http://dx.doi.org/10.1090/proc/12895 doi: 10.1090/proc/12895
    [12] H. M. Srivastava, P. O. Mohammed, C. S. Ryoo, Y. S. Hamed, Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations, J. King Saud Univ.-Sci., 33 (2021), 101497. https://doi.org/10.1016/j.jksus.2021.101497 doi: 10.1016/j.jksus.2021.101497
    [13] Q. Lu, Y. Zhu, Comparison theorems and distributions of solutions to uncertain fractional difference equations, J. Cmput. Appl. Math., 376 (2020), 112884. https://doi.org/10.1016/j.cam.2020.112884 doi: 10.1016/j.cam.2020.112884
    [14] F. M. Atıcı, P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Differ. Equ., 2 (2007), 165–176.
    [15] P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using $h$-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Meth. Appl. Sci., 2020. https://doi.org/10.1002/mma.7083
    [16] F. M. Atıcı, M. Atıcı, N. Nguyen, T. Zhoroev, G. Koch, A study on discrete and discrete fractional pharmaco kinetics pharmaco dynamics models for tumor growth and anti-cancer effects, Comput. Math. Biophys., 7 (2019), 10–24.
    [17] A. Silem, H. Wu, D. J. Zhang, Discrete rogue waves and blow-up from solitons of a nonisospectral semi-discrete nonlinear Schrödinger equation, Appl. Math. Lett., 116 (2021), 107049. https://doi.org/10.1016/j.aml.2021.107049 doi: 10.1016/j.aml.2021.107049
    [18] R. A. C. Ferreira, D. F. M. Torres, Fractional $h$-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math., 5 (2011), 110–121.
    [19] G. C. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2015), 1697–1703. https://doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3
    [20] J. W. He, L. Zhang, Y. Zhou, B. Ahmad, Existence of solutions for fractional difference equations via topological degree methods, Adv. Differ. Equ., 2018 (2018), 153. https://doi.org/10.1186/s13662-018-1610-2 doi: 10.1186/s13662-018-1610-2
    [21] C. S. Goodrich, B. Lyons, Positivity and monotonicity results for triple sequential fractional differences via convolution, Analysis, 40 (2020), 89–103. http://dx.doi.org/10.1515/anly-2019-0050 doi: 10.1515/anly-2019-0050
    [22] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Riemann-Liouville and Caputo fractional forward difference monotonicity analysis, Mathematics, 9 (2021), 1303. https://doi.org/10.3390/math9111303 doi: 10.3390/math9111303
    [23] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On discrete delta Caputo-Fabrizio fractional operators and monotonicity analysis, Fractal Fract., 5 (2021), 116. https://doi.org/10.3390/fractalfract5030116 doi: 10.3390/fractalfract5030116
    [24] T. Abdeljawad, D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos Soliton. Fract., 116 (2017), 106–110. https://doi.org/10.1016/j.chaos.2017.04.006 doi: 10.1016/j.chaos.2017.04.006
    [25] X. Liu, F. Du, D. Anderson, B. Jia, Monotonicity results for nabla fractional $h$-difference operators, Math. Meth. Appl. Sci., 2020 (2020), 1207–1218. https://doi.org/10.1002/mma.6823 doi: 10.1002/mma.6823
    [26] R. Dahal, C. S. Goodrich, B. Lyons, Monotonicity results for sequential fractional differences of mixed orders with negative lower bound, J. Differ. Equ. Appl., 27 (2021), 1574–1593. https://doi.org/10.1080/10236198.2021.1999434 doi: 10.1080/10236198.2021.1999434
    [27] P. O. Mohammed, O. Almutairi, R. P. Agarwal, Y. S. Hamed, On convexity, monotonicity and positivity analysis for discrete fractional operators defined using exponential kernels, Fractal Fract., 6 (2022), 55. https://doi.org/10.3390/fractalfract6020055 doi: 10.3390/fractalfract6020055
    [28] C. S. Goodrich, J. M. Jonnalagadda, Monotonicity results for CFC nabla fractional differences with negative lower bound, Analysis, 41 (2021), 221–229.
    [29] C. S. Goodrich, Monotonicity and non-monotonicity results for sequential fractional delta differences of mixed order, Positivity, 22 (2018), 551–573. https://doi.org/10.1007/s11117-017-0527-4 doi: 10.1007/s11117-017-0527-4
    [30] P. O. Mohammed, C. S. Goodrich, F. K. Hamasalh, A. Kashuri, Y. S. Hamed, On positivity and monotonicity analysis for discrete fractional operators with discrete Mittag-Leffler kernel, Math. Meth. Appl. Sci., 45 (2022), 6391–6410. https://doi.org/10.1002/mma.8176 doi: 10.1002/mma.8176
    [31] M. Holm, Sum and difference compositions in discrete fractional calculus, Cubo (Temuco), 13 (2011), 153–184. http://dx.doi.org/10.4067/S0719-06462011000300009 doi: 10.4067/S0719-06462011000300009
    [32] P. O. Mohammed, D. Baleanu, T. Abdeljawad, S. K. Sahoo, K. M. Abualnaja, Positivity analysis for mixed order sequential fractional difference operators, AIMS Math., 8 (2023), 2673–2685. http://dx.doi.org/10.3934/math.2023140 doi: 10.3934/math.2023140
    [33] R. Dahal, C. S. Goodrich, An almost sharp monotonicity result for discrete sequential fractional delta differences, J. Differ. Equ. Appl., 23 (2017), 1190–1203. https://doi.org/10.1080/10236198.2017.1307351 doi: 10.1080/10236198.2017.1307351
    [34] B. Jia, L. Erbe, A. Peterson, Two monotonicity results for nabla and delta fractional differences, Arch. Math., 104 (2015), 589–597. http://dx.doi.org/10.1007/s00013-015-0765-2 doi: 10.1007/s00013-015-0765-2
    [35] B. Jia, L. Erbe, A. Peterson, Convexity for nabla and delta fractional differences, J. Differ. Equ. Appl., 21 (2015), 360–373. https://doi.org/10.1080/10236198.2015.1011630 doi: 10.1080/10236198.2015.1011630
    [36] J. Baoguo, L. Erbe, C. S. Goodrich, A. Peterson, The relation between nabla fractional differences and nabla integer differences, Filomat, 31 (2017), 1741–1753.
    [37] J. Baoguo, L. Erbe, C. S. Goodrich, A. Peterson, Monotonicity results for delta fractional difference revisited, Math. Slovaca, 67 (2017), 895–906. http://dx.doi.org/10.1515/ms-2017-0018 doi: 10.1515/ms-2017-0018
    [38] C. S. Goodrich, A uniformly sharp monotonicity result for discrete fractional sequential differences, Arch. Math., 110 (2018), 145–154.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1018) PDF downloads(52) Cited by(6)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog