Research article Topical Sections

Exploring quaternionic Bertrand curves: involutes and evolutes in $ \mathbb{E}^{4} $

  • Received: 26 December 2024 Revised: 14 February 2025 Accepted: 26 February 2025 Published: 03 March 2025
  • MSC : 11R52, 53A04

  • This study investigated the concepts of (0, 2)-involute and (1, 3)-evolute curves associated with quaternionic Bertrand curves within the context of four-dimensional Euclidean space. Using a type-2 quaternionic frame, we derived mathematical expressions that define these interacting and evolute curves. The (0, 2)-involute curve is characterized by tangents orthogonal to points on the original quaternionic Bertrand curve, while the (1, 3)-evolute curve is constructed using specific normal vectors related to curvature properties. We presented a comprehensive framework that clarifies the interrelationships between the curvature functions of involute and evolute pairs and their connections to the Frenet frame. This framework provides a geometric basis for analyzing curves in higher-dimensional spaces. The findings enhance the understanding of quaternionic curves and their geometric properties, contributing to the broader field of differential geometry.

    Citation: Ayman Elsharkawy, Ahmer Ali, Muhammad Hanif, Fatimah Alghamdi. Exploring quaternionic Bertrand curves: involutes and evolutes in $ \mathbb{E}^{4} $[J]. AIMS Mathematics, 2025, 10(3): 4598-4619. doi: 10.3934/math.2025213

    Related Papers:

  • This study investigated the concepts of (0, 2)-involute and (1, 3)-evolute curves associated with quaternionic Bertrand curves within the context of four-dimensional Euclidean space. Using a type-2 quaternionic frame, we derived mathematical expressions that define these interacting and evolute curves. The (0, 2)-involute curve is characterized by tangents orthogonal to points on the original quaternionic Bertrand curve, while the (1, 3)-evolute curve is constructed using specific normal vectors related to curvature properties. We presented a comprehensive framework that clarifies the interrelationships between the curvature functions of involute and evolute pairs and their connections to the Frenet frame. This framework provides a geometric basis for analyzing curves in higher-dimensional spaces. The findings enhance the understanding of quaternionic curves and their geometric properties, contributing to the broader field of differential geometry.



    加载中


    [1] C. Huygens, H. Oscillatorium, The Pendulum clock or geometrical demonstrations concerning the motion of pendulums adapted to clocks, Apud F. Muguet, 1968.
    [2] J. Bertrand, Memoir on the theory of curves of double curvature, J. Math. Pures Appl., 15 (1850), 332–350.
    [3] L. R. Pears, Bertrand curves in Riemannian space, J. London Math. Soc., 1 (1935), 180–183. https://doi.org/10.1112/jlms/s1-10.2.180 doi: 10.1112/jlms/s1-10.2.180
    [4] H. Matsuda, S. Yorozu, Notes on Bertrand curves, Yokohama Math. J., 50 (2003), 41–58.
    [5] A. Ucum, O. Kecilioglu, K. Ilarslan, Generalized Bertrand curves with timelike (1, 3)-normal plane in Minkowski space-time, Kuwait J. Sci., 42 (2015), 1–15.
    [6] I. Gok, S. K. Nurkan, K. Ilarslan, On pseudo null Bertrand curves in Minkowski space-time, Kyungpook Math. J., 54 (2014), 685–697. https://doi.org/10.5666/KMJ.2014.54.4.685 doi: 10.5666/KMJ.2014.54.4.685
    [7] S. Ersoy, M. Tosun, Timelike Bertrand curves in semi-Euclidean space, arXiv, 2013. https://doi.org/10.48550/arXiv.1003.1220
    [8] A. Elsharkawy, M. Turan, H. Bozok, Involute-evolute curves with modified orthogonal frame in Galilean space $ {G}_3$, Ukr. Math. J., 76 (2024), 1444–1454. https://doi.org/10.3842/umzh.v76i10.7822 doi: 10.3842/umzh.v76i10.7822
    [9] A. Elsharkawy, Generalized involute and evolute curves of equiform spacelike curves with a timelike equiform principal normal in ${E}_1^3$, J. Egypt. Math. Soc., 28 (2020), 26. https://doi.org/10.1186/s42787-020-00086-4 doi: 10.1186/s42787-020-00086-4
    [10] N. Elsharkawy, C. Cesarano, R. Dmytryshyn, A. Elsharkawy, Timelike spherical curves according to equiform Bishop frame in 3-dimensional Minkowski space, Carpathian Math. Publ., 15 (2023), 88–95. https://doi.org/10.15330/cmp.15.2.388-395 doi: 10.15330/cmp.15.2.388-395
    [11] A. Elsharkawy, Y. Tashkandy, W. Emam, C. Cesarano, N. Elsharkawy, On some quasi-curves in Galilean three-space, Axioms, 12 (2023), 823. https://doi.org/10.3390/axioms12090823 doi: 10.3390/axioms12090823
    [12] R. L'opez, Ž. M. Šipuš, L. P. Gajči'c, I. Protrka, Involutes of pseudo-null curves in Lorentz-Minkowski 3-space, Mathematics, 9 (2021), 1256. https://doi.org/10.3390/math9111256 doi: 10.3390/math9111256
    [13] I. Shuichi, F. M. C. Romero, T. Masatomo, Evolutes of curves in the Lorentz-Minkowski plane, Singul. Generic Geom., 78 (2018), 313–330. https://doi.org/10.2969/ASPM/07810313 doi: 10.2969/ASPM/07810313
    [14] M. A. Clifford, Preliminary sketch of biquaternions, Proc. London Math. Soc., 1 (1871), 381–395. https://doi.org/10.1112/plms/s1-4.1.381 doi: 10.1112/plms/s1-4.1.381
    [15] K. Bharathi, M. Nagaraj, Quaternion valued function of a real variable Serret-Frenet formula, Ind. J. Pure Appl. Math., 18 (1987), 507–511.
    [16] M. Hanif, M. Onder, Generalized quaternionic involute-evolute curves in the Euclidean four-space $E^4$, Math. Methods Appl. Sci., 43 (2020), 4769–4780. https://doi.org/10.1002/mma.6231 doi: 10.1002/mma.6231
    [17] I. Gok, O. Z. Okuyucu, F. Kahraman, H. H. Hacisalihoglu, On the quaternionic ${B}_2$-slant helices in the Euclidean space ${E}^4$, Adv. Appl. Clifford Algebras, 21 (2011), 707–719. https://doi.org/10.1007/s00006-011-0284-6 doi: 10.1007/s00006-011-0284-6
    [18] T. Soyfidan, M. A. Gungor, On the quaternionic involute-evolute curves, arXiv, 2013.
    [19] O. Kecilioglu, K. Ilarslan, Quaternionic Bertrand curves in Euclidean 4-space, Bull. Math. Anal. Appl., 5 (2013), 27–38.
    [20] S. Senyurt, C. Cevahir, Y. Altun, On spatial quaternionic involute curves a new view, Adv. Appl. Clifford Algebras, 27 (2017), 1815–1824. https://doi.org/10.1007/s00006-016-0669-7 doi: 10.1007/s00006-016-0669-7
    [21] O. Yildiz, O. Icer, A note on evolution of quaternionic curves in the Euclidean space $\mathbb{R}^4$, Konuralp J. Math., 7 (2019), 462–469.
    [22] F. K. Aksoyak, A new type of quaternionic frame in $\mathbb{R}^4$, Int. J. Geom. Methods Mod. Phys., 16 (2019), 1950084. https://doi.org/10.1142/S0219887819500841 doi: 10.1142/S0219887819500841
    [23] M. A. Gungor, T. Erisir, On the quaternionic curves in the semi-Euclidean space $\mathbb{E}^4_2$, Caspian J. Math. Sci., 7 (2018), 36–45.
    [24] S. Ersoy, A. Inalcik, On the generalized timelike Bertrand curves in 5-dimensional Lorentzian space, Differ. Geom. Dyn. Syst., 13 (2011), 78–88.
    [25] S. Ersoy, A. Inalcik, Generalized spacelike Bertrand curves in Minkowski 5-space, Quaest. Math., 37 (2014), 19–29. https://doi.org/10.2989/16073606.2013.779967 doi: 10.2989/16073606.2013.779967
    [26] D. Guler, Y. Ekmekci, Y. Yayli, M. Helvaci, Obtaining the parametric equation of the curve of the sun's apparent movement using quaternions, Univ. J. Math. Appl., 5 (2022), 42–50. https://doi.org/10.32323/ujma.1091832 doi: 10.32323/ujma.1091832
    [27] A. Caliskan, Canal surfaces generated by special curves and quaternions, Afr. Mat., 34 (2023), 95. https://doi.org/10.1007/s13370-023-01138-5 doi: 10.1007/s13370-023-01138-5
    [28] K. Eren, Z. Myrzakulova, S. Ersoy, R. Myrzakulov, Solutions of localized induction equation associated with involute-evolute curve pair, Soft Comput., 28 (2024), 105–117. https://doi.org/10.1007/s00500-023-09375-3 doi: 10.1007/s00500-023-09375-3
    [29] M. Hanif, Z. H. Hou, Generalized involute and evolute curve-couple in Euclidean space, Int. J. Open Probl. Comput. Sci. Math., 11 (2018), 28–39. https://doi.org/10.12816/0049059 doi: 10.12816/0049059
    [30] M. Hanif, Z. H. Hou, K. S. Nisar, On special kinds of involute and evolute curves in 4-dimensional Minkowski space, Symmetry, 10 (2018), 317. https://doi.org/10.3390/sym10080317 doi: 10.3390/sym10080317
    [31] M. Hanif, Z. H. Hou, A new approach to find a generalized evolute and involute curve in 4-dimensional Minkowski space-time, Palest. J. Math., 8 (2019), 397–411.
    [32] H. K. Elsayied, A. M. Tawfiq, A. Elsharkawy, Special Smarandach curves according to the quasi frame in 4-dimensional Euclidean space ${E}^4$, Houst. J. Math., 74 (2021), 467–482.
    [33] H. K. Elsayied, A. M. Tawfiq, A. Elsharkawy, The quasi frame and equations of non-lightlike curves in Minkowski ${E}_1^3$ and ${E}_1^4$, Ital. J. Pure Appl. Math., 49 (2023), 225–239.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(57) PDF downloads(20) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog