The properties of various fractal and multifractal measures and dimensions have been under extensive study in the real-line and higher-dimensional Euclidean spaces. In non-Euclidean spaces, it is often impossible to construct non-trivial self-similar or self-conformal sets, etc. We consider in the present paper the proper way to phrase the definitions for use in general metric spaces. We investigate the relative Hausdorff measures $ {\mathscr H}_{ {\boldsymbol{\mu}}}^{q, t} $ and the relative packing measures $ {\mathscr P}_{ {\boldsymbol{\mu}}}^{q, t} $ defined in a separable metric space. We give some product inequalities which are a consequence of a new version of density theorems for these measures. Moreover, we prove that $ {\mathscr H}_{ {\boldsymbol{\mu}}}^{q, t} $ and $ {\mathscr P}_{ {\boldsymbol{\mu}}}^{q, t} $ can be expressed as Henstock-Thomson variation measures. The question of the weak-Vitali property arises in this context.
Citation: Najmeddine Attia, Bilel Selmi. Different types of multifractal measures in separable metric spaces and their applications[J]. AIMS Mathematics, 2023, 8(6): 12889-12921. doi: 10.3934/math.2023650
The properties of various fractal and multifractal measures and dimensions have been under extensive study in the real-line and higher-dimensional Euclidean spaces. In non-Euclidean spaces, it is often impossible to construct non-trivial self-similar or self-conformal sets, etc. We consider in the present paper the proper way to phrase the definitions for use in general metric spaces. We investigate the relative Hausdorff measures $ {\mathscr H}_{ {\boldsymbol{\mu}}}^{q, t} $ and the relative packing measures $ {\mathscr P}_{ {\boldsymbol{\mu}}}^{q, t} $ defined in a separable metric space. We give some product inequalities which are a consequence of a new version of density theorems for these measures. Moreover, we prove that $ {\mathscr H}_{ {\boldsymbol{\mu}}}^{q, t} $ and $ {\mathscr P}_{ {\boldsymbol{\mu}}}^{q, t} $ can be expressed as Henstock-Thomson variation measures. The question of the weak-Vitali property arises in this context.
[1] | N. Attia, H. Jebali, M. H. Khalifa, A note on fractal measures of cartesian product sets, B. Malays. Math. Sci. So., 44 (2021), 4383–4404. https://doi.org/10.1007/s40840-021-01172-1 doi: 10.1007/s40840-021-01172-1 |
[2] | N. Attia, S. Selmi, C. Souissi, Some density results of relative multifractal analysis, Chaos, Solitons Fract., 103 (2017), 1–11. https://doi.org/10.1016/j.chaos.2017.05.029 doi: 10.1016/j.chaos.2017.05.029 |
[3] | N. Attia, B. Selmi. Regularities of multifractal Hewitt-Stromberg measures, Commun. Korean Math. Soc., 34 (2019), 213–230. |
[4] | N. Attia, R. Guedri, O. Guizani Note on the multifractal measures of Cartesian product sets, Commun. Korean Math. Soc., 37 (2022), 1073–1097. |
[5] | N. Attia, R. Guedri A note on the Regularities of Hewitt-Stromberg $h$-measures, Ann. Univ. Ferrara, (2022), 1–17. https://doi.org/10.1007/s11565-022-00405-w doi: 10.1007/s11565-022-00405-w |
[6] | N. Attia, H. Jebali, G. Guedri, On a class of Hausdorff measure of cartesian sets in metric spaces, Topol. Methods Nonlinear Anal., (2023), in press. |
[7] | N. Attia, relative multifractal spectrum, Commun. Korean Math. Soc., 33 (2018), 459–471. |
[8] | N. Attia, On the multifractal analysis of covering number on the Galton Watson tree, Journal of Applied Probability trust, 56 (2019), 265–281. https://doi.org/10.1017/jpr.2019.17 doi: 10.1017/jpr.2019.17 |
[9] | N. Attia, On the Multifractal Analysis of the Branching Random Walk in $\mathbb{R}^d$, J. Theor. Probab., 27 (2014), 1329–1349. https://doi.org/10.1007/s10959-013-0488-x doi: 10.1007/s10959-013-0488-x |
[10] | N. Attia, On the multifractal analysis of branching random walk on Galton-Watson tree with random metric, J. Theor. Probab., (2020), in press. https://doi.org/10.1007/s10959-019-00984-z |
[11] | H. K. Baek, H. H. Lee, Regularity of $d$-measure, Acta Math. Hungarica., 99 (2003), 25–32. https://doi.org/10.1023/A:1024597010100 doi: 10.1023/A:1024597010100 |
[12] | H. K. Baek, Regularities of multifractal measures, Proc. Indian Acad. Sci., 118 (2008), 273–279. https://doi.org/10.1007/s12044-008-0019-3 doi: 10.1007/s12044-008-0019-3 |
[13] | A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions, Proc. Cambridge Philos. Soc., 41 (1945), 103–110. https://doi.org/10.1017/S0305004100022453 doi: 10.1017/S0305004100022453 |
[14] | A. S. Besicovitch, P. A. P. Mohan, The measure of product and cylinder sets, J. Lond.Math. Soc., 20 (1945), 110–120. https://doi.org/10.1112/jlms/s1-20.2.110 doi: 10.1112/jlms/s1-20.2.110 |
[15] | J. Cole, L. Olsen. Multifractal Variation Measures and Multifractal Density Theorems, Real Anal. Exch., 28 (2003), 501–514. https://doi.org/10.14321/realanalexch.28.2.0501 doi: 10.14321/realanalexch.28.2.0501 |
[16] | J. Cole, Relative multifractal analysis, Choas, Solitons Fract., 11 (2000), 2233–2250. https://doi.org/10.1016/S0960-0779(99)00143-5 doi: 10.1016/S0960-0779(99)00143-5 |
[17] | C. D. Cutler, The density theorem and Hausdorff inequality for packing measure in general metric space, Illinois J. Math., 39 (1995), 676–694. https://doi.org/10.1215/ijm/1255986272 doi: 10.1215/ijm/1255986272 |
[18] | M. Dai, The equivalence of measures on Moran set in general metric space, Chaos, Solitons Fract., 29 (2006), 55–64. https://doi.org/10.1016/j.chaos.2005.10.016 doi: 10.1016/j.chaos.2005.10.016 |
[19] | M. Das, Local properties of self-similar measures, Illinois J. Math., 42 (1998), 313–332. https://doi.org/10.1215/ijm/1256045047 doi: 10.1215/ijm/1256045047 |
[20] | Z. Douzi, B. Selmi, On the Borel regularity of the relative centered multifractal measures. In the Book: Frontiers of Fractal Analysis: Recent Advances and Challenges, Taylor & Francis Group, LLC, CRC Press, 2022. |
[21] | Z. Douzi, B. Selmi, Regularities of general Hausdorff and packing functions, Chaos, Solitons Fract., 123 (2019), 240–243. https://doi.org/10.1016/j.chaos.2019.04.001 doi: 10.1016/j.chaos.2019.04.001 |
[22] | Z. Douzi, B. Selmi, A relative multifractal analysis: Box-dimensions, densities, and projections, Quaest. Math., 45 (2022), 1243–1296. https://doi.org/10.2989/16073606.2021.1941375 doi: 10.2989/16073606.2021.1941375 |
[23] | G. A. Edgar, Centered densities and fractal measures, New York J. Math., 13 (2007), 33–87. |
[24] | G. A. Edgar, Integral, probability, and fractal measures, Springer-Verlag, New York, 1998. |
[25] | G. A. Edgar, Packing measure in general metric space, Real Anal. Exch., 26 (1998), 831–852. https://doi.org/10.2307/44154081 doi: 10.2307/44154081 |
[26] | K. Falconer, R. D. Mauldin, Fubini-type theorems for general measure constructions, Mathematika, 47 (2002), 251–265. https://doi.org/10.1112/S0025579300015862 doi: 10.1112/S0025579300015862 |
[27] | K. J. Falconer, The geometry of fractal sets: Mathematical Foundations and Applications, John Wiley & Sons Ltd., 1990. https://doi.org/10.2307/2532125 |
[28] | R. Guedri, N. Attia, A note on the generalized Hausdorff and packing measures of product sets in metric spaces, Math. inequal. appl., 25 (2022), 335–358. https://doi.org/10.7153/mia-2022-25-20 doi: 10.7153/mia-2022-25-20 |
[29] | O. Guizani, A. Mahjoub, N. Attia, On the Hewitt-Stromberg measure of product sets, Ann. Mat. Pur. Appl., 200 (2020), 867–879. https://doi.org/10.1007/s10231-020-01017-x doi: 10.1007/s10231-020-01017-x |
[30] | H. Haase, The packing theorem and packing measure, Math. Nachr., 146 (1990), 77–84. https://doi.org/10.1002/mana.19901460307 doi: 10.1002/mana.19901460307 |
[31] | C. A. Hayes, C. Y. Paul, Derivation and Martingales, Springer-Verlag New York, 1970. https://doi.org/10.1007/978-3-642-86180-2 |
[32] | F. Hofbauer, P. Raith, T. Steinberger, Multifractal dimensions for invariant subsets of piecewise monotonic interval maps, preprint, 2000. |
[33] | J. Howroyd, On Hausdorff and packing dimension of product spaces, Math. Proc. Camb. Phil. Soc., 119 (1996), 715–727. https://doi.org/10.1017/S0305004100074545 doi: 10.1017/S0305004100074545 |
[34] | L. Huang, J. Yu, The multifractal Hausdorff and packing measure of general Sierpinski carpets, Acta Math. Sci. Ser. B Engl. Ed., 20 (2000), 313–321. https://doi.org/10.1016/S0252-9602(17)30638-0 doi: 10.1016/S0252-9602(17)30638-0 |
[35] | X. Hu, S. J. Taylor, Fractal properties of products and projections of measures in $\mathbb{R}$, Math. Proc. Camb. Phil. Soc., 115 (1994), 527–544. https://doi.org/10.1017/S0305004100072285 doi: 10.1017/S0305004100072285 |
[36] | H. Joyce, D. Preiss, On the existence of subsets of positive finite packing measure, Mathematika, 42 (1995), 14–24. https://doi.org/10.1112/S002557930001130X doi: 10.1112/S002557930001130X |
[37] | M. Khelifi, H. Lotfi, A. Samti, B. Selm, A relative multifractal analysis, Choas, Solitons Fract., 140 (2020), 110091. https://doi.org/10.1016/j.chaos.2020.110091 doi: 10.1016/j.chaos.2020.110091 |
[38] | D. G. Larman, A new theory of dimension, Proc. London Math. Soc., 17 (1967), 178–192. https://doi.org/10.1112/plms/s3-17.1.178 doi: 10.1112/plms/s3-17.1.178 |
[39] | H. H. Lee, I. S. Baek, The relations of Hausdorff, $*$-Hausdorff, and packing measures, Real Anal. Exch., 16 (1991), 497–507. https://doi.org/10.2307/44153728 doi: 10.2307/44153728 |
[40] | H. H. Lee, I. S. Baek, On $d$-measure and $d$-dimension, Real Anal. Exch., 17 (1992), 590–596. https://doi.org/10.2307/44153752 doi: 10.2307/44153752 |
[41] | H. H. Lee, I. S. Baek, The comparison of $d$-meuasure with packing and Hausdorff measures, Kyungpook Math. J., 32 (1992), 523–531. |
[42] | Z. Li, B. Selmi, On the multifractal analysis of measures in a probability space, Illinois J. Math., 65 (2021), 687–718. https://doi.org/10.1215/00192082-9446058 doi: 10.1215/00192082-9446058 |
[43] | B. Mandelbrot, Les Objects fractales: forme, hasard et Dimension, Flammarion, 1975. |
[44] | B. Mandelbrot, The Fractal Geometry of Nature, New York: WH Freeman, 1982. |
[45] | J. M. Marstrand, The dimension of Cartesian product sets, Proc. Lond. Math. Soc., 50 (1954), 198–206. https://doi.org/10.1017/S0305004100029236 doi: 10.1017/S0305004100029236 |
[46] | P. Mattila, The Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge, 1995. |
[47] | P. Mattila, R.D. Mauldin, Measure and dimension functions: measurablility and densities, Math. Proc. Camb. Phil. Soc., 121 (1997), 81–100. https://doi.org/10.1017/S0305004196001089 doi: 10.1017/S0305004196001089 |
[48] | A. P. Morse, J. F. Randolph, The $\phi$-rectifiable subsets of the plane, Am. Math. Soc. Trans., 55 (1944), 236–305. https://doi.org/10.1090/S0002-9947-1944-0009975-6 doi: 10.1090/S0002-9947-1944-0009975-6 |
[49] | A. Mahjoub, N. Attia, A relative vectorial multifractal formalism, Chaos, Solitons Fract., 160 (2022), 112221. https://doi.org/10.1016/j.chaos.2022.112221 doi: 10.1016/j.chaos.2022.112221 |
[50] | L. Olsen, A multifractal formalism, Adv. Math. 116 (1995), 82–196. https://doi.org/10.1006/aima.1995.1066 doi: 10.1006/aima.1995.1066 |
[51] | L. Olsen, Dimension Inequalities of Multifractal Hausdorff Measures and Multifractal Packing Measures, Math. Scand., 86 (2000), 109–129. https://doi.org/10.7146/math.scand.a-14284 doi: 10.7146/math.scand.a-14284 |
[52] | L. Olsen, Multifractal dimensions of product measures, Math. Proc. Camb. Phil. Soc., 120 (1996), 709–734. https://doi.org/10.1017/S0305004100001675 doi: 10.1017/S0305004100001675 |
[53] | L. Olsen, Multifractal Geometry, Proceeding, Fractal Geometry and Stochastics Ⅱ, Birkhäuser Basel, 2000. |
[54] | T. O'Neil, The multifractal spectra of projected measures in Euclidean spaces, Chaos Solitons Fract., 11 (2000), 901–921. https://doi.org/10.1016/S0960-0779(98)00256-2 doi: 10.1016/S0960-0779(98)00256-2 |
[55] | Y. Pesin, Dimension theory in dynamical systems, Contemporary views and applications, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. |
[56] | X. S. Raymond, C. Tricot, Packing regularity of sets in $n$-space, Math. Proc. Camb. Philos. Soc., 103 (1988), 133–145. https://doi.org/10.1017/S0305004100064690 doi: 10.1017/S0305004100064690 |
[57] | A. Schechter, On the centred Hausdorff measure, J. London Math. Soc., 62 (2000), 843–851. https://doi.org/10.1112/S0024610700001356 doi: 10.1112/S0024610700001356 |
[58] | B. Selmi, Some results about the regularities of multifractal measures, Korean J. Math., 26 (2018), 271–283. |
[59] | B. Selmi, On the strong regularity with the multifractal measures in a probability space, Anal. Math. Phys., 9 (2019), 1525–1534. https://doi.org/10.1007/s13324-018-0261-5 doi: 10.1007/s13324-018-0261-5 |
[60] | B. Selmi, The relative multifractal analysis, review and examples, Acta Sci. Math., 86 (2020), 635–666. https://doi.org/10.14232/actasm-020-801-8 doi: 10.14232/actasm-020-801-8 |
[61] | B. Selmi, The relative multifractal densities: a review and application, J. Interdiscip. Math., 24 (2021), 1627–1644. https://doi.org/10.1080/09720502.2020.1860286 doi: 10.1080/09720502.2020.1860286 |
[62] | B. Selmi, On the multifractal dimensions of product measures, Nonlinear Studies, 29 (2022), 247–255. |
[63] | S. J. Taylor, C. Tricot, The packing measure of rectifiable subsets of the plane, Math. Proc. Camb. Philos. Soc., 99 (1986), 285–296. https://doi.org/10.1017/S0305004100064203 doi: 10.1017/S0305004100064203 |
[64] | S. J. Taylor, C. Tricot, Packing measure and its evaluation for a brownian path, Trans. Am. Math. Soc., 288 (1985), 679–699. https://doi.org/10.1090/S0002-9947-1985-0776398-8 doi: 10.1090/S0002-9947-1985-0776398-8 |
[65] | S. Thomson, Construction of measures in metric spaces, J. London Math. Soc., 14 (1976), 21–24. https://doi.org/10.1112/jlms/s2-14.1.21 doi: 10.1112/jlms/s2-14.1.21 |
[66] | J. Peyrière, A vectorial multifractal formalism, Fractal geometry and applications: a jubilee of Benoit Mandelbrot, Part 2: Multifractals, Probability and Statistical Mechanics, Applications, 2004. https://doi.org/10.1090/pspum/072.2/2112124 |
[67] | S. Wen, M. Wu, Relations between packing premeasure and measure on metric space, Acta Math. Sci., 27 (2007), 137–144. https://doi.org/10.1016/S0252-9602(07)60012-5 doi: 10.1016/S0252-9602(07)60012-5 |