In this paper, we present self-adaptive inertial iterative algorithms involving Yosida approximation to investigate a split variational inclusion problem (SVIP) and common solutions of a fixed point problem (FPP) and SVIP in Hilbert spaces. We analyze the weak convergence of the proposed iterative algorithm to explore the approximate solution of the SVIP and strong convergence to estimate the common solution of the SVIP and FPP under some mild suppositions. A numerical example is demonstrated to validate the theoretical findings, and comparison of our iterative methods with some known schemes is outlined.
Citation: Mohammad Dilshad, Mohammad Akram, Md. Nasiruzzaman, Doaa Filali, Ahmed A. Khidir. Adaptive inertial Yosida approximation iterative algorithms for split variational inclusion and fixed point problems[J]. AIMS Mathematics, 2023, 8(6): 12922-12942. doi: 10.3934/math.2023651
In this paper, we present self-adaptive inertial iterative algorithms involving Yosida approximation to investigate a split variational inclusion problem (SVIP) and common solutions of a fixed point problem (FPP) and SVIP in Hilbert spaces. We analyze the weak convergence of the proposed iterative algorithm to explore the approximate solution of the SVIP and strong convergence to estimate the common solution of the SVIP and FPP under some mild suppositions. A numerical example is demonstrated to validate the theoretical findings, and comparison of our iterative methods with some known schemes is outlined.
[1] | R. Ahmad, M. Ishtyak, M. Rahaman, Graph convergence and generalized Yosida approximation operator with an application, Math. Sci., 11 (2017), 155–163. https://doi.org/10.1007/s40096-017-0221-5 doi: 10.1007/s40096-017-0221-5 |
[2] | M. Akram, M. Dilshad, A. K. Rajpoot, F. Babu, R. Ahmad, J. C. Yao, Modified iterative schemes for a fixed point problem and a split variational inclusion problem, Mathematics, 10 (2022), 2098. https://doi.org/10.3390/math10122098 doi: 10.3390/math10122098 |
[3] | M. Akram, J. W. Chen, M. Dilshad, Generalized Yosida approximation operator with an application to a system of Yosida inclusions, J. Nonlinear Funct. Anal., 2018 (2018), 17. https://doi.org/10.23952/jnfa.2018.17 doi: 10.23952/jnfa.2018.17 |
[4] | M. Alansari, M. Dilshad, M. Akram, Remark on the Yosida approximation iterative technique for split monotone Yosida variational inclusions, Comp. Appl. Math., 39 (2020), 203. https://doi.org/10.1007/s40314-020-01231-6 doi: 10.1007/s40314-020-01231-6 |
[5] | F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear osculattor with damping, Set-Valued Anal., 9 (2001), 3–11. |
[6] | T. O. Alakoya, L. O. Jolaoso, A. Taiwo, O. T. Mewomo, Inertial algorithm with self-adaptive step size for split common null point and common fixed point problems for multivalued mappings in Banach spaces, Optimization, 71 (2021), 3041–3075. https://doi.org/10.1080/02331934.2021.1895154 doi: 10.1080/02331934.2021.1895154 |
[7] | H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, 2017. https://doi.org/10.1007/978-3-319-48311-5 |
[8] | C. Byrne, Y. Censor, A. Gibali, S. Reich, Weak and strong convergence of algorithms for split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759–775. |
[9] | C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problems, Inverse Probl., 18 (2002), 441–453. |
[10] | Y. Censor, T. Elfving, A multi projection algorithm using Bregman projections in a product space, Numer. Algor., 8 (1994), 221–239. |
[11] | Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problem in intensity modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353–2365. |
[12] | P. L. Combettes, The convex feasibility problem in image recovery, Adv. Imag. Elect. Phys., 95 (1996), 155–270. https://doi.org/10.1016/S1076-5670(08)70157-5 doi: 10.1016/S1076-5670(08)70157-5 |
[13] | M. Dilshad, A. H. Siddiqi, R. Ahmad, F. A. Khan, An iterative algorithm for a common solution of a split variational inclusion problem and fixed point problem for non-expansive semigroup mappings, In: P. Manchanda, R. Lozi, A. Siddiqi, Industrial mathematics and complex systems, Industrial and Applied Mathematics, Singapore: Springer, 2017,221–235. https://doi.org/10.1007/978-981-10-3758-0_15 |
[14] | M. Dilshad, A. F. Aljohani, M. Akram, A. Khidir, Yosida approximation iterative methods for split monotone variational inclusion problems, J. Funct. Spaces, 2022 (2022), 3665713. https://doi.org/10.1155/2022/3665713 doi: 10.1155/2022/3665713 |
[15] | M. Dilshad, M. Akram, I. Ahmad, Algorithms for split common null point problem without pre-existing estimation of operator norm, J. Math. Inequal., 14 (2020), 1151–1163. http://dx.doi.org/10.7153/jmi-2020-14-75 doi: 10.7153/jmi-2020-14-75 |
[16] | M. Dilshad, A. F. Aljohani, M. Akram, Iterative scheme for split variational inclusion and a fixed-point problem of a finite collection of nonexpansive mappings, J. Funct. Spaces, 2020 (2020), 3567648. https://doi.org/10.1155/2020/3567648 doi: 10.1155/2020/3567648 |
[17] | A. Gibali, D. T. Mai, T. V. Nguyen, A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications, J. Ind. Manag. Optim., 15 (2019), 963–984. https://doi.org/10.3934/jimo.2018080 doi: 10.3934/jimo.2018080 |
[18] | K. Goebel, S. Reich, Uniform convexity, hyperbolic geometric and nonexpansive mappings, Monographs and Textbook in Pure and Applied Mathematics, New York: Marcel Dekker, Inc., 1984. |
[19] | D. Hu, X. He, X. Ju, A modified projection neural network with fixed-time convergence, Neurocomputing, 489 (2022), 90–97. https://doi.org/10.1016/j.neucom.2022.03.023 doi: 10.1016/j.neucom.2022.03.023 |
[20] | X. Ju, D. Hu, C. Li, X. He, G. Feng, A novel fixed-time converging neurodynamic approach to mixed mariational inequalities and applications, IEEE Trans. Cybernetics, 52 (2022), 12942–12953. https://doi.org/10.1109/TCYB.2021.3093076 doi: 10.1109/TCYB.2021.3093076 |
[21] | K. R. Kazmi, S. H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optim. Lett., 8 (2014), 1113–1124. https://doi.org/10.1007/s11590-013-0629-2 doi: 10.1007/s11590-013-0629-2 |
[22] | G. Lópoz, V. Martín-Márquez, F. Wang, H. K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Prob., 28 (2012), 085004. https://doi.org/10.1088/0266-5611/28/8/085004 doi: 10.1088/0266-5611/28/8/085004 |
[23] | P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899–912. https://doi.org/10.1007/s11228-008-0102-z doi: 10.1007/s11228-008-0102-z |
[24] | A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275–283. https://doi.org/10.1007/s10957-011-9814-6 doi: 10.1007/s10957-011-9814-6 |
[25] | A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Math. Appl. Math., 155 (2003), 447–454. https://doi.org/10.1016/S0377-0427(02)00906-8 doi: 10.1016/S0377-0427(02)00906-8 |
[26] | A. Moudafi, B. S. Thakur, Solving proximal split feasibility problem without prior knowledge of operator norm, Optim. Lett., 8 (2014), 2099–2110. https://doi.org/10.1007/s11590-013-0708-4 doi: 10.1007/s11590-013-0708-4 |
[27] | G. N. Ogwo, T. O. Alakoya, O. T. Mewomo, Iterative algorithm with self-adaptive step size for approximating the common solution of variational inequality and fixed point problems, Optimization, 72 (2023), 677–711. https://doi.org/10.1080/02331934.2021.1981897 doi: 10.1080/02331934.2021.1981897 |
[28] | Z. Opial, Weak covergence of the sequence of successive approximations of nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1976), 591–597. |
[29] | B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5 |
[30] | Y. Shehu, F. U. Ogbuisi, An iterative method for solving split monotone variational inclusion and fixed point problems, RACSAM, 110 (2016), 503–518. https://doi.org/10.1007/s13398-015-0245-3 doi: 10.1007/s13398-015-0245-3 |
[31] | Y. Shehu, A. Gibali, New inertial relaxed method for solving split feasibilities, Optim. Lett., 15 (2021), 2109–2126. https://doi.org/10.1007/s11590-020-01603-1 doi: 10.1007/s11590-020-01603-1 |
[32] | K. Sitthithakerngkiet, J. Deepho, P. Kumam, A hybrid viscosity algorithm via modify the hybrid steepest descent method for solving the split variational inclusion in image reconstruction and fixed point problems, Appl. Math. Comput., 250 (2015), 986–1001. https://doi.org/10.1016/j.amc.2014.10.130 doi: 10.1016/j.amc.2014.10.130 |
[33] | Y. Tang, Y. Zhang, A. Gibali, New self-adaptive inertial-like proximal point methods for the split common null point problem, Symmetry, 13 (2021), 2316. https://doi.org/10.3390/sym13122316 doi: 10.3390/sym13122316 |
[34] | J. Yang, X. He, T. W. Huang, Neurodynamic approaches for sparse recovery problem with linear inequality constraints, Neural Networks, 155 (2022), 592–601. https://doi.org/10.1016/j.neunet.2022.09.013 doi: 10.1016/j.neunet.2022.09.013 |
[35] | H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240–256. https://doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332 |